RELATIVE COHOMOLOGY OF ALGEBRAIC LINEAR GROUPS, II

HIROSHI KIMURA

1. Introduction

Let G be an algebraic linear group over a field F of characteristic 0, and let H be an algebraic subgroup of G. Let A, M be rational G-modules. In [4], we defined $\operatorname{Ext}_{(G,H)}^n(A,M)$, and, in particular, relative cohomology groups $H^n(G,H,M)$ were defined as $\operatorname{Ext}_{(G,H)}^n(F,M)$.

 $\operatorname{Ext}^1_{(G,\,H)}(A,\,M)$ may be identified with the space of the equivalence classes of the rational $(G,\,H)$ -extensions of M by A ([4]). Moreover $\operatorname{Ext}^n_{(G,\,H)}(A,\,M)$ may be identified with the set of the equivalence classes of the rational n-fold $(G,\,H)$ -extensions of M by A (Th. 2.2).

Let G be a unipotent algebraic linear group. Then there exists the natural homomorphism of $H^n(G, H, M)$ into the Lie algebra cohomology group $H^n(\mathfrak{g}, M)$, where \mathfrak{g} , \mathfrak{h} are Lie algebras of G, H respectively. In Section 3, we show that, if M is finite dimensional, then the natural homomorphism $H^2(G, H, M) \to H^2(\mathfrak{g}, \mathfrak{h}, M)$ is surjective.

G. Hochschild studied the properties of rational injective modules ([3]). In Section 4, we obtain analogous results as described in [3].

2. Extensions of rational modules

Let G be an algebraic linear group over a field F, and let H be an algebraic subgroup of G. We denote by R(G), or simply by R, the F-algebra of rational representative functions on G. If $f \in R$ and $x \in G$, the left and right translations, $x \cdot f$ and $f \cdot x$ of f by x are defined by $(x \cdot f)(y) = f(yx)$, $(f \cdot x)(y) = f(xy)$ for all $y \in G$. Let M be a rational G-module in the sense of [2]. We make the tensor product $R \otimes M$ over F into a G-module such that $x(f \otimes m) = f \cdot x^{-1} \otimes x \cdot m$. Then $R \otimes M$ is a rational G-module. We denote by H the set consisting of the elements left fixed by left translations from H. Then H is a rationally H in the sense of [4] ([4, Prop. 2.1]).

In [4], we defined the relative extension functor $\operatorname{Ext}_{(G,H)}^n(*,*)$.

Proposition 2.1. Let G be an algebraic linear group over a field F, and let H be an algebraic subgroup of G. Let

$$(0) \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow (0)$$

be a rationally (G, H)-exact sequence, where A, B, C are rational G-modules. Then, for any rational G-module M, it gives rise to exact sequences;

$$(0) \longrightarrow \operatorname{Ext}_{(G, H)}^{0}(M, A) \longrightarrow \operatorname{Ext}_{(G, H)}^{0}(M, B) \longrightarrow \operatorname{Ext}_{(G, H)}^{0}(M, C)$$

$$\stackrel{\delta_{0}}{\longrightarrow} \cdots \longrightarrow \operatorname{Ext}_{(G, H)}^{n-1}(M, C)$$

$$\stackrel{\delta_{n-1}}{\longrightarrow} \operatorname{Ext}_{(G, H)}^{n}(M, A) \longrightarrow \operatorname{Ext}_{(G, H)}^{n}(M, B) \longrightarrow \cdots$$

and (0)
$$\longrightarrow \operatorname{Ext}_{(G,H)}^{0}(C, M) \longrightarrow \operatorname{Ext}_{(G,H)}^{0}(B, M) \longrightarrow \operatorname{Ext}_{(G,H)}^{0}(A, M) \xrightarrow{\Delta_{0}} \cdots$$

 $\longrightarrow \operatorname{Ext}_{(G,H)}^{n-1}(A, M) \xrightarrow{\Delta_{n-1}} \operatorname{Ext}_{(G,H)}^{n}(C, M) \longrightarrow \operatorname{Ext}_{(G,H)}^{n}(B, M) \longrightarrow \cdots$

Proof. We shall use the following rationally (G, H)-injective resolution X(D) of a rational G-module D. For each $n \ge 0$, $X_n(D)$ is the tensor product ${}^HR \otimes \cdots \otimes {}^HR \otimes D$, with n+1 factors HR . The coboundary operator φ_n ; $X_n(D) \to X_{n+1}(D)$ is given by

$$\varphi_{n}(f_{0} \otimes \cdots \otimes f_{n} \otimes d)$$

$$= 1 \otimes f_{0} \otimes \cdots \otimes f_{n} \otimes d$$

$$+ \sum_{i=0}^{n-1} (-1)^{i+1} f_{0} \otimes \cdots \otimes f_{i} \otimes 1 \otimes f_{i+1} \otimes \cdots \otimes f_{n} \otimes d$$

$$+ (-1)^{n+1} f_{0} \otimes \cdots \otimes f_{n} \otimes 1 \otimes d.$$

The augmentation $\varphi_{-1}: D \to X_0(D)$ is given by $d \to 1 \otimes d$. By [4, p. 274]

$$(0) \longrightarrow D \longrightarrow X_0(D) \longrightarrow X_1(D) \longrightarrow \cdots$$

is a rationally (G, H)-injective resolution of D.

The sequence;

$$(0) \longrightarrow X_n(A) \xrightarrow{\alpha_n} X_n(B) \xrightarrow{\beta_n} X_n(C) \longrightarrow (0),$$

where $\alpha_n(f_0 \otimes \cdots \otimes f_n \otimes a) = f_0 \otimes \cdots \otimes f_n \otimes \alpha(a)$ and

$$\beta_n(f_0 \otimes \cdots \otimes f_n \otimes b) = f_0 \otimes \cdots \otimes f_n \otimes \beta(b),$$

is (G, H)-exact by the assumption of (α, β) . Moreover, since $X_n(B)$ is rationally (G, H)-injective, $X_n(A)$ is a G-direct summand of $X_n(B)$. Hence we obtain

exact sequences;

$$(0) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(M, X_n(A)) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(M, X_n(B)) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(M, X_n(C)) \longrightarrow (0)$$

and

$$(0) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(X_n(C), M) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(X_n(B), M) \longrightarrow \operatorname{Hom}_{\mathcal{G}}(X_n(A), M) \longrightarrow (0).$$

Therefore we get the desired results from the following commutative diagrams;

$$(0) \qquad (0) \qquad (0)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \widetilde{X}_{0}(A) \rightarrow \widetilde{X}_{1}(A) \rightarrow \widetilde{X}_{2}(A) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \widetilde{X}_{0}(B) \rightarrow \widetilde{X}_{1}(B) \rightarrow \widetilde{X}_{2}(B) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \widetilde{X}_{0}(C) \rightarrow \widetilde{X}_{1}(C) \rightarrow \widetilde{X}_{2}(C) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \qquad (0) \qquad (0)$$

$$(\text{exact}) \quad (\text{exact}) \quad (\text{exact}),$$

where $\tilde{X}_n(*) = \text{Hom}_{\sigma}(M, X_n(*))$, and

$$(0) \qquad (0) \qquad (0)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \overline{X_0}(C) \rightarrow \overline{X_1}(C) \rightarrow \overline{X_2}(C) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \overline{X_0}(B) \rightarrow \overline{X_1}(B) \rightarrow \overline{X_2}(B) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \rightarrow \overline{X_0}(A) \rightarrow \overline{X_1}(A) \rightarrow \overline{X_2}(A) \rightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$(0) \qquad (0) \qquad (0)$$

$$(exact) \qquad (exact) \qquad (exact),$$

where $\overline{X}_n(*) = \operatorname{Hom}(X_n(*), M)$. This completes the proof of Proposition 2.1. A rationally (G, H)-exact sequence of rational G-modules;

$$(E_n)$$
 $(0) \longrightarrow C \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_n \longrightarrow A \longrightarrow (0)$

is called a rational n-fold (G, H)-extension of C by A. When a diagram of two rational (G, H)-extensions of C by A;

$$(E_n^1) \quad (0) \longrightarrow C \longrightarrow X_1^1 \longrightarrow \cdots \longrightarrow X_n^1 \longrightarrow A \longrightarrow (0)$$

$$\downarrow 1 \qquad \downarrow \kappa_1 \qquad \qquad \downarrow \kappa_n \qquad \downarrow 1$$

$$(E_n^2) \quad (0) \longrightarrow C \longrightarrow X_1^2 \longrightarrow \cdots \longrightarrow X_n^2 \longrightarrow A \longrightarrow (0)$$

is commutative, the system $\kappa = \{\kappa_1, \ldots, \kappa_n\}$ of G-homomorphisms is said to be a homomorphism of (E_n^1) to (E_n^2) . If $(E_n) = (E_n^0), \ldots, (E_n^r) = (E_n^r)$ are

rational n-fold (G, H)-extensions of C by A and if there exists a homomorphism of (E_n^{i-1}) to (E_n^i) , or of (E_n^i) to (E_n^{i-1}) for $1 \le i \le r$, we shall say that (E_n) is equivalent to (E_n) [5]. Let $E_{(G,H)}^n(A,C)$ be the set of the equivalence classes of rational n-fold (G, H)-extensions of C by A.

An extension (E_n) induces a homomorphism

$$\theta_{(F_n)}$$
: Hom_G(C, C) \rightarrow Extⁿ_(G, H)(A, C)

by Proposition 2.1. $\theta_{(E_n)}(1)$ depends only on the equivalence class of (E_n) . Therefore we obtain a map

$$\theta_n: E^n_{(G,H)}(A,C) \to \operatorname{Ext}^n_{(G,H)}(A,C),$$

where θ_n (the class of (E_n)) = $\theta_{(E_n)}(1)$. In particular θ_1 is a one-one correspondence ([4]).

THEOREM 2.2. Let G be an algebraic linear group over a field F, and let H be an algebraic subgroup of G. If A, C are rational G-modules, then $\operatorname{Ext}_{(G,H)}^n(A,C)$ may be identified with $E_{(G,H)}^n(A,C)$ for $n \ge 1$.

Proof. We may select a rationally (G, H)-exact sequence;

$$(Q) \quad (0) \longrightarrow C \longrightarrow Q_1 \longrightarrow \cdots \longrightarrow Q_{n-1} \longrightarrow B \longrightarrow (0),$$

where each Q_i is rationally (G, H)-injective. A rational (G, H)-extension of B by A;

$$(E_1)$$
 $(0) \longrightarrow B \longrightarrow X_n \longrightarrow A \longrightarrow (0)$

induces an extension;

$$(Q(E_1))$$
 $(0) \longrightarrow C \longrightarrow Q_1 \longrightarrow \cdots \longrightarrow Q_{n-1} \longrightarrow X \longrightarrow A \longrightarrow (0).$

Clearly this correspondence induces a map;

$$\widetilde{Q}: E^1_{(G,H)}(A, B) \longrightarrow E^n_{(G,H)}(A, C).$$

On the other hand, by Proposition 1 and (Q), we obtain an isomorphism;

$$\hat{Q}: \operatorname{Ext}^{1}_{(G,H)}(A, B) \longrightarrow \operatorname{Ext}^{n}_{(G,H)}(A, C).$$

Therefore we obtain a commutative diagram;

$$E^{1}_{(G, H)}(A, B) \xrightarrow{\widetilde{Q}} E^{n}_{(G, H)}(A, C)$$

$$\downarrow^{\theta_{1}} \qquad \downarrow^{\theta_{n}}$$

$$\operatorname{Ext}^{1}_{(G, H)}(A, B) \leftarrow \operatorname{Ext}^{n}_{(G, H)}(A, C),$$

where θ_1 and \hat{Q} are isomorphisms. We shall show that \tilde{Q} is surjective.

For a given rational n-fold (G, H)-extension of C by A;

$$(E_n)$$
 $(0) \longrightarrow C \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_n \longrightarrow A \longrightarrow (0)$

we may make commutative diagrams of rational G-modules;

$$(0) \longrightarrow C \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow B' \longrightarrow (0) \quad ((G, H) \text{-exact})$$

$$\downarrow 1 \qquad \qquad \downarrow \kappa_{n-1} \qquad \downarrow \beta$$

$$(0) \longrightarrow C \longrightarrow Q_1 \longrightarrow \cdots \longrightarrow Q_{n-1} \longrightarrow B \longrightarrow (0) \quad ((G, H) \text{-exact}),$$

where $B' = \operatorname{Im}(X_{n-1} \to X_n)$, and

$$(0) \longrightarrow B' \longrightarrow X_n \xrightarrow{\varphi} A \longrightarrow (0) \quad ((G, H)\text{-exact})$$

$$\downarrow \beta \qquad \downarrow \gamma \qquad \downarrow \alpha$$

$$(0) \longrightarrow B \longrightarrow Q \xrightarrow{\psi} M \longrightarrow (0) \quad ((G, H)\text{-exact}),$$

where Q is rationally (G, H)-injective. Let A + Q is the direct sum as F-module. Define a mapping $\kappa: A + Q \to M$ by $\kappa(a, q) = \alpha(a) - \psi(q)$. Then $X = \text{Ker } \kappa = \{(\varphi(x), \gamma(x) + b \; ; \; x \in X_n, \; b \in B\}$. Define a G-homomorphism $p \; ; \; X \to A$ by $p(\varphi(x), \gamma(x) + b) = \varphi(x)$. Then $\text{Ker } p = \{(0, b) \; ; \; b \in B\}$. Therefore we get a commutative diagram

$$(0) \longrightarrow B' \longrightarrow X_n \longrightarrow A \longrightarrow (0)$$

$$\downarrow \beta \qquad \downarrow \gamma' \qquad \downarrow 1$$

$$(E_1) \qquad (0) \longrightarrow B \longrightarrow X \longrightarrow A \longrightarrow (0) \quad ((G, H)\text{-exact}),$$

where $\gamma(x) = (\varphi(x), \gamma(x))$. It is clear from the above construction that $(Q(E_1))$ is equivalent to (E_n) . Therefore \tilde{Q} is surjective. This completes the proof of Theorem 2.2.

3. Relative group extensions

Let $\mathfrak g$ is a Lie algebra over a field F, and let $\mathfrak h$ be a subalgebra of $\mathfrak g$. Let $\mathfrak D$ be a $\mathfrak g$ -module. By a $(\mathfrak g, \mathfrak h)$ -extension of the abelian Lie algebra $\mathfrak D$ we shall mean an exact sequence of Lie algebras;

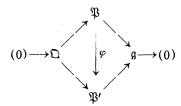
$$(\mathfrak{E}) \quad (0) \longrightarrow \mathfrak{D} \longrightarrow \mathfrak{P} \xrightarrow{\sigma} \mathfrak{g} \longrightarrow (0),$$

satisfying the following conditions;

1) there is a linear map $\rho: \mathfrak{g} \to \mathfrak{P}$ such that $\sigma \cdot \rho = \text{identity map of } \mathfrak{g}$ and ρ

 $[x, y] = [\rho(x), \rho(y)]$ for all $x \in \mathfrak{h}$ and $y \in \mathfrak{g}$, 2) $[p, q] = \sigma(p)q$ for all $p \in \mathfrak{P}$ and $q \in \mathfrak{D}$.

We shall say that two such extensions (§), (§') are equivalent if there exists an isomorphism φ such that a diagram;



is commutative. We denote by $\mathfrak{E}_{(\mathfrak{g},\mathfrak{h})}(\mathfrak{Q})$ the set of equivalence classes of $(\mathfrak{g},\mathfrak{h})$ -extensions of \mathfrak{Q} . As in the analogous interpretation of the ordinary Lie algebra cohomology group $H^2(\mathfrak{g},\mathfrak{Q})$, next Proposition can be shown.

PROPOSTION 3.1. Let $\mathfrak S$ be a Lie algebra over a field F, and let $\mathfrak S$ be a subalgebra of $\mathfrak S$. If $\mathfrak D$ is a $\mathfrak S$ -module, then the relative Lie algebra cohomology group $H^2(\mathfrak S,\mathfrak S)$ may be identified with the set of equivalence classes of $(\mathfrak S,\mathfrak S)$ -extensions of $\mathfrak D$.

Let G be an algebraic linear group over a field F of characteristic 0, and let H be an algebraic subgroup of G. Let A be a rational G-module. Let $X_n(A)$ be as in the proof of Proposition 2.1. Then, for $n \ge 0$, the G-fixed part $X_n(A)^G$ is isomorphic, as an F-space, with $X_n(A)' = \{ f \in X_{n-1}(A) : h \cdot f(x_1, \ldots, x_n) = f(hx_1, \ldots, hx_n) \text{ for all } h \in H \}$; such an isomorphism is given by $\mathfrak{G} \to \phi_n(g)$, where

$$\phi_n(g)(x_1,\ldots,x_n)=g(1, x_1,\ldots,x_n),$$

its inverse being given by $f \rightarrow \phi'_{n-1}(f)$, where

$$\phi'_{n-1}(f)(x_0,\ldots,x_n)=x_0\cdot f(x_0^{-1}x_1,\ldots,x_0^{-1}x_n).$$

The coboundary for X(A)' becomes $f \rightarrow \delta f$, where

$$(\delta f)(x_1, \ldots, x_{n+1})$$

$$= x_1 \cdot f(x_1^{-1} x_2, \ldots, x_1^{-1} x_{n+1})$$

$$+ \sum_{i=1}^{n+1} (-1)^i g(x_1, \ldots, \hat{x}_i, \ldots, x_{n+1}).$$

Let Q be a finite-dimensional rational G-module. Q has the natural structure of an abelian unipotent algebraic linear group. By a rational (G, H)-extension

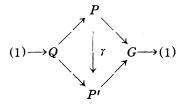
of the abelian unipotent algebraic linear group Q we shall mean an exact sequence of algebraic linear groups;

$$(E) \quad (1) \longrightarrow Q \longrightarrow P \xrightarrow{\alpha} G \longrightarrow (1),$$

satisfying the following conditions;

- 1) there is a representative map $\beta: G \to P$ such that $\alpha \cdot \beta = \text{identity map}$ of G, and $\beta(xy) = \beta(x)\beta(y)$ and $\beta(yx) = \beta(y)\beta(x)$ for all $x \in H$ and $y \in G$,
 - 2) $pqp^{-1} = \alpha(p)q$ for all $p \in P$ and $q \in Q$
- 3) the map $f \rightarrow f \cdot \alpha$ is an isomorphism of R(G) onto the subalgebra $R(P)^{\varphi}$ of R(P) consisting of the G-fixed elements.

We shall say that two such extensions (E), (E') are equivalent if there exists an isomorphism γ such that a diagram;



is commutative. We denote by $E_{(G,R)}(Q)$ the set of equivalence classes of these extensions.

Now, for a (G, H)-extension (E) of Q, we define $f \in X_2(Q)$ by $f(x_1, x_2) = \log \beta(x_1) \beta(x_1^{-1}x_2) \beta(x_2)^{-1}$. It is clear that $f \in X_2(Q)'$. If β' be any other map satisfying the above condition 1), then f' is cohomologous to f, where $f' = \log \beta'(x_1) \beta'(x_1^{-1}x_2) \beta'(x_2)^{-1}$. Hence a rational (G, H)-extension of Q determines a unique element of $H^2(G, H, Q)$, which depends only on the equivalence class of the given rational (G, H)-extension of Q.

PROPOSITION 3.2. Let G be a unipotent algebraic linear group over the field F of characteristic 0, H an algebraic subgroup of G, and let \mathfrak{g} , \mathfrak{h} be the Lie algebras of G, H respectively. If \mathfrak{Q} is a finite-dimensional rational G-module, then $\mathfrak{E}_{(\mathfrak{g},\mathfrak{h})}(\mathfrak{Q})$ may be identified with $E_{(\mathfrak{g},H)}(\mathfrak{Q})$.

Proof. Let

$$(\mathfrak{E}) \quad (0) \longrightarrow \mathfrak{D} \longrightarrow \mathfrak{P} \xrightarrow{\sigma} \mathfrak{g} \longrightarrow (0)$$

be a $(\mathfrak{g}, \mathfrak{h})$ -extension of \mathfrak{Q} . Then (\mathfrak{E}) induces a rational (G, 1)-extension of Q;

$$(E) \quad (1) \longrightarrow \mathfrak{Q} \longrightarrow P \xrightarrow{\overline{\sigma}} G \longrightarrow (1)$$

where P is the unipotent algebraic linear group consisting of the exponentials of the elements of \mathfrak{P} , and $\bar{\sigma}=\exp_{\mathfrak{P}} \cdot \sigma \cdot \log_P$. If $\rho:\mathfrak{g} \to \mathfrak{P}$ is a linear map satisfying the condition in the definition of the $(\mathfrak{g},\mathfrak{h})$ -etention of \mathfrak{Q} , then, by the Campbell-Hausdorff formula, it is clear that $\bar{\rho}=\exp_{\mathfrak{P}} \cdot \rho \cdot \log_{\mathfrak{G}}$ satisfy the condition in the definition of the rational (G,H)-extension of \mathfrak{Q} . Therefore (E) is a rational (G,H)-extension of \mathfrak{Q} . It is clear that this correspondence induces a map of $\mathfrak{E}_{(\mathfrak{g},\mathfrak{P})}(\mathfrak{Q})$ into $E_{(\mathfrak{G},H)}(\mathfrak{Q})$.

Conversely, let (E) be a rational (G, H)-extension, and let $\bar{\rho}: G \to P$ be a map satisfying the condition in the definition. Define $\sigma = \log_{\mathcal{G}} \bar{\sigma} \exp_{\mathfrak{F}}$ and $\rho = \log_{\mathfrak{F}} \cdot \bar{\rho} \cdot \exp_{\mathfrak{F}}$. Then (E) induces a $(\mathfrak{g}, 0)$ -extension of \mathfrak{Q} ;

$$(\mathfrak{E}) \quad (0) \longrightarrow \mathfrak{D} \longrightarrow \mathfrak{P} \stackrel{\sigma}{\longrightarrow} \mathfrak{g} \longrightarrow (0).$$

In order to examine that (§) is a (\mathfrak{g} , \mathfrak{h})-extension, we enlarge the base field F to the field F^* of the power series in one variable t with coefficients in F. Let \mathfrak{D}^* , P^* , G^* , H^* be the algebraic linear groups deduced from \mathfrak{D} , P, G, H by the extension of F to F^* , respectively. Let $\overline{\rho}^*$ be the extension of $\overline{\rho}$. Then

$$\overline{\rho}^*((\exp_{\mathfrak{g}^*}tX)(\exp_{\mathfrak{g}^*}tY)) = \overline{\rho}^*(\exp_{\mathfrak{g}^*}tX)\overline{\rho}^*(\exp_{\mathfrak{g}^*}tY),$$

for all $X \in \mathfrak{h}$, $Y \in \mathfrak{g}$. Therefore

$$(\log_{P^*} \cdot \overline{\rho}^*)((\exp_{\mathfrak{g}^*}tX)(\exp_{\mathfrak{g}^*}tY))$$

$$= \log_{P^*}(\overline{\rho}^*(\exp_{\mathfrak{g}^*}tX)\overline{\rho}^*(\exp_{\mathfrak{g}^*}tY))$$

$$= \log_{P^*}((\exp_{\mathfrak{F}^*}t\rho(X))(\exp_{\mathfrak{F}^*}t\rho(Y)).$$

By the Campbell-Hausdorff formula, we can compare the coefficients of t^2 in the above equality. That is,

$$\rho[X, Y] = [\rho(X), \rho(Y)], \text{ for all } X \in \mathfrak{h}, Y \in \mathfrak{g}.$$

Hence (§) is a (§, ħ)-extension of \mathfrak{Q} . Clearly, this correspondence of (E) to (§) induces the inverse of the above map of $\mathfrak{E}_{(\mathfrak{g},\,\mathfrak{h})}(\mathfrak{Q})$ to $E_{(\mathfrak{g},\,\mathfrak{H})}(\mathfrak{Q})$. This completes the proof of Proposition 3.2.

By Proposition 3.1, 3.2, there exists the map of $H^2(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q})$ to $H^2(G, H, \mathfrak{Q})$. On the other hand there exists the canonical homomorphism; $H^n(G, H, \mathfrak{Q}) \to H^n(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q})$ ([4. Th. 3.5]). By the same way as in [2, p. 518] we can

verify that the composition of the above maps; $H^2(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q}) \to H^2(G, H, \mathfrak{Q})) \to H^2(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q})$ is the identity map of $H^2(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q})$. Thus we obtained the next result

Theorem 3.3. Let G be a unipotent algebraic linear group over the field F of characteristic 0, H an algebraic subgroup of G, and let \mathfrak{A} , \mathfrak{h} be the Lie algebras of G, H, respectively. Let \mathfrak{Q} be a finite dimensional rational G-module. Then the canonical homomorphism: $H^2(G, H, \mathfrak{Q}) \to H^2(\mathfrak{g}, \mathfrak{h}, \mathfrak{Q})$ is surjective. Moreover the canonical homomorphism induces a map of $H^2(G, H, \mathfrak{Q})$ onto the set of the equivalence classes of the rational (G, H)-extensions of \mathfrak{Q} .

4. Relatively injective modules

Let G be an algebraic linear group over a field F, and let H be an algebraic subgroup of G. Let M be a rationally (G, H)-injective module. It is known that, for every rational G-module A, the tensor product $A \otimes M$ is rationally (G, H)-injective ([4, Prop. 2.1]). As in the analogous interpretation of [3, Prop. 2.1], the following result can be shown by using Proposition 2.1 and [4, Prop. 2.3].

Proposition 4.1. Let G be an algebraic linear group over a field F, H an algebraic subgroup of G, and let M be a rational G-module. Suppose that, for every finite-dimensional G-module U, $H'(G, H, U \otimes M) = (0)$. Then M is rationally (G, H)-injective

Next Proposition is a generalization of [4, Prop. 2.1].

PROPOSITION 4.2. Let G, H be as in Proposition 4.1, and let L be an algebraic subgroup of G such that there is a rational representative map $\rho: G \to L$ satisfying $\rho(yx) = y\rho(x)$ for all $y \in L$ and $x \in G$. Suppose that $\rho(x)^{-1}\rho(xh) \in L \cap H$ for all $h \in H$ and $x \in G$. Let M be a rational L-module. Then $H \otimes M$ is rationally $(L, L \cap H)$ -injective. If A is any rationally (G, H)-injective module, then $A \otimes M$ is rationally $(L, L \cap H)$ -injective.

Proof. Let $(0) \longrightarrow C \stackrel{p}{\longrightarrow} B \longrightarrow A' \longrightarrow (0)$ be a rational $(L, L \cap H)$ -exact sequence, where A', B, C are rational L-modules, and let γ be an L-module homomorphism of C into ${}^HR \otimes M$. Let φ be an $L \cap H$ -module homomorphism of B onto C such that $\varphi \cdot p$ is the identity map of C. We shall identify elements of ${}^HR \otimes M$ with naturally corresponding maps of G into M. For $b \in B$, define the map

 $\beta(b): G \to M$ by

$$\beta(b)(x) = \rho(x) \left[\gamma(\varphi(\rho(x)^{-1} \cdot b)) (\rho(x)^{-1} x) \right].$$

By [2, Prop. 2.2], $\beta(b) \in R \otimes M$ and $\gamma = \beta \cdot p$. By assumption, for any $h \in H$ and any $x \in G$, there is $h' \in H \cap L$ such that $\rho(xh) = \rho(x)h'$. By the definition of β ,

$$\beta(b)(xh) = \rho(xh) [\gamma(\varphi(\rho(xh)^{-1} \cdot b)) (\rho(xh)^{-1}xh)]$$

$$= \rho(x)h' [\gamma(\varphi(h'^{-1}\rho(x)^{-1} \cdot b)) (h'^{-1}\rho(x)^{-1}xh)]$$

$$= \rho(x) [\gamma(\varphi(\rho(x)^{-1} \cdot b)) (xh)]$$

$$= \beta(b)(x).$$

Hence $\beta(b) \in {}^{H}R \otimes M$.

The second part of Proposition is shown by the same way as [2, Prop. 2.2]. This completes the proof of Proposition 4.2.

Now we shall assume that the base field F is of characteristic 0. Let L be a unipotent normal algebraic subgroup of G. Then there is a rational representative map $\rho: G \to L$ such that $\rho(yx) = y\rho(x)$ for all $x \in G$ and $y \in L$ ([2. Th. 3.1]). Proposition 4.2 gives the following result.

PROPOSITION 4.3. Let G be an algebraic linear group over the field F of chara cteristic 0, H an algebraic subgroup of G, and let L be a unipotent normal algebraic subgroup of G. Suppose that $\rho(x)^{-1}\rho(xh) \in L \cap H$ for all $x \in G$ and $h \in H$, where ρ is a rational representative map of G into L such that $\rho(yx) = y\rho(x)$ for all $x \in G$ and $y \in L$. Let M be a rationally (G, H)-injective module. Then M is rationally $(L, L \cap H)$ -injective.

Now we prove the main result in this section.

Theorem 4.4. Let P be an algebraic linear group over the field F of characteristic 0, Q an algebraic subgroup of P, and G be a normal algebraic subgroup of P. Let N be the maximal unipotent normal algebraic subgroup of G. Suppose that there is a maximal fully reducible subgroup K of G contained in the normalizer of $N \cap Q$ in G and that $\rho(x)^{-1}\rho(xq) \in M \cap Q$ for all $x \in P$ and $q \in Q$, where ρ is a rational representative map of P into N such that $\rho(np) = n\rho(p)$ for all $p \in P$ and $n \in N$. Let M be a rationally (P, Q)-injective module and let K' be a fully reducible algebraic subgroup of K. Then M is rationally (G, H)-injective, where $H = K' \cdot (N \cap Q)$.

Proof. By Proposition 4.3, M is rationally $(N, N \cap Q)$ -injective. Let U be any rational G-module. Then $U \otimes M$ is rationally $(N, N \cap Q)$ -injective. By [4, Th. 2.5], for every rational G-module A,

$$H(G, H, A) = H(N, N \cap Q, A)^{G/N}$$
.

In particular, it follow that $H^1(G, H, U \otimes M) = (0)$. Hence, by Proposition 4.1, M is rationally (G, H)-injective. This completes the proof of Theorem 4.4.

REFERENCES

- [1] T. Nakayama and A. Hattori, Homological algebra, Kyoritsu Press, Tokyo, 1957 (Japanese).
- [2] G. Hochschild, Cohomology of algebraic linear groups, Illinois J. Math., vol. 5 (1961), 492-519.
- [3] G. Hochschild, Rationally injective modules for algebraic linear groups, Proc. Amer. Math. Soc., vol. 14 (1963), 880-883.
- [4] H. Kimura, Relative cohomology of algebraic linear groups, Science report of the Tokyo Kyoiku Daigaku, A, vol. 8 (1964), 271-279.
- [5] N. Yoneda, On the homology theory of modules, J. Fac. Sci. Univ. Tokyo, Sec. I, VII (1954), 193-227.

Mathematical Institute

Nagoya University