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1. Introduction1*

Let D denote the open unit disk in the complex plane and let C be the

boundary of D. If, for a given complex-valued function f(z) defined in Z>,

the existence of a subset M of C is known, with the linear measure of M equal

to 2 7r, as well as an estimate on the growth of \/(z) I on sequences in D which

tends to a point of M, then such a result will be called a "statistical" result

on order. This terminology is due to Lelong-Ferrand [31

Such statistical-type results are known, for example, if the function /(z)

is the derivative of a univalent, holomorphic function (Seidel and Walsh [5],

p. 141.) or if f{z) is holomorphic in D and omits two values there (Rung M ,

p. 330). Both of these results depend upon first estimating the order of a holo-

morphic function g{z) for which

(1.0)

In sections 3, 4, and 5 of this paper we replace the function \g(z) | in (1.0)

by several arbitrary real-valued functions defined in D and obtain statistical

type results for these functions.

We conclude, in Section 6, by presenting examples of functions exhibiting

this behavior.

2. Terminology

For ZQ&DUC and r>0 set D(z0, r) = {ze D\ \z -z01 <r). We proceed to

introduce an outer measure on the plane. For r>0 let h(r) be a real valued,

non-decreasing, continuous function with MO) = 0, h(r)>0 for r>0y and
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DEFINITION 1. For a given set E in the plane and fixed p>0 let {H(zjy ry)}

denote any denumerable family of open disks in the plane with center zj and radius

ru rj<P, which cover E. If Λ? is the inf {Σh(rj) {JH\zjt rj) ^>E> rj<p\ define

the h-measure of E to be h*(E) = lim A?.
p-*0

Remark 1. In the case h{r) = rk

t 0<&<2, this defines on the plane the

usual ^-dimensional outer measure.

3. Order of functions summable on D

The following results depend upon a theorem of the author [4, p. 324],

which is closely related to a result of Lelong-Ferrand C3, pp. 20-23]. For

completeness we state this theorem without proof.

THEOREM A. Let U(z) be a real-valued, non-negative, measurable function

defined in D such that,

W{z)dxdy < oo, z =* x+ ίy.

Then

except for at most a set of etθ of h-measure 0.

Remark 2. All integrals are to be considered as Lebesgue integrals.

In the following theorem an estimate is obtained on the order of such

summable UKz) on certain sequences in D.

THEOREM 1. Let U(z) satisfy the hypotheses of Theorem A. Then for every

point of C, except possibly for a subset S of C of h-measure 0, the following behavior

occurs. Let {zn) be any sequence in D tending to a point et9 of C not in 5. For

any fixed t, 0 <t<l, there exists a sequence of measurable sets {Mn{t)) such that

ϊ) Mn(t)^D{ZnΛl-\Zn\)t);

ii) Mn{t) has positive two dimensional Lebesgue measure;

iii) if (C«> is a sequence with
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Remark 3, It is obvious that Cn^Mn(t) implies C*-»etθ as w-> °°.

Remark 4. In this theorem, and in the sequel, we assume h(r) also satisfies

(3.0) h(ar)<Kah(r)%

0<r<°°, a>0, and K* is a positive constant depending only on a. This pro-

perty is not essential for this group of theorems and the necessary changes,

if (3.0) is not assumed, will be obvious. For example, h{r) = rk satisfies this

property,

Proof. Theorem A yields

(3.1) lim[ τ~γ\\ U(z)dxdy\ = 0,

D{eiQ, r)

except possibly for a subset of C of /^-measure 0. Let £lθ be a point at which

(3. l) holds and suppose {zn) is any sequence in D tending to et(). Further

choose an arbitrary t, 0<t<l, which remains fixed during the course of the

proof.

For ζGD(zn, (l-\zn\)O, an easy calculation gives

(3.2) (l-t)\zn-ei9\<\C-J9\<2\z«-J9\9

and

(3.3) ( i - ί ) α - U » | ) < i - | c l < ( i + rt(i-U»O.

For the remainder of the proof set

D(Zn, H-\zn\)t)=Dn9 » = 1, 2, . . . .

Since Uiz)>0, the right side of (3.2) gives

(3. 4) JJU(z)dxdy<\\ U(z)dxdy.
Pn

Theorem A, together with (3.0) and (3.4), enable us to conclude

^3 5) ϊ ϊ l * < ϊ ώ * ΐ 7 W U(z )dxdy] = °
Dn

The existence of the sets Mn(f) is now demonstrated. Fix a positive

integer n and for this value of n let H danote the set of all points ~ = « 4- iv

contained in Dn for which



42 D. C. RUNG

(3.6) U{ξ)π(l-\zn\)V>^lΛz)dxdy.

Since U(z) is a measurable function H is a measurable set. Further if the

measure of H were equal to 7r(l - \zn\ft2 integrating both sides of (3.6) over

H would give

which is impossible. Hence the measure of H is less than π(l - \zn\)%£. Setting

Mn(t) equal to the complement of H relative to Dn we have, for C«eMrt(/),

n = 1, 2, . . .

(3.7) U{Qn)π(l -\zn\)2t2<^U{z)dxdy.

We remark that the sequence of sets iMn(t)} depend upon the function

U(z), the sequence {zn), and the value /. In the sequel, if we introduce a

function U(z)> a sequence {zn} and a value t, 0 < / < l , {Mn(t)} will always

represent the above sequence of sets.

The proof is nearly complete since combining (3.5) and (3.7) gives

( 3 '8 ) SS H\zn

However (3.8) may be revised to give

if we refer to the right side of both (3.2) and (3.3) together with (3.0). Since

this limit holds at every point e1* at which (3. l) is valid, the proof of Theorem

1 is complete.

If we restrict the sequence {zn} to approach etQ within some Stolz domain

Theorem 1 can be reformulated. To this end let S(et(*> a)f 0<a< 4p denote

the symmetric Stolz domain at e19 of opening 2cc.

COROLLARY 1. Let U{z) satisfy the hypotheses of Theorem 1, and let {zn) be

a sequence in D tending to a point etQ but with zn& S(£fθ, a), n = 1, 2, . . . , for

some 0 < a < -A- Then for any fixed 0 < t < 1, and any sequence {Cn}, Cn,e Mn{t),
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n = 1, 2,

0/ C 0/ h-measure 0.

/. An argument involving elementary geometry shows that, for any

sufficiently small e>0, there exists a positive integer No, depending on e, such

that for n>NQ

(3.10) Dn^Sie**, a + arcsin (t cos a) + ε).

This implies that for n>N0 all ζn lie in the above Stolz domain, and, as

is well known, then satisfy

for suitable constant C. Again referring to (3.0) as well as to the monotonicity

of h(r) we see that Theorem 1 can be restated to give Corollary 1.

Remark 5. I am indebted to Professor W. Seidel for indicating (3.10).

Remark 6. Setting h{r) = r, which defines on C the ordinary outer linear

measure, the conclusion of Corollary 1 now reads

lim C/(Cn)(l-I Cn I) =0,

and the exceptional subset of C has linear measure 0.

The question arises as to whether any estimate can be obtained for such

summable U(z) on the original sequence {zn}. Several sufficient conditions

are discussed in 4 and 5.

4. Sequentially subharmonic functions

If we return to the proof of Theorem 1 we see that (3.7) relates the values

of U{z) at certain points in Dn to the value of the integral of U(z) over Dn.

With this in mind we give

DEFINITION 2. Let U(z) be a real valued, non-negative measurable function

defined in D. We say U(z) is sequentially subharmonic in D if for each sequence

{zn) in D and for at least one value of t, 0<t<l, there exists a positive constant

K (which is a function of both the sequence and the value t) such that
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(4.0) U{zn)π{l -
mzn,a-\zn\)t)

for n = 1, 2, . . .

Remark 7. If GU) is a positive subharmonic function in D then it is

sequentially subharmonic in D since if can be chosen identically 1 for each

sequence and each 0 < ί < l .

The conclusion of Theorem 1 can be revised so that the sequence {ζn} is

replaced by the original sequence {zn) if (3. 7) is replaced by (4.0). This gives

THEOREM 2. Let U(z) be sequentially subharmonic in D and suppose also

If {zn) is a sequence in D which tends to a point et6 we have

t. U(Zn)(l-\z«\Y _
iim Γ7T- ~j^τ- = υ

except possibly for a set of et6 of h-measure 0.

COROLLARY 2. Let the hypotheses of Theorem 2 be satisfied and in addition

suppose the sequence {zn) approaches #tθ within some Stolz domain at e%*. Then

-\zn\γ

except possibly for a set of eiQ of h-measure 0.

Remark 8, If V(z) is a positive subharmonic function in D then Theorem

2 applies to the function U{z) = Vp{z), p>\, since Vp{z) is also subharmonic.

In the case 0<p<l, Vp(z) is still subharmonic provided logF( ε) is. This

generalizes a result of Gehring [1, p. 77].

5. Complex-valued functions βummable over D

Let φ(z) denote a complex-valued function defined in D. For any two

points β, b of D set p(at b) equal to the non-euclidean (hyperbolic) distance

between a and b, i.e. p(a, b) = 1/2 log lλ~ al\ + \a~b±.
\l-ab\-\a-b\

DEFINITION 3. Let {zn} be a sequence in D which tends to a point of C. A

complex-valued function ψ{z) defined in D is said to be close along {zn} if there
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exists a pair of positive real numbers (δ, M) such that if p(z, zn) <δ then

\φ{z) - φ(zn)\ <M, for each n = 1, 2, . . . . // φ(z) is close along {zn) for all {zn}

such that limzΛ = e/θ, e r t ε C (respectively / 8 e β B a subset of C with h*(B) =

h*{O) then we say φiz) is close along all sequences {respectively close along almost

all sequences in the h-measure). When h{r) = r we omit the phrase "in the h-

measure."

For ZQ(ΞD and δ>0 set N{z0, δ) = {z\p(zQ, z)<δ). This set of points is

known to be an open Euclidean disk. Thus let z' denote the center and (1 - \z'\)t'

the radius (both in the Euclidean geometry) of N(z, δ). We now indicate a

connection between the non-Euclidean radius δ and the value V.

LEMMA 1. Given the non-Euclidean disk N(z> δ) and its corresponding Euclidean

representation D(z'y (1 —|z ' |U') then

\z\)

Π

Hence as

Proof. If z = ret0, then the point z2 on the boundary of N(z, δ) closest to

z in the Euclidean sense, is of the form z\ = rιβtB, r{>r the point z2 furthest

from z is z2 = r2β
tθ, r2 <r. The point 2' is also on the radius to £tθ thus z1 = rVθ,

n<rl<r<n. If we put Ui — 2I = (1 - \z\)ti and U -221 = (1 - \z\)t2, an ele-

mentary calculation gives h = ~i]^Aτ- and 2̂ = - ^ " Ϊ T Ψ " * T h u s t h e

Euclidean radius of N(z, δ) is \*ι~z*\ = (1 - | 2 | ) ( ί L ^ A ) , a n ^ the Euclidean

center z' = ^ ^ 2 | • Finally to find *' note that (1 - \z'\) t' = (1 - \z\) {tι~^)~

and a straightforward calculation gives the value V in the Lemma.

This enables us to view a sequence of non-Euclidean disks N(zn, δ), with

l i m | z j = l, as a sequence of Euclidean disks D(zn(l-\zn\)t'n) where for

n>NQ, Q<t<>t'n<ϊ<l, with NQy t and F determined by Lemma 1.

THEOREM 3. Let φ{z) be a complex-valued measurable function defined in D

which is close along almost all sequences in the h-measure and also , with z = x+iy,

\\\φ(z)\dxdy<°°.
D
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Then, if zn->etQ as #->oo,

r l 0 ( g n > K l U n l > Λl i m — 7 7 Ί — 1 0 , x — = 0 ,h{\zn-etQ\)

except for at most a set of etQ of h-measure 0.

Proof Set U(z) = \φ(z)\ and let S denote the exceptional set of Theorem 1

for this U(z). If B is the set of all eίQ relative to which φ{z) is close along

sequences, h*(B) = h*(C) hence setting Si = C - B, h*(Sι) = 0, and h*(S2) = 0

where S2 = S U Si.

Let {2M} be any sequence in D tending to a point etB not in S2. Since 0(2)

is close along {zn) there exists a pair of positive real numbers (d, M) such

t h a t p ( z , Z r t ) < δ i m p l i e s 1 0 ( 2 ) - φ ( z n ) \ < M 9 n = l , 2 f . . . .

Referring to Lemma 1 we consider the sequence {N(zn, δ)} as a sequence

of Euclidean disks {D(z'n, (1 - UM)Λ)}. Since tn>ί, n>No, we apply Theorem

1 with ί = ί.

Thus for any sequence

{ζn}> C»eM»(rt, Λ = 1, 2, . . . ,

(5'0) 5252
Since MΛ(ί) cDf^ί, (1 — UiDίO, » = 1, 2, . . . , application of Lemma 1 gives

Mn(t)^N(znf 6), n>No. Since 0(2) is close along {£„}.

(5.1) |0U«)i<M+|0(Cn)|, n>No

Combining (3.0), (3.2), (3.3) and (5.1)

- h

Now under the assumption that the A-measure of C is positive (otherwise

the statement of the theorem is vacuous)

(5.3)
H m o,

2̂ e<θ h{\z-etQ\)

for all β I ( !eC. This follows by setting U(z) =1 in Theorem 2 and observing

that if (5.3) holds for some e{\ it holds for all Λ

The proof of Theorem 3 is completed by combining (5.0) and (5.3) with
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(5.2).

As Corollary 1 follows from Theorem 1 so also does the following Corollary

follow from Theorem 3.

COROLLARY 3. Under the hypotheses of Theorem 3, and supposing also that

{zn} tends to e* within some Stolz domain at etθ,

h(l-\Zn\Y

except possibly for a set of eiQ of Λ-measure 0.

6. Examples to Theorem 1

The following examples to Theorem 1 are constructed with h(r) =r.

EXAMPLE 1. Given an arbitrary countable subset P of C there exists a function

Ui(z) satisfying the hypotheses of Theorem 1 for which the exceptional set S {of

Theorem l) contains P.

Let {epj} be some enumeration of the points of P. For each point / J £ ?

we will consider a sequence {zn]} tending radially to exp*\ a sequence of disks

D{z{J\ (1 - \zfrOtj) and a function Ui(z) which takes the value * 4 / i

in each disk and which is summable over D. If Cn} e D{z(n\ (1 - \zιi]\)tj)t n = 1,

2, . . .

Referring to Corollary 1 of Theorem 1 we see that the sets Mn(tj) do not

exist for the sequece {zn]) and P is therefore a subset of the exceptional set

S. We proceed to the details.

For a fixed eίpj & P consider a Stolz domain S(etp*, CCJ) of opening 2αy,

0<ccj < -5-. where {aj} is any decreasing sequence of positive numbers satis-

fying

(6.0) Σ α y < ° ° .

Let {zί,̂ } be a sequence approaching ^ radially with \z{n)\ = l Γ w =» 1,

2, . . . . lί tj = sin αy the disks Dizιn\ (1 - Un } | )ίy), « = 1, 2, . . . , are easily

seen to lie inside S(etpj, aj) (see figure 1). Hence-forth we use Dn} to denote

these disks.
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New define

Ui(z) =
0, 26Z)-U

In order to compute the double integral of U(z) over D some estimates of

the integral of U(z) over each D{4] are required.

Let θn} be that positive angle formed by the radius to etfi* and the line

segment from the origin tangent to the circumference of Dn] (See figure 1.).

<l-l*ί?Ί>//

Since

(6.1) sin i

and

(6.2)

then for n>2, and all /,

(6.3)

Since the quadrilateral

FIGURE l

, (l-\zΐ'\)tj tj_

\zκϊ\

7Γ tj

'-I

2 «2-]

-e^<,β<pj + θT, l -
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contains Dn} for each value n and , setting z = red

(6.5)

By (6.3)

Thus (6.5) and (6.6) combine to give

\{uΛz)rdrdd<; ΣΣl\\Uι(z)rdrdθ

<ΣΣ-
0S 006

7T

That this expression is finite follows from (6.0); hence U(z) is summable

over D.

To conclude, we see that for any fixed value , and any sequence {<£«*},

Cί/'eZtf', w = l, 2, . . . , ί/i(0)(l-ΐCyl)->oo asw->oo. Thus the sets M $ do

not exist for the sequence {zίΓ} and any t<tj. Since this behavior is true for

all values j the exceptional set for Uχ(z) contains the set of points etpJ

9 j-l>

2, . . . .

Our next example concerns the behavior of a function U2iz) whose integral

over D diverges in some specified manner but for each £tθ <= C, there is a

sequence tending to etQ and a value t, 0<t<l, for which the sets M ? fail to

exist.

For 0^^<l let Ψ(r) denote any real-valued function such that

I) Ψ(r) is a non-decreasing function of r,
(6.7) vII) ?Γ(0)=0, limy(r) = «>.

EXAMPLE 2. L^ί ?Γ(r) ^ αw arbitrary function satisfying (6.7). 77tew there
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exists a real-valued, non-negative, measurable function Όiiz) defined in D with the

property that the dokble integral of Uz(z) over D is infinite but, setting z = retQ,

p 2«

^ Uι(z\rdθdr<Ψ(p)
0 0

for 0 < p < l . Further for any 0e[O, 2πl there is a sequence {ZJ) in D which

tends to eiQ such that, if Cj<=D(zj, ( 1 - U, |)l/8), then

lim CMC/Ml-|Cy|)= °°.

Define a sequence of concentric, disjoint rings in D as follows - let a

sequence of positive numbers {nj} be chosen so that

(6.8) j

and

(6.9) 2πj2\og2<Lψ(l-~^), .7 = 1,2,

That such a sequence exists follows from the monotonicity of Ψ(r). Next let

Rj be the ring {ze D\l - ~ < \z\ < 1 - —^7] j = 1, 2, . . . . Note that these

rings are disjoint by (6.8). Lastly select any function Ψ*(r) satisfying (6.7)

and in addition

(6.10)

The desired function is

Φ*(

0, z e Z > - UJ?y.

To demonstrate that the integral of UAz) over D diverges in the proper

fashion fix a value rOi 0 < r 0 < l , and let /0 be chosen so that

(6.11) l - - ^ λ

Since U2(z) vanishes except on the ring Rjt (6.9), (6.10) and (6.11) imply

9 0
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< 2 πjl log 2

<Ψir0).

A short calculation yields that the integral of Uι(z) over D is infinite.

Finally to exhibit sequences which have the desired properties consider, for

any O<0<2 TΓ, the sequence ZJ = ( l - -J-^T)* 1 ' 9 . = 1, 2, . . . . The width of

the ring Rj is ~0—• while the diameter of D(zj, (1 - \zj\)l/S) is ^~-—Γ and

since the point zj is equidistant from the boundary circles of Rj

, i = l , 2,

From the definition of U2(z) and Ψ*(\z\) if CJ<=D(ZJ, (1 - |z/|)l/8), / = 1 ,

2, . . . , then

lim t/2( C>) (1 ~ IC; I) = °°.

The last example indicates that the rate of growth demonstrated in Theorem

1 cannot be improved.

EXAMPLE 3. Let Ψ(r) be any function satisfying (6.7). Then there exists a

real valued, nonnegative} measurable function Uz(z) defined in D for which

\\ϋι(z)dxdy<oo

further for any O<^0<2π there is a sequence {ZJ) in D tending radially to et0

with the property that if Cjt=D(zj, (1 - \zj\)l/8), j= 1, 2, . . . , then

Let Ψ*(r) be any function satisfying (6.7) and such that as r->l,

Ψ(r)lΨ*(r) -» oo. As before, define a sequence of concentric, disjoint rings R

in D by first specifying a sequence of positive integers {nj} with

(6.12)

ID Λy+i>2wy

for i = l , 2, . . .

then set Rj = \z\l- - i - ^ | 2 | < i - _ ! _ } , i = l , 2, Define
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1 i°°i

0, z e D - U Rj.

The finiteness of the double integral of Us(z) over D follows from

rdrdβ

2 7r log 2

By (6.12) the last term is less than or equal to

3=1 J

( O "I \

1 - ~r—τ)^'θ, ; = 1, 2, . . . . As in the preceding

example D(zjy (1 - Uy|)l/8) c φ for all values;. Thus if ζ, e D{zjy (1 - Uy|)l/8)

lim ί/ 3 (Cy)( l~ |C>|)*

then the definition of Ψ*(r) gives

lim J7i(Cy)(l-|Cy|)y(|Cy|)= oo.

This completes the proof of example 3.
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