UNIQUE CONTINUATION FOR PARABOLIC EQUATIONS OF HIGHER ORDER

LU-SAN CHEN and TADASHI KURODA

1. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a point in the n-dimensional Euclidean space and let \mathscr{D} be the unit sphere $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}<1$. In the $(n+1)$-dimensional Euclidean space with coordinate (x, t), we put

$$
\Omega=\Omega_{r^{\prime}, T^{\prime \prime}}=\left\{(x, t) ; x \in \mathscr{\mathscr { L }}, T^{\prime} \leqq t \leqq T^{\prime \prime}\right\}
$$

and

$$
S=S_{r^{\prime}, T^{\prime \prime}}=\left\{(x, t) ; x \in \dot{\mathscr{D}}, T^{\prime} \leqq t \leqq T^{\prime \prime}\right\},
$$

where $\dot{\mathscr{B}}$ denotes the boundary of \mathscr{D}. We also use the following notation:

$$
\mathscr{C}_{r}=\{(x, t) ; x \in \mathscr{O}, t=T\} .
$$

For real-valued functions $h_{1}=h_{1}(x, t)$ and $h_{2}=h_{2}(x, t)$ square integrable in Ω, we put

$$
\left(h_{1}, h_{2}\right)=\left(h_{1}, h_{2}\right)_{\Omega}=\iint_{\Omega} h_{1} h_{2} d x d t
$$

and

$$
\left\|h_{i}\right\|^{2}=\left\|h_{1}\right\|_{\Omega}^{2}=\iint_{\Omega} h_{1}^{2} d x d t .
$$

We denote by \mathfrak{F} the family of all the functions $v=v(x, t) \in C^{2 s}(\Omega \cup S)$ which vanishes on $\mathscr{\mathscr { G }}_{r}$, and satisfies $D_{x}^{\alpha} v=0(|\alpha| \leqq s-1)$ on S. Here $C^{2 s}(\Omega \cup S)$ is the class of all functions $2 s$-times continuously differentiable in (a neighbourhood of) $\Omega \cup S$ and $D_{x}^{\alpha} v$ is the derivative

$$
\frac{\partial^{|\alpha|} v}{\partial x_{1}^{\alpha_{1}} \cdots \cdot \partial x_{n}^{\alpha_{n}}}
$$

of v for a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\alpha_{i} \geqq 0\right)$ of integers with length $|\alpha|=$ $\alpha_{1}+\cdots+\alpha_{n}$.
2. Consider a differential operator

$$
\begin{equation*}
L=A-(-1)^{s} \frac{\partial}{\partial t} \tag{1}
\end{equation*}
$$

defined in $\Omega \cup S$, where A is of the form

$$
A=\sum_{|a| \equiv 2 s} a_{\alpha} D_{x}^{\alpha} .
$$

We assume that all the coefficients $a_{\alpha}=a_{\alpha}(x, t)$ are s-times continuously differentiable in $\Omega \cup S$ and are real-valued.

In this note, we shall prove the following theorem.
Theorem. Suppose that L is an operator of the form (1) and that A is uniformly elliptic in $\Omega \cup S$, that is, suppose that there exists a positive constant k_{0} depending only on A and satisfying, at every point $(x, t) \in \Omega \cup S$,

$$
\sum_{|\alpha|=2 s} a_{a}(x, t) \xi^{\alpha} \geqq k_{0}\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{s}
$$

for any real vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, where $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
If in Ω

$$
\begin{equation*}
(L u)^{2} \leqq k_{1} \sum_{|\propto| \equiv s}\left|D_{x}^{\alpha} u\right|^{2} \tag{2}
\end{equation*}
$$

for some constant k_{1} and if $u=0$ on $\mathscr{D}_{T_{1}}$ and $D_{x}^{\alpha} u=0(|\alpha| \leqq s-1)$ on S, then u vanishes in Ω.

In the case when s is even, our theorem gives a backward uniqueness property of a solution of the equation $\left(A-\frac{\partial}{\partial t}\right) u=0$. If s is odd, our theorem gives a uniqueness of a solution of the boundary value problem for $\left(A-\frac{\partial}{\partial t}\right) u=0$.

Analogous theorems were given by many authors, Ito-Yamabe [3], Mizohata [7], Yamabe [10], Lees-Protter [5], Protter [9] and Edmunds [1]. In abstract way, such results were stated by Yosida [11], Lions-Malgrange [6] and Lees [4].
3. To prove the theorem, we prepare two lemmas which are analogous to Lees-Protter's estimates.

Lemma 1. Assume that A in (1) is uniformly elliptic in $\Omega \cup S$. If v is in \mathfrak{B}, if $f=f(t)$ is in $C^{1}\left(\left[T^{\prime}, T^{\prime \prime}\right]\right)$ and if $g=g(t)$ continuous in $\left[T^{\prime}, T^{\prime \prime}\right]$ has no zero, then there exist two positive constants k_{2} and k_{3} depending only on A such that

$$
k_{2}\|f v\|_{s}^{2} \leqq\|f g L v\|^{2}+\left(\left(k_{3} f^{2}-2 f f^{\prime}+f^{2} g^{-2}\right) v, v\right)+\int_{\mathscr{I}_{T^{\prime \prime}}} f^{2} v^{2} d x
$$

where $\|v\|_{s}^{2}=\sum_{|\alpha| \equiv s}\left\|D_{x}^{\alpha} v\right\|^{2}$.
Proof. It is obvious that

$$
\begin{equation*}
(-1)^{s} 2(f v, f L v) \leqq\|f g L v\|^{2}+\left\|f g^{-1} v\right\|^{2} \tag{3}
\end{equation*}
$$

Since A is uniformly elliptic in $\Omega \cup S$, it is easily proved in a manner quite similar to Nirenberg's [8] that Gårding's inequality [2] holds, that is, there exist two constants k_{2} and k_{3} depending only on A such that

$$
k_{2}\|f v\|_{i s}^{2} \leqq(-1)^{s} 2(f v, f A v)+k_{3}\|f v\|^{2}
$$

So we have

$$
\begin{equation*}
k_{2}\|f v\|_{s}^{2} \leqq(-1)^{s} 2(f v, f L v)+k_{3}\|f v\|^{2}+2\left(f v, f \frac{\partial v}{\partial t}\right) \tag{4}
\end{equation*}
$$

As to the last term of the right hand side of this inequality, we see by integration by parts

$$
2\left(f v, f \frac{\partial v}{\partial t}\right)=-2\left(f v, f^{\prime} v\right)+\int_{\mathscr{I}_{T^{\prime \prime}}} f^{2} v^{2} d x
$$

Here we have used the assumption $v \in \mathfrak{F}$. From (3), (4) and this, we have our lemma.

Lemma 2. Suppose that v is in \mathfrak{B} and that $f=f(t) \in C^{\infty}\left(\left[T^{\prime}, T^{\prime \prime}\right]\right)$ and $g=g(t)$ continuous in $\left[T^{\prime}, T^{\prime \prime}\right]$ have no zero. Then for a given operator L in (1), there exists a constant k_{4} depending only on A such that

$$
\left(f v, f^{\prime \prime} v\right) \leqq\|f L v\|^{2}+k_{1}\left(\|f g v\|_{s}^{2}+\left\|f^{\prime} g^{-1} v\right\|_{s}^{2}\right)+\int_{2_{T^{\prime \prime}}} f f^{\prime} v^{2} d x
$$

Proof. Putting $u=f v$, we see easily

$$
\begin{equation*}
-2\left(\frac{\partial u}{\partial t}, \quad f^{\prime} v\right) \leqq\|f L v\|^{2}-2(-1)^{s}\left(A u, f^{\prime} v\right)-\left\|f^{\prime} v\right\|^{2} \tag{5}
\end{equation*}
$$

Obviously u is in \mathfrak{V}. Integrating by parts we get

$$
\begin{equation*}
-2\left(\frac{\partial u}{\partial t}, \quad f^{\prime} v\right)=\left(\left(f f^{\prime \prime}-f^{\prime 2}\right) v, v\right)-\int_{\mathscr{Z}_{T} \prime \prime} f f^{\prime} v^{2} d x \tag{6}
\end{equation*}
$$

Now we estimate the integral $\left(a_{\alpha} D_{x}^{\alpha} v, f^{\prime} v\right)$. Repeated use of integration by parts and Leibniz' formula gives us

$$
\begin{aligned}
\left|\left(a_{\alpha} D_{x}^{\alpha} u, f^{\prime} v\right)\right| & =\left|\left(D_{x}^{\beta} u, D_{x}^{\gamma}\left(a_{\alpha} f^{\prime} v\right)\right)\right| \\
& \leqq M k_{\tilde{s}}\left\|f g D_{x}^{3} v\right\|\left\|_{f^{\prime}} g^{-1} v\right\|_{s},
\end{aligned}
$$

where $\alpha=\beta+\gamma,|\beta| \leqq s,|\gamma| \leqq s$ and k_{5} is a constant depending only on s and n and further the constant M depends only on L. Hence it holds that

$$
\begin{equation*}
-2(-1)^{s}(A u, f v) \leqq k_{4}\left(\|f g v\|_{s}^{2}+\left\|f^{\prime} g^{-1} v\right\|_{s}^{2}\right) \tag{7}
\end{equation*}
$$

for a constant k_{4} depending only on A. From (5), (6) and (7) we obtain the required.
4. Now we give the proof of Theorem.

Take two numbers $\eta\left(>T^{\prime \prime}\right)$ and $T_{1}\left(T^{\prime}<T_{1}<T^{\prime \prime}\right)$ such that

$$
\begin{equation*}
k_{1}\left(1+\frac{K}{2}\right)\left(\eta-T_{1}\right)<\frac{k_{2}}{4}, \tag{8}
\end{equation*}
$$

where $K=k_{3}\left(\eta-T_{1}\right)+1$ and k_{1}, k_{2} and k_{3} are constants appearing in Lemma 1 and the assumption of Theorem.

It is sufficient to show that u vanishes in $\Omega_{T_{1}, T^{\prime \prime}}$.
Let $\varphi=\varphi(t)$ be a function infinitely many times differentiable in $\left[T^{\prime}, T^{\prime \prime}\right]$ such that

$$
\varphi= \begin{cases}1, & T_{2}<t<T^{\prime \prime} \\ 0, & T^{\prime}<t<T_{1}\left(<T_{2}\right)\end{cases}
$$

for some T_{2} fixed. Put $w=\varphi u$. It is evident that w is in \mathfrak{V} and $w=0$ on $\mathscr{Q}_{r^{\prime \prime}}$. Taking an integer $m(>0)$ and applying Lemma 1 for $v=w, f=(\eta-t)^{-m-1 / 2}$ and $g=(\eta-t)^{1 / 2}$, we have

$$
\begin{equation*}
k_{2}\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2} \leqq\left\|(\eta-t)^{-m} L w\right\|^{2}+K\left\|(\eta-t)^{-m-1} w\right\|^{2} . \tag{9}
\end{equation*}
$$

Next we apply Lemma 2 for $v=w, f=(\eta-t)^{-m}$ and $g=m^{1 / 2}(\eta-t)^{-1 / 2}$ and we get

$$
\left\|(\eta-t)^{-m-1} w\right\|^{2} \leqq \frac{1}{m(m+1)}\left[\left\|(\eta-t)^{-m} L w\right\|^{2}+2 k_{s} m\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2}\right] .
$$

Substituting this into (9), we get

$$
\begin{aligned}
& k_{2}\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2} \\
& \quad \leqq\left(1+\frac{K}{2}\right)\left\|(\eta-t)^{-m} L w\right\|^{2}+\frac{2 k_{4} K}{m+1}\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s .}^{2} .
\end{aligned}
$$

The function w is identical with u in $\Omega_{T_{2}, T^{\prime \prime}}$ and the assumption (2) implies that

$$
\begin{aligned}
\left\|(\eta-t)^{-m} L w\right\|^{2} & =\left\|(\eta-t)^{-m} L u\right\|_{\Omega_{T_{2}, T^{\prime \prime}}^{2}}^{2}+\left\|(\eta-t)^{-m} L w\right\|_{\Omega_{T_{1}, T_{2}}^{2}}^{2} \\
& \leqq k_{1}\left\|(\eta-t)^{-m} w\right\|_{s}^{2}+\left\|(\eta-t)^{-m} L w\right\|_{\Omega_{T_{1}, T_{2}}^{2}}^{2}
\end{aligned}
$$

whence follows that

$$
\begin{aligned}
& k_{2}\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2} \leqq\left(1+\frac{K}{2}\right)\left(\eta-T_{2}\right)^{-2 m}\|L w\|_{\Omega_{T_{1}, T_{2}}^{2}}^{2} \\
& \quad+\left[k_{1}\left(1+\frac{K}{2}\right)\left(\eta-T_{1}\right)+\frac{2 k_{4} K}{m+1}\right]\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2}
\end{aligned}
$$

This is valid for any positive integer m. We can choose an m_{0} such that

$$
\frac{2 k_{1} K}{m+1}<\frac{k_{2}}{4}
$$

for any $m \geqq m_{0}$. From this and (8), we have

$$
\frac{k_{2}}{2}\left\|(\eta-t)^{-m-1 / 2} w\right\|_{s}^{2} \leqq\left(1+\frac{K}{2}\right)\left(\eta-T_{2}\right)^{-2 m}\|L w\|_{Q_{T_{1}, T_{2}}}^{2}
$$

for $m \geqq m_{0}$. Restricting the integral of the left hand side over $\Omega_{T_{3}, r^{\prime}}$ for such a T_{3} as $T_{2}<T_{3}<T^{\prime \prime}$, we get

$$
\frac{k_{2}}{2}\left(\eta-T_{3}\right)^{-2 m-1}\|u\|_{s, \Omega_{T_{3}, T^{\prime \prime}}^{2}} \leqq\left(1+\frac{K}{2}\right)\left(\eta-T_{2}\right)^{-2 m}\|L w\|_{\Omega_{T_{1}, T_{2}}^{2}}^{2}
$$

or

$$
\|u\|_{s, \Omega_{T_{3}, T^{\prime \prime}}}^{2} \leqq \frac{2}{k_{2}}\left(1+\frac{K}{2}\right)\left(\eta-T_{3}\right)\left(\frac{\eta-T_{3}}{\eta-T_{2}}\right)^{2 m} \| L w_{: \mathbb{Q}_{T_{1}, T_{2}}}^{\|}
$$

for $m \geqq m_{0}$. Making m tend to infinity, we see $u=0$ in $\Omega_{T_{3}, T^{\prime \prime}}$. Since T_{3} is arbitrary as far as $T_{2}<T_{3}<T^{\prime \prime}$, it is seen that u vanishes in $\Omega_{T_{2}, T^{\prime \prime}}$. Further, T_{2} is arbitrary as far as $T_{1}<T_{2}<T^{\prime \prime}$. So u vanishes throughout $\Omega_{T_{1}, r^{\prime \prime}}$. Thus our theorem is proved.

Remark. It is not difficult to see that, in our theorem, we can replace the assumption $u=0$ on $\mathscr{D}_{T^{\prime}}$, by the condition

$$
\lim _{t \rightarrow T^{\prime \prime}} \int_{\mathscr{x}_{t}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x=0
$$

References

[1] D. E. Edmunds: Two uniqueness theorems associated with parabolic differential operators, Journ. London Math. Soc., 39 (1964), 345-354.
[2] A. Gårding: Dirichlet's problem for linear elliptic partial differential equation, Math. Scand., 1 (1953), 55-72.
[3] S. Ito and H. Yamabe: A unique continuation theorem for solutions of a parabolic equation, Journ. Math. Soc. Jap., 10 (1958), 314-321.
[4] M. Lees: Asymptotic behaviour of solutions of parabolic differential inequalities, Canad. Journ. Math., 14 (1962), 626-631.
[5] M. Lees and M. H. Protter: Unique continuation for parabolic differential equations and inequalities, Duke Math. Journ., 28 (1961), 369-382.
[6] J. L. Lions and B. Malgrange: Sur l'unicité rétrograde dans les problemes mixtes paraboliques, Math. Scand., 8 (1960), 277-286.
[7] S. Mizohata: Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci., Univ. Kyoto, A 31 (1958), 219-239.
[8] L. Nirenberg: Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math., 8 (1955), 648-674.
[9] M. H. Protter: Properties of solutions of parabolic equations and inequalities, Canad. Journ. Math., 13 (1961), 331-345.
[10] H. Yamabe: A unique continuation theorem of a diffusion equation, Ann. of Math., 69 (1959), 462-466.
[11] K. Yosida: An abstract analyticity in time for solutions of a diffusion equation, Proc. Jap. Acad., 35 (1959), 109-113.

Department of Mathematics,
Taiwan provincial Cheng-Kung University, Tainan
and
Mathematical Institute,
Nagoya University, Nagoya

