
SINGULAR SETS OF SOME KLEINIAN GROUPS

TOHRU AKAZA

Introduction

In our paper Cl] we showed that there exist Schottky groups whose singular

sets have positive 1-dimensional measure. Since the example was very com-

plicated, it is natural to seek for simpler examples. Further the problem how

about the singular sets of more general groups occurs.

In §§1-3 we investigate the measures of the singular sets of some Kleinian

groups and the convergence problem of the (-2)-dimensional Poincare theta-

series. The main result is that there exist Kleinian groups whose fundamental

domains are bounded by five mutually disjoint circles and whose singular sets

have positive l dimensional measure. But it seems still open whether the

singular sets of the Kleinian groups whose fundamental domains are bounded

by four mutually disjoint circles can have positive 1-dimensional measure or

not. In § 4, as applications of the preceding chapters, similar problems about

Schottky subgroups formed from Kleinian groups by inversion method are

treated.

§1. Kleinian groups whose fundamental domains are
bounded by N mutually disjoint circles

1. Consider the properly discontinuous groups G of the linear transforma-

tions whose fundamental domain Bo is bounded by N mutually disjoint circles

{Ki)fmi. Then there exist two different kinds of generators. A generator S, β

of the first kind transforms the outside of a boundary circle i£ 0 onto the inside

of a boundary circle Kit different from Kit and a generator S/o of the second

kind transforms the outside of Kj0 onto the inside of Kjt itself. The former is

the hyperbolic or loxodromic transformation and the latter is the elliptic trans

formation with period 2.

Take any generator of G
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Ti(z) = * * ± k (aidi - bid = 1).
CiZ-tdi

If Ti(z) is hyperbolic or loxodromic, then aι \ -d% is either real and | a,\+d, | > 2

or complex and non zero. If Ti(z) is the elliptic transformation with period

2, then T}(z) is the identical transformation, so α/ + rf, is zero.

2. Now we start from Bo and form a properly discontinuous group of

linear transformations with the fundamental domain Bo,

Take 2p {N^2p) boundary circles '{Hi,"H\)U\ from \Kj}*-ύ Let 5/ be a

hyperbolic or loxodromic generator which transforms the outside of Hi onto

the inside of £Γ{. We denote by S,7l""theί inverse transformation of 5/. Then

{S, }?-i generate a Schottky group Gu which is a subgroup of G and whose

fundamental domain fiα& is bounded by {Hi, ff{}f-i.' Let' {7>>J-i be the

elliptic transformations with period 2 corresponding tύ the remaining boundary

circles-{UL/.}y4ί, where N—2p = q. Then (Ty>y*i generate a properly disconti-

nuous group G2 whose fundamental domain Bί -> Bo is the outside of the boundary

circles-'{Kj)%i. By combining two groups Gtand G2, a new group Gi G2,

which is generated by '{St )£-.i and {Ty}y=i, is obtained and is called a Kleinian

group. It is easily seen that the fundamental domain of G coincides with BQ

= BιΠB2 and G is properly discontinuous. In the special case of N=2p,

G = Gi is a Schottky group, and if N is odd, there exists necessarily at least

one elliptic transformation with period 2 and G is a Kleinian group. If p = 0

especially, G is generated by the only elliptic transformations {7>}/=i with

period 2. To the domain BQ with N bpuixdary circles, there exist

Kleinian groups in all, according to determination of generators, where

denotes the maximal integer not exceeding ~^~»

3. Let G be a Kleinian group generated by combining two groups Gi and

G2 as the above, where G2 is a Schottky group with fundamental domain Bi

generated by p generators and their inverses and G2 with fundamental domain

B2 is also generated by q-N-2p elliptic transformations with period 2 and

of course the fundamental domain of G is Bo = Bi Π Z?2.
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We denote by ST the transformation obtained by composition of transformations

5 and T contained in G, that is,

ST(z) = S{T{z)).

We put SS = S2 and Sλ = S Sλ~ι inductively for any integer Λ(>1). For a

negative integer λ, Sλ denotes ( S " 1 ) l λ l . Then any element 5 of G has the form

S = S(\k)Tjk* S,v1)7>1S(vβ), viz.,

where vi (ί = 0, . . . , k) are integers and S(W) denotes the \vA product of gener-

ators of Gi or their inverses and Tjt (T)L = identity) denotes the generator of

G2. We call the sum

the grade of 5.

The image S(B0) of the fundamental domain Bo by S ( e G ) with grade m

(#0) is bounded by N circles S(i//), S(/J ) andSlfiΓy), (ι = 1, . . . , p9 j = 1, . . . ,

q> N—2p + q), the one C(m~1] of which is contained in the boundary of the

image of Bo under some T ( e G ) with grade m - 1. For simplicity, we say

that the outer boundary circle c(m~11 of 5(50) is a circle of grade m. Circles

{Hi, H'i) f^i U {ϋζ }5=i, which bound JB0, are of grade 1. The number of circles

of grade m is obviously equal to N{N-l)m~\

Denote by Dm the N(N- D^'^ply connected domain bounded by the whole

circles of grade m. Evidently {Dm} (m = 1, 2, . . .) is a monotone increasing

sequence of domains. The complementary set Dm of Dm with respect to the

extended z-plane consists of N(N- l)m~1 mutually disjoint closed discs. The

set E- Π Dm is perfect and nowhere dense. We call E the singular set of

G. The group G is properly discontinuous in the complementary set of E.

It is well-known that, in the special case when G is a Schottky group with

p^2, the logarithmic capacity of E is positive (See Myrberg [4]) and that the

2-dimensional measure of E is equal to zero (See Sario Π6]). Applying Myr-

berg's method to such a Kleinian group, it is seen that the logarithmic capacity

of E of this group is positive in the case of N^3. In our paper [1], we

proved, using the example of the fundamental domain of such a group bounded

by 36 circles, that there exist Schottky groups whose singular sets have the
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positive 1-dimensional measure.

4. Let H(z) be a rational function none of whose poles is contained in the

singular set E of the Kleinian group G. Denote by z/ = (ajz + bj)/(cjz + dj)

(.7 = 0, 1, . . . ) all the elements of G. The identical transformation of G is

denoted by zo

Consider the series

(2) βv(*> = *ΣH{zj){cjZ + dj)-\

where v is a positive integer. This is a so-called ( — *>) -dimensional Poincare

theta-series.

Let D be the complementary domain of the set E and D1 be a relatively

closed subdomain of D. Since the point —djlcj (/#0) is the image of infinity

by the inverse transformation z/1 of 2> O'#0) and since G is properly discon-

tinuous in D, there are only finitely many points — dj/cj (j*Q) in D1. Denote

by Dn a non-empty subdomain of D' obtained by deleting suitable neighbor-

hoods of points - dj/cj and °°.

Let # ( / = 1, . . . , k) be poles of H(z) in D and let Ui be neighborhoods of

βi such that I i/U) I = M\ on the boundary of Ui- By using the proper discon-

tinuity of G and by taking Mi sufficiently large, we may assume that D* = D"
k

- U \JS(Ui) are not empty.
.vεβ i*i

Then we have the following propositions (cf. Cl3).

PROPOSITION 1. The ( — v)-dimensional Poincarέ theta-series

converges absolutely and uniformly in Z>* if and only if the series

j-0

converges absolutely and uniformly in Dn.

We put

j J

i-β

where v is a positive number. We call PΛz) the ( — p)-dimensional jP-series,
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Petersson [5] showed that if G is a Fuchsian group, PΛz) converges for v>2,

and that if G is a Fuchsian group of the first kind, PΛz) diverges for v<2.

We have the following

PROPOSITION 2. The series PΛz) converges uniformly in Dn if and only if

the series

(3)

converges.

Let

be a transformation of grade m (^1) in G. Then the radius n of a circle C

of grade m by Sιm){z) is given by

i ? w U ) ι , . ,

where /f is a suitable one in {/ζ , ^ }f=ι U {Kj)%ι which 5 ( m ) carries to C.

Hence, we have

Again we note that the point — d/c is outside of Bo. If we put

ά = max \z + {die) I and d = min \z+ (d/c)\,

then

(4) -TΓ-ΓT

where r is the radius of H.

Such inequality holds for all circles of grade m. Hence we have the

following.

PROPOSITION 3. The series Σ l θ " Γ v converges if and only if Σ^m converges,

where lm] is the sum of terms ( r ( m } ) v / 2 obtained for radii r(m) of circles of grade m.

Combining Propositions 1, 2 and 3, we have the following important Pro-

position 4, which we shall use later.
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PROPOSITION 4. Let v be a positive integer. The following four propositions

are equivalent to each other \ (i) The ( - v)-dimensional Poincarέ theta-series Θy(z)

converges absolutely and uniformly in D*. (ii) The ( —v)-dimensional P-series
00

PΛz) converges uniformly in D". (iii) The series Σ l θ Γ v converges, (vi) The
JΨΛ

oo

series *Σl(m converges.

It is evident that, if lim/ff—O, then the singular set of G is of (-τr)~

dimensional measure zero. Hence, from Proposition 4, we get

PROPOSITION 5. If any one of the conditions (i), (ii), (iii) and (iv) in Pro-

position 4 is valid, then the singular set of G is of (-S-J-dimensional measure zero.

5. We shall state the concept of isometric circles of linear transformations

due to Ford [2] and some important properties of them.

For a linear transformation of the form

ad-bc= 1, c*0,

the circle / : \cz'+d\ = \ is called the isometric circle of the transformation.

The radius of / equals l/|c|.

(I) By a transformation lengths and areas inside its isometric circle are

increased in magnitude and lengths and areas outside the isometric circle are

decreased in magnitude. A transformation carries its isometric circle into the

isometric circle of the inverse transformation. The radii of the isometric

circles of a transformation and its inverse are equal.

Let G be a properly discontinuous group of linear transformations. We

suppose that, if an element of G transforms the point at infinity into itself,

then the element is the identity of G. Consider two arbitrary transormations

of G

• T: T(z)^-az

z~~->ad-bc=l, c#0,

and

az + 0 , Q t • Λ= — - ad - βγ = 1, r % 0.

For a moment we assume that S*T~\ The isometric circle of ST=S(TU))

is the circle
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Denote by /<?, /i, IT, I'τ and hi isometric circles of S, S~\ T, T " 1 and ST, res-

pectively. Let gs, g's, gτ> g'τ and g$τ be their centers, and let Rs, RT and i?Sτ

be radii of Is, IT and 1ST.

As to these values, the relation

(5) J?«.= X * *

holds.

As to the location of isometric circles, we have from (I) the following.

(II) If Is and Vτ are exterior to each other, then Isr is contained in 7Γ. If

Is and Iτ are tangent externally, then 1ST lies in Iτ and is tangent internally.

If the grade of the transformation in G is m, its isometric circle is called

an isometric circle of grade m. The number of the isometric circles with

grade m is obviously equal to N(N— I)"1""1.

From the definition of isometric circles follows

00

PROPOSITION 6. The convergence of the series Σ l c / Γ v is equivalent to the con-

vergence of the sum of v-th powers of radii of isometric circles for all the elements

of G.

§ 2. Measure of the singular sets of Kleinian groups

6. Given a set e of points in the z-plane and a positive number δ, we

denote by I(δ, ε) a family of a countable number of closed discs U of diameter

lo^δ such that every point of ε is an interior point of at least one U.

We call the quantity

Ληe = l i m [ inf Σ /£]

the ^-dimensional measure of e.

7. Denoting by r(p and by r j m + 1 ) (i = l, . . . , N-l) the radius of the

outer boundary circle Cjm\ that is, a circle of grade m and the radii of N- 1

inner boundary circles C j m + 1 ) ( ί = l , . . . , iV-1) of the image ^ m of the

fundamental domain & by a transformation 5 ( m ) ( e G ) with grade m, we

the following (See [1].),
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PROPOSITION 7. There exist positve constants ϋΓ0 (< l) and ko depending only

on Bo such that

(6) ftorΓ'SrΓ^SKirΓ' ( ' = *. ..*,N-1).

8. In [1] we obtained the important criterion which determines that the

singular set E of a Schottky group G has the positive ^-dimensional measure.

Since the method will be needed in the following, we state it here again.

Denote by Fno the family of all closed discs bounded by circles of grade n

(>#o). It is easy to see that Fno is a covering of the singular set of our

Kleinian group G and that the diameter of any disc of Fn, is less than a given*

δ (>0) for sufficiently large nQ. This fact is verified by Proposition 7.

Consider a family /(£, E) of coverings of E stated in No. 6. Since E is

compact, the set E is covered by a finite number of discs @i, . . . , @* of a

covering of E in I(δ, E). Take an arbitrary ®, among these k circles and let

h (^3/2) be the radius of @, .

Let δ be sufficiently small. For a ®, fixed, we can find closed discs ic(mχ\

. . . , fc ( m-Y ( l ) ) in \jFn satisfying the following conditions:
n = l

(i) The radius V ^ of ' C ^ ' (l^j^N{i)) of grade wy is larger than /,-;

(ii) There exist at least one circle of grade mj +1 lying inside the boundary

of f'C(m^, meeting <& and of radius V(m^+1) not greater than /,-;
mi)

(iii) U'C^ΊXfcni:.
.7 = 1

It is easy to see that there exist a constant Λ: independent of i such that

N{i)<>ιc. We can prove κ = 5 by some geometrical consideration.

By the inequality (6) of Proposition 7,

Construct such discs { fC ( Λ f j )} for e v e r y g, (ι = 1, . . . , * ) . T h e n i t i s obvious
k N(i)

that U

iVίί)

Thus we have

PROPOSITION 8. £βί -PS?* fe β covering of E constructed by discs in Fno whose

radii are not greater than δ/2 kQ and let n be the radius of a disc C in FδJ?\

Then it holds
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(7) LηE=liminf Σ (2Σ
δ/k

By Proposition 8, we can prove

PROPOSITION 9. Given a Kleinian group defined in § 1, ί/

(8)

for radius RS(m-D of any isometric circle IS\m-D of grade m — 1 and radii Rsm) of

N—l isometric circles /S(m. of grade m, then the (-Q-j-dimensional measure of the

singular set E of G is positive.

Proof Take a covering Fnf* of E constructed by a finite number of close

discs Z>5(wi), . . . , Dl(mQ), which are bounded by circles

(9) Cj(mi), . . . , ChmQ)

respectively, where C&m3) il^j^Q) is a circle of grade mjf that is, an outer

boundary circle of the image S(m^CS>).

Denote by rS(»j> the radius of a circle Cl(mj). Then, from (4)

(10) Σ {rsimj))μl2>k{G) Σ (Rsi^Y,

where Ra{m3) is the radius of the isometric circle h^).

From the construction of FsJo

h°, there exist in (9) some systems {Wmk*}>

each of which consists of N— 1 boundary circles with the following properties:

(i) N-l circles of Wmk* have same grade number mΐ, while the grade of

circles of different systems are not necessarily equal,

(ii) N—l circles of each system W\nk* are bounded by a circle of grade

mt - 1.

Let Cit.(mfc*) (ί = 1, 2, . . . , N- l) and Ce<m**-i) be circles of a system Wmk*

and a circle surrounding them respectively, where S ^ = S(mAc*"υT, ( i = l , 2,

. . . , N ~ 1 Ti a generator or its inverse). By the assumption (8), it holds,

for each system,

After replacing N - 1 circles of each system W\nk* by a circle surrounding
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them, we have also a new covering of E consisting of closed discs D\(mX), . . . ,

Z>S<mg'), which are bounded by circles

(11) Ci«ι) CW), {Q'<Q).

Then there exist in (1.1) some systems {WmA which satisfy the above condition

(i) and (ii) and hence, for each system of {Wmi*}, it holds also

Repeating this procedure, we obtain the following

(12) Σ {R*(mβ)»> Σ (i?S(-o))μ,

where mo= minmy and the summation in the right hand side is taken over all

transformations in G with grade mQ. By a similar argument, we see

(13)

where Σ denotes the sum with respect to all generators and their inverses.

Here the quantity in the right hand side is a positive constant. Thus, for any

covering F%k° of Ey we have from (10), (12) and (13)

Σ (r5(m,))μ/22^(G) Σ {Rs(»)μ> 0,

Putting ^ = —- in (7), we can prove our proposition from the above inequality

and Proposition 8.

Remark. In [1], we obtained the following result: given a Schottky group

G, if

(14) Σ(A(*))μSΛS(—i), (0</ι<4,
if

then the (-—)-dimensional measure of the singular set E of G is positive.

This Theorem is valid for a Kleinian group defined in No. 2. But the

process of proving Theorem contained the obscurity with respect to the relation

between a covering consisting of the images of Bo by transformations of G and

radii of their isometric circles.

From the property (II) in No. 5? it is seen that J?S(»»-i> and R&m) {§im) =;
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TiS{m~1) are the radius of the isometric circle /S(™-i) and the radii of N- 1

isometric circles I8(m) contained in IS(m-D. By the property (I) in No. 5, (14)

is equivalent to the condition

Σ (Λ-<m>) >££-(-»), (S" ( m j = s-(m'υ Tί1)

and this is also equivalent to (8).

§ 3. Computing functions of a Kleinian group

9. Let.us consider a transformation

of a Kleinian group G, where Ti and T"2 are generators or their inverses. Let

Raw and 2?θ<«-i> be the radii of the isometric circles of S{m) and 5 ( m " υ . Then

we have from (5)

\~D y = i — *

We consider the following function

(15) /tfW-Ση ^
I

for the boundary circle Htι of Bo, which is one of Bo mapped onto H\x by T2,

where z varies on the closed disc bounded by Hi., and the notation Σ denotes

the summation with respect to the N—l generators or their inverses except

T2. It T2 is an elliptic transformation with period 2, then Hix = H\x.

It is obvious that

^,) = Σ Ί ^ p. ( Γ 2 * Γ Γ 1 ) ,

where gTι-ι does not belong to the closed disc bounded by a boundary circle

Hi, and gS(m-D is surrounded by H, ιt since .̂,(«-i) = S' ( m " υ (oo), (S"(m""υ =

T2-
15" ( w"2 ), oo e Bo) and S '^" 1 ^^) is contained in the domain bounded by Hiχ.

We call f?2'(z) the ^-dimensional computing function of T2 and there exist N

computing functions f%](z)y (v = 1, . . . , N) in all, since the first element T2

of S(m~υ is any generator or its inverse of G. Such functions {/5^{z)} (v = 1,

. . . , ΛO are called the μ- dimensional computing functions of a Kleinian group
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G.

10. Take a generator Tι and its /j-dimensional computing function

where the notation Σ denotes the summation with respect to the N - 1 gene-
Tv*2'ι

rators or their inverses Tv except T}. Then f{τχ\z) is defined in the closed

disc DTι

 : \z -atι\^rtι bounded by HtL which is a boundary circle of JBO mapped

onto Htx by Tu Since any center gTv of the isometric circles of generators or

their inverses Tv (Γ v # Tj) is a pole of Tv, it is in the outside of DTχ and hence

the denominator of each term of /r?}U) does not vanish. From this fact /ίζ }U)

is uniformly continuous in Λ v Then we can choose δ depending only on any

small ε, so that it holds \fiΐ(z) - / & V ) | < β for z and z1 satisfying \z-z'\<δ

in DTl. Denote by Ei the subset of E contained in DTl. Since, from Proposition

7, any radius r{m) of circles of grade m is equal or less than K7~ιra\K*<ϊ),

which tends to zero for m -> co, there exists a grade number m0 depending only

on δ so that for any S ( m ) = S ( m"υΓj, m>mQ, there is 2 O e f i such that #*«>e A

Uo), where AUo) denotes the disc with center ZQ and with radius δ. Hence it

can be seen that

(16) i/^Uo)-/

Suppose that it holds

(17) /ί? } U) > Ai, for any

Then we have from (16) and (17)

Now we have the following

THEOREM 1. Let G be a Kleinian group whose fundamental domain is bounded

by N boundary circles as in No. 2. If it holds that

(18) fP1

}(z)>λi>l, (f=l f . . . ,N)

on the singlar subset Ei of E contained in the boundary circle Hi (i = 1, . . . , N)

of BQ respectively, then the singular set E of G has the positive [-£-)•dimensional

measure.
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Proof. For any /, take ε so small that it may hold λ/ —e> 1 (ί = 1, . . .

N). Then we can determine the grade number m0 such that the inequalities

hold. Hence we have the following inequalities

.-i), {S(m) =S{m'1)Ti = Sm'2)T2Tu Tϊ1* Tι),

for radius RS^-D of any isometric circle I^m-i) of grade m - 1 and radii Rsi»>)

of the N— 1 isometric circles law of grade m. Thus, by Proposition 9, we get

the theorem, q.e.d.

Noting Proposition 4, we get the following

COROLLARY. If the condition (18) is satisfied for the computing functions of

the Kleinian group, then the ( — μ)-dimensional P series Pμ(z) does not converge

in D".

§ 4. Examples of Kleinian groups whose singular sets hare
positive 1-dimensional measure

11. P. J. Myrberg [3] treated also the convergence problem of the (— 2) •

dimensional Poincare theta-series Θ2(z) with respect to Schottky groups and

Kleinian groups and gave the examples in which Θ2U) does not converge. But

in his paper it was not treated from the view point of the measure of the

singular sets of such groups.

In this chapter, by using the condition (for μ = 2) of Theorem 1, we shall give,

more systematically, the examples in which the singular sets of Kleinian groups

have positive 1-dimensional measure and Θ2(z) does not converge in £>*. Further

we shall try to make the number N of the boundary circles as small as possible.

As the preliminary to give examples, we shall show how to construct a

transformation T which maps the outside of a circle H onto the inside of

another circle H\ where H and H* have equal radii, though in general we can

set up infinitely many such transformations.

Denote two circles by

H: \z-q\ = rt H' : \z-q'\ = r.

It T is restricted by the conditions-' q' = 7X°°) and #= T"1{co)t it is easily

seen that T has the following form
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where β is any real number and the isometric circles Iτ and IT are H and H\

respectively.

12. EXAMPLE The case of TV = 5.

Consider the four circles Hj (j=l, 2, 3, 4) with centers aj = ylYei(2j'1)π/ι

(i2 =s - i) and equal radii R = 1 - e, respectively. If we let these four circles

correspond to two hyperbolic transformations Si and S2 by (19) such that the

outside of Hi is mapped onto the inside of Hz by Si and the outside of Hz is

mapped onto the inside of Hi by S2, we obtain a Fuchsian group Gi of the

second kind with the fixed circle Ul = 1 + ei. Next we describe a circle i/5

with center at the origin and radius r=V"2~-l and let it correspond to an

elliptic transformation Sδ with period 2.

Combining Fuchsian group Gι with the group G2 generated by only Sδ,

we obtain a Kleinian group G, that is, a combination group Gi G2, whose

fundamental domain Bo is connected and bounded by five circles Hj (.7 = 1, 2,

3, 4, 5).

For convenience of calculation, we may consider the limit case e = 0. In

this case Bo is no more connected. Then the fixed circle of Gt is Ul = l.

Denote by Dj (/ = 1, 2, 3, 4, 5) the closed discs bounded by Hj (j = 1, 2, 3, 4, 5)

and U the closed unit disc. The singular set E of G is contained in the domain
5

U {DjCi U). It can be seen from (21) that the generating transformations Sj

(/= 1, 2) and Sδ have the following forms:

Λ / ) / _ /«• » 5 / = Sy+2, ( i = 1, 2)

(20) J f t ^ V^
S5 = £-£- * ((? Vreal number, r = V"2 - l).

By virtue of symmetricity of the figure, it is sufficient to calculate the

values of the computing functions f^(z) in D5 and f™(z) in UΠDL. Since

the centers and radii of the isometric circles ISj, l!y (j = 1, 2) and 7^ are easily

known from (20), the values of /s^U) and /ί^U) in the above restricted

domains can be calculated as follows.

(I) Case of f(£(z).
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It holds that in Ds

where gj coincides with the center aj of Hj. Since \z — gj\ ^2jΎ - 1 in Ds,

we have

f^(,)> 4 4O + 4V2")
49

(II) Case of / £ ( * ) .

It holds that in

Considering

1

+I1

we see easily that it attains the minimum at d= (1-f ί) /V 2 in ί/Π [/i. Since

ki—£4l2= (V2 )2-f 1 = 3, the above sum is equal or greater than 2/3. Since

l/\z—gz\2 and (V"2"- l)2/lε|2 attain also the minimum at cu it holds

So taking ε sufficiently small, we conclude that in this example all functions

f{sj{z) (j= 1, 2, 3, 4, 5) are greater than 1 in the singular set contained in ir-

respectively. Hence for the case of μ = 2 the condition of Theorem 1 is satisfied

and the 1-dimensional measure of the singular set of such a Kleinian group is

positive. Thus the ( - 2)-dimensional Poincare theta-series Θ2(z) does not

converge in D* for such group.

REMARK. We can easily see that for sufficiently small δ the (1 + δ) -dimen-

sional measure of the singular set of the above Kleinian group is positive.

Even in the case of iV=5, there exist Kleinian groups whose singular sets do

not belong to Painleve null sets.

By Example we obtain the following theorem.

THEOREM 2. Under Kleinian groups whose fundamental domains are bounded

by mutually disjoint N (^5) circles, there exist ones with respect to which the
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(-2)-dimensional Poincarέ theta-series Θ2(z) does not converge in D* and whose

singular sets have positve 1-dimensional measure.

13. Let us consider an application of Theorems 1 and 2 to Schottky

groups.

Consider the totality G* formed by the elements of even grade of a Kleinian

group G. We can easily prove that G* is a Schottky group independent of

the sort of the generators.

Take any generator S/ft of G. Then any element Sit Si\ of grade 2 of G is

represented by the form

Therefore any element of G* is generated by

(21) Ti = SioSh TT1 = {Si) ""'SΓo1 = (Sir Si) ~\

where Si runs in N- 1 generators except Sϊ9\ We see that G* is a subgroup

of G generated by 2N-2 generators and their inverses (21). Since S, o is any

generator, there are N ways about the determination of the generators of G*.

Though the generators of G may contain an elliptic transformation with period

2, the generators of G* are all hyperbolic or loxodromic transformations.

Because, since the generator Ti maps the boundary circle Ki onto a circle of

grade 2 in the boundary circle KJ* (*Ki), onto which S, o maps the boundary

circle Kί0) so the circles Kt and TAKd are mutually disjoint and hence 7} is a

hyperbolic or a loxodromic transformation. It is easily seen that the fundamental

domain of G* is Bo + S^iBo). We call such a method, which forms Schottky

subgroup from Kleinian group, the inversion method.

14. With respect to a Schottky subgroup G* of G given by inversion

method, we have the following

THEOREM 3. If the condition (18) of Theorem 1 is valid for a Kleinian group

G, then the singular set of a Schottky subgroup G* of G has the positive (-f-)-

dimensional measure, and the (*- μ) -dimensional P-series P^z) with respect to G*

does not converge in D".

Proof From the assumption of Theorem, it is clear that the singular set

E of G has positive (TΓ)-dimensional measure. Since it can be seen that the

singular set Έ* of G* coincides with E from the definition of the singular set,
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E* has also positive (^-dimensional measure. q.e.d.

15. In Example, take a generator S5 and form a system of generators and

their inverses:

(22) Ti = S*Si, TΓ^ST'Ss1 ( i = l , 2 , 3 f 4 ) .

Then (22) generate a Schottky subgroup G* of the Kleinian group G.

Then from Theorems 2 and 3, we obtain the following

THEOREM 4. Let G be a Kleinian group whose fundamental domain is bounded

by N circles. Under Schottky subgroups given by inversion method from G, if N

= 5, there exist Schottky groups whose fundamental domains are bounded by 8

boundary circles and whose singular sets have positive l-dimensional measure.

16. PROBLEM. The Schottky's condition [7] implies that lm tends to zero

for m -» oo in Proposition 3. Hence the l-dimensional measure of the singular

set of any Kleinian group with fundamental domain B* bounded by three

mutually disjoint circles is always zero, since Bo satisfies the Schottky's condition.

Then the l-dimensional measure of the singular set of a Schottky subgroup

with fundamental domain bounded by four circles, which is given from the

above Kleinian group by inversion method, is also zero. But it remains to be

proved whether there exist or not Kleinian groups with fundamental domains

bounded by 4 circles whose singular sets have positive l-dimensional measure.
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