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Introduction

The Grothendieck ring of a finite group has been studied by Swan ([5],

[6]). At the end of [6] he determined completely the structure of the Gro-

thendieck ring G(Z(&) of a cyclic p-gronp (S over the ring of rational integers

Z.

In this paper we investigate the structure of G(Z®) of an abelian £-group

®.

In the first section we consider some properties of the integral group ring

of ®. The results of this section are applied in the second section to investigate

the additive structure of G(Z&). Let o be a maximal order of the group ring

Q(& over the rational number field Q and let Co(o) be the reduced projective

class group of o (Rim [4]). We show that G(Z©) is isomorphic to the splitting

Z-algebra extension of Co(o) by G(QS) (§2, §3). The latter half of the third

section is devoted to study the action of G(QS) to Co(o). Some examples are

given in the final section.

The author wishes to express his hearty thanks to Professor A. Hattori

for his many helpful suggestions during the preparation of this paper.

§ 1. The integral group ring of a finite abelian group

Let R be the ring of integers of an algebraic number field K. The group

ring K(& of a finite abelian group © over K decomposes into a direct sum of

algebraic number fields Kt over K

(1.1)

and K\j . . . , Ks are a full set of non-isomorphic irreducible ϋΓ@-modules. This

decomposition induces the decomposition of the maximal order o of ϋί@ into a

direct sum of maximal orders o, of Ki, i.e. the ring of integers of Ki. Since
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o contains R(&, each projection m of K($> onto Ki induces a ring homomorphism

of R® into o, . We will denote by A% the kernel of this ring homomorphism

and we will set Γ, = TlAj.

PROPOSITION 1.1. Let © be a finite abelian group of order n and exponent n0

and let K= Q(Cm) be a cyclotomic field, where ζm means a primitive m-th root of I.

Then

(1) in ( l . l ) , each Ki is also a cyclotomic field Q{ζmi) for some tm which

divides L.C.M. (rii. n0),

(2) each projection m induces a surjection of R® onto o, .

(3) for each iy Λi + Γi^ns~ιRGb, and

(4) there exists a positive integer I such that

Γi-f +ΓsΏnιR®.

Proof. Let (§> = ®x x x ^ be the decomposition of (S into a direct

product of cyclic subgroups (8A and let gh be the fixed generator of <SA.

Then we have Ki±K(m(gi), . . . , *,-(#)). But for each h m(gh)n°=lt

which implies that Ki = Q(ζmi) for some rm which divides L.C.M.(nι, n0). This

shows (1). Each m gives rise to the surjection of R<§> onto Rlm(gi), . . . ,'m(gt)l

= ZlCmtl, which is the maximal order of ίΓ* ̂ QίC^). This proves (2).

(3) and (4) is proved by an induction on t. First, we suppose that © is a

cyclic group generated by an element g. We have a ring isomorphism Kφ>^

KΪχ\l(xn-ϊ)KZx\, where KLxl is the polynomial ring over K in an indeter-

minate x. If

χn-i=Mχ)- Mχ) (1.2)

is the factorization of xn - 1 into irreducible non-constant monic polynomials

in Klxl, by the Chinese remainder theorem we have

Klxl/(xn-l)KZχ}τzKi:χ}/Mx)KZxl® ΘKtxl/fs(x)Klxl (1.3)

Obviously every root of f{x) is a primitive «,-th root of 1 for some m which

divides n. Let ζm be one of these roots and let Ki = K{ζni). Then the map

g~*Cni gives rise to the projection m of K<$ onto Ki. This shows that the

kernel of m is Mg)K®, so that Λ, is just given by R®ΓlMg)K®=fi{g)R®.

By a simple calculation, we have from (1.?)
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Mχ)Rtxl +Mx)RZxl ==> nRtx] (i*j). (1.4)

Replacing x by g, we have

Λi+Λj^nR® (/*/). (1.5)

This implies that A, + II Aj 3 z5"1^®, which shows (3). (1.2) yields also that

Π/>(*)#[*] + + II/H*)/?:*: 2 «/?[*! (1.6)

Since Π/i(#)<R® = 77, this implies (4).

In the general case, let ®' = ©i x x(S*-i and let nf and »'' be the order

of & and @/, respectively. If xn" - 1 = /i(#) */sU) is the factorization of

#M" - 1 into irreducible monic polynomials in K[_x~\ and CWί is a root of //(#),

the map gt -»Cn̂  gives an isomorphism K®/fi(gt)K$> = JfC(Cn<)®'. Denoting iΓ(Cnί)

by ίζf, we have UL® = X Ί ® ' Θ ®KS&. On the other hand, (l) implies that

each Ki& is a direct sum of cyclotomic fields Kij:

Let Ri and o, ,y be the rings of integers of Ki and Kij, respectively, and let

Aij be the kernel of the surjection of i?® onto o, ,y. This surjection is given

by the combined map R®-»R0'-*t>ij. Since fi(gt)R® is the kernel of the

surjection J?®-»ϋ?, ®', we see that

AuΏMgt)R& (; = 1,. . . ,5/), (1.7)

and that the image Z/,y in 2?,-®' of Atj is the kernel of 2?/®'->o/,/. Now for

any distinct Λ/,y and Â.jfe, we will show that Aij + Ah,kΏnR(&. When ® is a

cyclic group, this is given in (1.5). Then for any distinct k and k\ the indu-

ction hypothesis shows that lίitk + ~Aitk'Ώ n'Ri&. Since nf divides n, this

implies that Ai,k + Ai,k* ΏnR(&. On the other hand, for any distinct i and ί',

we see easily that fi(gt)R® + fi>(gt)R® Ώn"R similarly as in (1.4). Since n"

divides w, (1.7) shows that Ai,j+ Ai>,j>ΏnR®. Let Γ/,/ be the product of all

Ah,k but Aij. Then a simple calculation shows that Λ/.y + Γί./^w25*"1/?® from

the above result, which proves (3). Let J/,y- ΠΛ/.A?. Then by the induction

hypothesis, there exists a positive integer // such that J/.i-t- •+Jt\si^ntliRi®'t

which shows that

(1.8)
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Since Λh.k + Λh,k ΏnR<§> for any distinct k and k\ it follows that ΛA.I * Λh,sh

•Ώn*h{*h~l)l\Λh.ιn ' : ' Π ^ Λ , S Λ ) . But each Λh,k contains fh(gt)RΦ> from (1.6),

so that ΛH.I i ίA.*3» ί A ( ϊ r l ) / l /A(^ίβ. Let /' = Max. {/,, . . . , /s> and /" =

Max. l i Σ 5 A ( s A - l ) , , - S - Σ S A ( S A - I ) } . Then we have from (1.8)

Σ

As in (1.5) we have Σ Π / A ( # ) 2 ? ® 2»''Λ®. Hence / = /' + /" satisfies (4).

This completes the proof of the proposition.

§2. The additive structure of G(Z(g)

We are now ready to investigate the additive structure of G(Z&) of an

abelian £-grouρ ®. Let (§ be of order p* and exponent pe\ We denote by C</

a primitive ^^-^ root of 1.

From Proposition 1.1, Q% is a direct sum of cyclotomic fields iζ = O(Cί/ί)

for some rf, such that O r̂fî ^o and the maximal order o of Q(§> is also a direct

sum of the maximal orders o; = ZCCj,] of iΓ, . Furthermore, the surjection of

Z(S onto o, induced by m gives a ring isomorphism

Z®/A = θf. (2.1)

Let M be any regular (i.e. finitely generated and Z-torsion free) Z(S-module

and let

Mi = { m e M : A/m = 0 for any λie Λ}.

Then M, is a Z-pure submodule of M. Since ί̂/ annihilates M/, we may turn

M, into an 0,-module from (2.1). Clearly Mi is finitely generated and torsion

free as an o,-module, so that M, is projective since o, is a Dedekind ring. Thus

Mi is isomorphic to the direct sum of /,• - 1 copies of o, and an ideal α of o,

θO θo, (2-2)

where the o,-rank U of Mi and the ideal class d(a) of a are complete invariants

of Mi (Curtis and Reiner [3]). By Proposition 1.1, (3), we have Mifϊ (Mi +

• 4- Mi-ι + M,+i+ +MS) = 0. This shows that the sum of Mi is a direct

sum. Now we denote by M the quotient MfΣ®Mi. Since Λ, Γ, = 0, M is

annihilated by 7Ί+ +ΓS . Then Proposition 1.1, (4) implies that M may

be regarded as a module over Z/(pel)(& for some positive integer /. But the
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only irreducible Z/(i>e/)(S-module is Z/(p) on which ® acts trivially. Hence

M has a composition series with factors Z/{p). The sequence

0—>Z-->Z—+Z/(p)—>0

shows that [Z/(£)] = 0 in G(Z(S), where [Z/(£)] means the element of G(Z(S)

associated with Z/(p), so that [Λdf ] = 0 in G(Z®). This implies that [M] = ΣCMil

For any ideal α of o, we denote by α* the element [α] - [ot ] of G(Z<§>). The

map α-»α* defines a homomorphism of the ideal class group of o, to G(Z(&),

and from (2.2), any element x of G(Z@) may be written in the form

The uniqueness of this expression follows immediately from the following pro-

position.

PROPOSITION 2.1. For any exact sequence of regular Z%-modules

*M"0 (2.3)

we have Ci(a) = C, (αO C/(Q"), w ̂ r ^ C(a), C, (o') and d(a") are ideal class invar-

iants of Mi, Mi and M\\ respectively.

Proof. The sequence (2.3) induces an exact sequence

0->Hom2©(o/, M1) ->Homz©(o/, Λf) ->Hom2@(o/, M")->Exti©(o, , MO.

But Homz@(o/, M) is isomorphic to Mi by the map /->/( ! ) . Hence we have

an exact sequence

ί ί ' , - , MO.

Since the order />e of ® annihilates Exti©(o/, MO (Cartan and Eilenberg [2]),

we see that

p€Mi'cφ(Mi)QM'/, (2.4)

where ψ(Md is also a projective o -module whose 0,-rank is equal to that of

M'i . Thus by Invariant factor theorem ([3]), there exist elements ult . . . , uιt

of M'i and ideals hi, . . . , b/t. of o, such that
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Then the inclusion (2.4) shows that each b* divides (pe). But p is a power of

the principal prime ideal (1 — C )̂ of o;, which implies that bk is also a principal

ideal. Then Ci(br \a") ^Ci(a"). Furthermore, Mi is isomorphic to the

direct sum of Ml and ψ(Mi) since 'ψ(Mί) is protective. Therefore d (α) =

C, (αO Ci(bi b/,α"), which coincides with C/U0 C/(α"). This completes the

proof.

THEOREM 2.1. // (§ /s β^ abelian p-group, G(Z(&) is isomorphic to the direct

sum of Co(o) and G(Q$) as an additive group

G(Z©) = Co(o)ΘG(Q©). (2:5)

Proof. Since o is the direct sum of the o,-, Co(o) = ΣθC o (o, ) and each Co(o, )

is isomorphic to the ideal class group of o, (Rim M ) . Then the map d(o) -»α*

defines a homomorphism φ : Co(o) -*G(ZΦ>), where the action of ® on α is

given by setting g a = m(g)a, # e ® , α e α . On the other hand, [ZΓJ, . . . ,

LKs] make a base for G(Q@). We define a linear map ψ : G(Q<&) -*G{Z<&) by

ΨiίKβ) = Co,]. Then we have an additive isomorphism Co(o) ®G(Qβ) -»G(Z(S)

by U, ^) ->0(Λ:) + ψ(y) because the image φ(x)+<p(y) in G{Z(&) is uniquely

determined by Proposition 2.1. This proves Theorem 2.1.

§ 3. Ring structure

We will now study the multiplicative structure of G{Z<&). In (2.5), Swan

[6] showed that 0(CQ(o))2 = 0. Hence G(Z&) is a Z-algebra extension over an

abelian kernel, and is determined by the action of G(Q@) to Co(o) and the

associated 2-cohomology class of H2(G(Q<8>), Co(o)).

In this section we denote by p*h the order of a cyclic factor ©A of ©. As

in §2, each m(gh) is of the form C<# for sonie integer h such that O^i^«o,

which satisfies ί*Λi>βΛ Ξ 0 (mod />rf0. In general, given a /-tuple (ξu . . . ,"&)-of

integers which satisfy that £/^βΛ = 0 (mod ^rf0 for each h, we may construct

a, regular Z(S-module as follows. Let α be an ideal of ZKt/J. We turn α into

a regular Z©-module by defining

We denote this module by (α ξu . . . , ?ί). In particular, for the /-tuple

(zΊ, . . . , //), ύ bsing as above, we denote (α *Ί, . . , //) by α, . Then the element

α* of G(Z@) can be written in the form [αj - [oj.
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PROPOSITION 3.1. For any ideal α of ZίCdJ, (α ft, . . . , ft) is reducible if

and only if every ξh is divisible by p.

Proof, (α ft, . . . , ft) is reducible if and only if Q®z(a ft, . . . , ξt) is

reducible. Let Q®z(α , ft, . . . , ft) be reducible, Then this contains, as a

direct summand, ϋΓy for some j such that Jy < c?, and each g7j acts on Kj as the

multiplication of CjJ. This shows that every £/, is divisible by p. Conversely

let every ξh be divisible by p and let pdi~d' be the highest power of p which

divides every ξh. Set ξH = ξ'h pdi~d*. Then Q® 2(ZK^] : fί, . . . , fί) is obviously

a direct summand of (?®z(α ft, . . . , ft). This proves the proposition.

PROPOSITION 3,2. Lβί α fo> β«y iVfefl/ c/Z[C/t.]. If (a ft, . . . , ξt) is irreducible,

there exist some j and an ideal b of ZiCd3~l such that dj = di and (α ξlt . . . , ? / )

= b/ as ZΦ>-modules. Otherwise, there exist some j and an ideal b 0/ ZECrf̂ ] 5wcΛ

thai dj<di and (a Cu . . - , &) = o / φ φ o y φ b / (pdi~~dj summands) as Z%-

modules.

Proof. Let (a ft, . . . , ξt) be irreducible. Then this is annihilated by

only one Λj, so that this can be regarded as an oy-module as in § 2. By the

irreducibility, (α ft, . . . , ft) is, then, isomorphic to some by. Hence the Z-

rank of oy is equal to that of o, , and we have dj = di. This proves the first

assertion.

Let (α ft, . . . , ft) be reducible. Then each ξh is divisible by p (Proposi-

tion 3.1.). Let ρdi~dϊ be the highest power of p which divides every ξh and

let ξh = ξ'hmpdi~di'* Then each gπ acts on (α ft,-. . . , ξt) as the multiplication

of ξ]i = C/y' Since α is, as a ZΓC/jH-module, finitely generated and projective,

α is isomorphic to the direct sum of pdi~ds - 1 copies of ZίCdrl and an ideal V

of ZZζdjΊ. Then we have a Z(S-isomorphism

(α ft, . . . , ξt) - (ZK^J ξ[,. . . , ξ't) ® © (ZCC^J f ί , . . . , ξt)

Φ ( V e ί , . . ,eί ) , (3.1)

where each summand is irreducible. Hence, there exist some .; and ideals c

and b such that d/ = ̂ , ( Z K ^ J : ξ[, . . . , ξf

t)=Cj and (b' ; ? ! , . . . , eί) -by

(the first assertion). Setting b = c/>rfί~ίίj"1 b, we have

(α ft, . . . , .ft) =0y© ' φoyφby.
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This proves the second assertion and completes the proof of the proposition.

COROLLARY 3.1. // (Z[£rfJ £1, . . . , &) is irreducible, there exists some j

such that dj = dι and (ZLCdJ I £1, . . . , £<) =o/. Otherwise, there exists some j

such that dj<di and (Zίζd3l \ ?i, . . . , £*) =θyφ ©oy (pd'~d* summands).

Proof. According to Artin [1] (D/J)112 is the ideal class invariant of ZίCdJ

as a Z[C£fyJ-module, where D is the discriminant of ZHOJ over ZK^,] and Δ

is the discriminant of any equation defining the extension of Q(ζdi) over Q(Cdy).

But it is easily checked that (D/J)m divides some power of p. Then (D/J)112

is a principal ideal. Hence, by Proposition 3.2, it is sufficient to prove that b

is a principal ideal. Let r be the isomorphism (ZLCdil £i, . . . , £/) = by. Since

ZKί/J is generated by 1, b is generated by r(l). This shows that b is a principal

ideal, which completes the proof.

PROPOSITION 3.3. Let α be any ideal of ZίCdJ and let a be a Galois automor-

phism of Q(Cdt). IfCdi^ζdiythen

(α 6, . . . f f/>s(αβ ξiv ,hv).

Proof This follows immediately from the comparison of actions of $> to

the both sides.

LEMMA 3.1. If di>d3\ then for any ideal a of ZLCdJ we have

Coy][α/]= Σ [(α : u+jxvpdi~d*9 . . . .it + jtvp"*-*')!,

where Gd, denotes the Galois group of Q{Cd3) and <;v denotes an element of Gdj

such that Cd) = C2,.

Proof. Let Φd,(x) be the cyclotomic polynomial of index pdK Then we

have θj'^ZLxl/ΦdJ{x)ZZxl. This implies the isomorphism

Let M = aiίxl/Φd3(x)Qiίxl. ® operates on M by gπm = Cdix
h*m, m<aM. The

assumption di>dj implies that ΦdΛx) factorizes into Π {χ-Cd) in o£xl. Let

dTv,, . . . , ίTv; be the elements of Gj3- and let Λf* =* (#-C£) {x-Q)M. Then

we have a series of submodules of M
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Each quotient Mk-i/Mk is QiLxl/(x- Crf*)a,-[>], which is isomorphic to a by the

map *->C£. But this map carries C%xjh into C^C^ = ζ^t

+^kfiΛi'dJ. Then each

Mk-ι/Mk is, as a Z(S-module, isomorphic to (α : ii + jivkpd*~dj, > - , it + jtPkpdi~d°).

Since M is composed from these modules by forming extensions, we conclude

that

[ M ] = Σ C(α : ii+y,*/•-*', . . . , it + jtvpd'-d>)l.

This proves the lemma.

Now we will prove that Z-algebra extension (2.5) splits.

THEOREM 3.1. The linear map φ defined in the proof of Theorem 2.1 is a

ring homomorphism. Hence the Z-algebra extension (2.5) splits.

Proof. Take any two generators LKβ and ZKjl of G(Q(S). We may assume

that di^dj. From Lemma 3.1, we have

But each term of the right hand is equal to either [βkl for some k such that

dk = di or a direct sum of £d<~rf*' copies of D>*/] for some &' such that dk'<di

(Corollary 3.1). Then we have

Σ pdi"dk'l*kZ.
k'

d]c = di dk'<βi

This shows that ψ is a ring homomorphism, and this completes the proof of

Theorem 3.1.

LEMMA 3.2. If djt^-dj, then for any ideal a of

CoyDCα,-] = Σ C(o : i i d d

where a denotes QZ£Cdj~}.

Proof Notice that if di^dj, the cyclotomic polynomial Φdj(x) factorizes

into Π {xpdj~ai - Cdι) in O/CΛΓ] and Cdj is a root of xp*r&i - Cdi. Then the lemma
σ v ec? r t .

is proved by the same method as the proof of Lemma 3.1.

Let α be any ideal of ZCOJ and (ξu . . . , £ / ) be any /-tuple of integers

such that f A / A s 0 (mod pdi). We denote the element Π(o ξh . . . , ξt)l ~

ίi, . . . , ξt)l by (α fj, . . . , ft)*. Then (α ft, . . . , ft)* is obviously
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contained in 0(Co(o)).

THEOREM 3.2. For any α* of 0(Co(o, )), £#c/z generator ίKjl ofG(Q(&) acts on

o* βs follows.

', . . . , ι, + jtvpdi~d')* if di^dj.

Proof The action of [ϋfy] on 0(Co(o)) is given by the multiplication of

= Hoy]. Then this theorem follows immediately from preceding two

lemmas.

§4. Example

Let % be an abelian group of type (p, pe), that is, ® be a direct product

of cyclic groups ©i = (^i) and ©2 = 1̂ 2) of order p and pe, respectively. In

this case we can describe more explicitly the action of G(Q&) to (Co(o)). In

this section we denote by Cf a primitive ^'-th root of 1 for any integer i such

that l^i^e.

Let Q be any ideal of ZK, ] and let v be any integer such that Q^p^p-1.

We denote (0 : pi"1v> 1) by'α, . v. Put o l # v = (Z[C,]) t fV and i&,v = Q®zO,>.

Furthermore; for any ideal α of ZCCJ we denote (α : 1, 0) by α0. Put oo =

(ZKi])o and KQ = Q®zoQ. Then we see that

0® = <? Θ Ko

and that

Co(θ) = Co(θo) θ Σ f - i Σ ? - Co(Qί.v).

1. ίQl acts on φ{Co(o)) trivially.

2. The action of [ϋΓ0] on ψ(Co(oo)).

For any element o0* of 0(Co(oo)) it follows immediately from Theorem 3.2 and

Proposition 3.3 that

OμGGi

= Σ (oVV 1, 0)*+ (0 0, 0)*= Σ (o'Γ+V)
?

since (α : 0, Q)*=s.(Z : 0, 0)* = 0 by Proposition 3.2. On the other hand, *Γ+μ

such that μ^β - 1 (mod p) ranges over all elements of d but β\. Then
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Π ααi+μ- = NnΛa)^1, where Nno means the norm of ZLdΊ over Z. Since
μ $-1 (mod p)

Niιo(a) is a principal ideal, (iW/o(α))o* =0. Hence we conclude that

Wo3αo*= -,α0*.

3. The action of LKO1 on 0(Co(o, )) .
It follows immediately from Theorem 3.2 that

D M o i v = Σ (« -pi-^p + μ), 1)*,

where z- -f μ ranges over 0, I, . . . , v - 1, v 4-1, . . . , p — 1 mod p. Hence,

LKi3α?.v= Σ af%.

4. The action of [JS/.vII on ψ{Co{oQ)).

Let Λτμ be an integer such that μx+ = 1 (mod pι). Then Theorem 3.2 and

Proposition 3.3 imply that

[/Γ/,v]αo*= Σ (ff ; y ~ 1 ( i + ̂ ) , ^ ) * = Σ ( α ^ 1 ; y~ 1 Uμ + ̂ ), D *

But we can easily check that #μ-f v ranges over 0, 1, . . . , / > - 1 mod ί. Hence

we have

5. The action of LK/.J on 0(Co(o«,v)).

The case i>j. Let yμ be an integer such that (1 +/>f~Vbv s 1 (mod/*1). Then

Theorem 3.2 and Proposition 3.3 imply that

= >̂j (Q ^ J p (p1 ~\- vμ)> 1)

because j>μ == l (mod/>). In general we denote by Gi/j the Galois group of Q(d)
p-i

over Q(Cj). Then G> = \JGj/ι ύχ and 1̂ ' + ̂ ^ ! ; ' + !,] (mod/>) for any element

tfμ of Gjii ύi. This shows that

ί > - l

Γ/Γ ΊQ^ /- V ( Π α'V)* / ,

The case i~j. For each ^ such that μ$~ - 1 (mod/?), let jt:μ be an integer

such that (1 + Aί)#μ==l (mod/?1). Then Theorem 3.2 and Proposition 3.3 imply
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that

= Σ
j

μ $ - l (mod?')

+ Σ iaip'-Hv' + vμi.l+u)*. (4.1)
μ

μ s - i (mod p)

p-1

In the first term of the right hand side, σXa ranges over UG//i tfλ and
λ=2

(v> + z^^μ Ξ (*' - *>)Λ -f ι> (mod^) for any j Λ u of Gm ai. Then the first term of

(4.1) is equal to

Σ ( Π ασ)ί(V._ v ) λ,v = Σ(iV//i(α)'Jλ)^v'-v)λ+v.
λ=2 σ&Gi/L σχ λ-=2

In particular, if ẑ ; = i/, this is equal to - (Λ^vi(α)),*v. In the second term of (4.1),

let ph be the highest power of p which divides 1+μ and set 1 + μ = μh ph.

Then (3.1) implies that

(α p'-Hv' + vμ), 1 + AI)*= (Ni,i-h(a) p^Kv'-v), μh)*

since the ideal class of α as a Z[C,-all-module is the norm Nm-h(a) of o from

ZίCβ to ZCC -AII (Cl]) When <τμ ranges over elements of G, such that 1 + ^ Ξ O

(mod ph) and l-f-μ£O (mod/?'14"1), a^l obviously ranges over the elements of
* - : i " ' . ' - • - , - • • - .

G, -A = UG,-Λ/Γtfλ and (pf - p) γ = (v* - v) λ (mod p) for any ax of' Gϊ-hi\ aι.
λ = l

Hence the second term of (4. l) is equal to

Σ Σ ( Π iVi/ί.A(Q)ίr)/*Af(v-v,λ+(Λί/i(α) n ' - ^ 0 ) *

= ΣΣ(ΛΓf/i((ί)-λ)ί.*.(v'-v)λ + (iV<rt(o) » '-*, o)*,

where if v'^v, (Mvi(α) ; » ' - » , 0 ) * = (NuMY*-*)* and if »' = *, (ΛΓ, /i(o) v'-

z>, 0 ) * = 0 and Σ(-W//i(α)βλ),*A (v-v>x= (iV//o(α))*-Λ,o = 0 since iV, /o(α) is a prin-

cipal ideal. The case /<y. From Theorem 3.2 we have

Let Λ:μ be an integer such that (p'~έ' + μ)xμ s 1 (mod ̂ y ) . Then (α />y""1(// +

z/̂ ί), ^ ; ' " f -f μ)* = (α 7^)*, vΆ:μ+v by Proposition 3.3, aX[L ranges over the elements of

G/ , and v'Xμ. + v = v'λ \ v (mod p) for any σXμ of Gi/^σx. This shows that

Σ( Π tr);.vx+v=Σ
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Summalizing, we have

PROPOSITION 4.1. Let © be an abelian group of type (p, pe). Then G{Q<§>)

acts on Φ(Co(o)) as follows.

1. ίQl acts trivially.

2. L KQJ GO
 = = ~~ Go

3. ί

U>j).

(ΛΓί/i(a)v-v)t*,
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