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Introduction

There are some fundamental mathematical theories, such as the Fraenkel

set-theory1] and the Bernays-Godel set-theory2), in which, I believe, all the

actually important formal theories of mathematics can be embedded. Formal

theories come into existence by being shown their consistency. As far as this

is admitted, not all the axioms of set theory are necessary for a fundamental

mathematical theory. The fundierung axiom is proved consistent by v.

Neumann3), the axiom of extensionality is proved consistent by Gandy4>, and

even the axiom of choice is proved consistent by Godel5). Although it is not

evident that a set-theory does not cease from being a fundamental theory of

mathematics after abandoning these axioms all at once, the theory must be

enough for being a fundamental theory of mathematics without some of them.

The object theory I am going to introduce here is intended to be a funda-

mental theory of such kind. The system has only one primitive notion " e "

(the membership-relation) and assumes only one axiom scheme.

Let us now explain the practical meaning of the only axiom scheme of

my system. To begin with, let us consider the axiom of replacement of the

Fraenkel set-theory. The axiom asserts for any set h and for any unique

mapping Δ (xΔy is unique regarding it as a mapping ^ to jt:) existence of a set

k formed by all the J-images (images by Δ) of members of h. Starting from

this assertion, we strengthen it in the following two steps. Namely, in the

first step, we replace "members of h" by "sub-sets of members of K\ In the

second step, we assume existence of a set p generated recursively by the

Received September 17, 1964.
*> Fraenkel [1], [2].
2> Bernays [1], Gδdel [1], See also v. Neumann [1].
3> v. Neumann [2].
<> Gandy [1].
5> Gόdel [1].
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mapping h to k starting from any given set m.

Thus the only assumption of my new system turns out to be the following:

(A) For any m and for any unique mapping d, there is p such that, for

any h in p, there is k in p formed by all the J-images of sub-objects (sub-sets)

of members of h.

Inclusion and equality can be defined as usual by extension as follows:

Any mapping xΦy (y to x) is expressed by a relation between x and yy Le. a

sentence on two free variables x and y. The notion of sentences can be defined

meta-theoretically as usual. The condition for that a relation Φ denotes a

unique mapping can be now stated in our system. However, I prefer a more

agreeable way to state the assumption (A) by making use of the comprehension

operator {Γ)7), which operates on any binary relation Γ and gives a new binary

relation defined by

Namely, x{Γ)y denotes that x is a set formed by all the objects 5 bearing the

relation sΓy to y. By virtue of the comprehension operator, descriptions can

be simplified. Equality = can be expressed as {e). Moreover, any relation of

the form {D is proved to be unique8), so

(A') (nt)(Bp)(m&pAUi)p(3k)pk{{r)cz<=)k)*)

is a special case of (A). It is enough for my system to assume only this

special case of (A)10).

6> We use the notation 51 ̂ 8 to denote that 91 is defined by 8, i.e. that 51 stands for
93, usually a longer expression than 51.

7) The symbol "{•)" was introduced in Ono [3], and the name "comprehension operator"
was introduced in Ono [4].

8> Any relation of the form {Γ) is unique in the sense (x)(y)(z)(x{Γ)z/\y{Γ)z -*x=y),
which is provable without any assumption.

9> Any formula of the forms (k)PW{h)f (3k)p$(k) stands for (h)(hGp-*W(h)) ,(3k)(k&p
/\$(k)), respectively. The relation product is defined by x(ΓΔ)y^{3z)xΓzΔy. As the
product is associative, parentheses denoting the order of combination are usually omitted.

l0> It does not seem provable that every unique relation Δ is expressible in the form
{Γ). But, without any assumption, it is provable that every unique relation expressible
in the form =J can be expressed in the form {Γ). See Ono [4].
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Every proposition of the form (A'.) is provable in the Fraenkel set-theory.

As (AM is the sole assumption of my system, it is evidently consistent relative

to the Fraenkel set-theory. In my system, none of the sum-set axiom, the

aussonderung axiom, the fundierung axiom, the extensionality axiom, and the

choice axiom seems to be provable. However, all the axioms of the Fraenkel

set-theory except the choice axiom are provable in a certain domain, the domain

of sets, which is definable in my formal system. Accordingly, one may also

follow the Godel theory11' to prove consistency of the choice axiom with respect

to my system with suitable modification, but I do not carry it out in this work.

Here I explain only how the notion of sets can be defined in my formal system

and how the axioms of the Fraenkel set-theory other than the choice axiom

are provable in the domain of sets.

I have tried already a few approaches of the same kind. In my system

OF, the satellite relation ' V must be defined before stating its axiom scheme.

The axiom scheme of OF is really simple if the notion of satellite relation is

assumed to be known, but the notion seems too complicated12). My new system

has really the same range as the system OF. My apology for introducing this

new system is in the matter of style. I believe that (A') is a form more

agreeable than the axiom scheme of OF.

It was not necessary to change very much the embedding process of the

Fraenkel set-theory without the choice axiom in OF for embedding the same

set-theory in my new system. In this work, I will rather give an informal

exposition of my system and explain the leading idea of constructing a set-

theory in it. Detailed formal description will be given elsewhere.

In (1), I will give a precise exposition of the system. Membership " e "

lι> Gδdel [1].
12) My former three works Ono [1], [2], and [4] are on the same line. In OZ (the

system introduced in [2]) and in OF (the system introduced in [4]), I used the satellite
relation a. In both systems, I have denned the satellite relation σ after denning "inclusion
c " and "unit-object relation v" {xvy denotes that x is a unit object (unit set) of y) so
that σ is the minimal transitive relation which is larger than ζ=, Cl, and v. (Any relation
7" is called larger than another relation Δ (or Δ implies Γ) if and only if {x){y){xΔy-*xΓy)
holds.) As it was convenient to define "inclusion" and "unit-object relation" somewhat
differently in these two systems, so the notion of satellite of OF turned out to be more
complicated than that of OZ.

Just as this new system, each of my two former systems OZ and OF is based on a
single axiom scheme. Quine's system is also of the same kind. See Quine [1], [2].
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is the only primitive notion of the system. Capital Latin letters are employed

as object variables. Capital Greek letters are employed as meta-theoretical symbols

for binary relations. The axiom scheme of the system can be introduced by

using these outfits only.

In (2\ some fundamental properties are written down for reference' sake.

Some of them are definitions in any systems of the same outfits and the others

are theorems or meta-theorems provable without any assumption.

In (3), some general properties of my new system are proved. In (4), the

descendent relation " δ" is defined and several properties of the relation are

proved.

In (5) and in (6), the notions of normalityn) and regularity are introduced,

and some theorems concerning each of these notions are described, respectively.

In (7), the domain of sets is defined as the domain of normal and regular

objects, and all the axioms of the Fraenkel set-theory except the choice axiom

are shown provable in the domain of sets. To make descriptions simpler, set

variables denoted by lower case Latin letters are introduced.

(1) The system

(1.1S)14) Membership " e " is the only primitive notion of the system.

Variables for objects in general are denoted by capital Latin letters.

(1.2R)1 5 ) Together with the usual logical symbols A, V, - * , - , , = , ( ) ,

O ), quantifiers of specified ranges having the forms (X)M%(X) and (3X)M%(M)

are also employed165.

The notion of open sentences can be introduced as usual. Open sentences

on two variables X and Y are denoted in the form XIΎ. Capital Greek letters

are for binary relations as meta-logical variables. The variables X and Y need

not really occur in the open sentence XΓY. Moreover, some variables other

than X and Y may occur in XΓY as parameters. In fact, the variable X and

Y of XΓY are given just to call for notice that the relation XΓY is a relation

between X and Y defined by a suitable open sentence.

13' Normality was called total normality in Ono [4].
u> Numbers of the form (w, n) are for theorems and meta-theorems. Numbers of

the form (m, nS) are for illustrations just stated.
15 > Numbers of the form (m, wR) are for remarks.
16> See Foot-note 9).
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Notations for relation products and comprehension operators are also employed17'.

(1.3 D)18) Inclusion £ is defined as usual by

Any object X satisfying XQ Y is called a sub-object of Y.

is the only axiom scheme of the system, where P and K do not occur in 7<20).

(2) Some fundamental notions and some fundamental properties
provable without any assumption

In this paragraph, (1.4 A) is not assumed.

The followings are fundamental notions and fundamental properties of any

system having the notion e . Most of them are already described in my former

work21). I write down them here, mostly for reference* sake.

(2.1) (X)%(X)-*(X)M

<)Ϊ(X) and (3X)M%(X)

(2.2D) X

(2.3) Equality = is reflexive, symmetric, and transitive.

(2.4 D) Any relation Γ is called left (or right) invariant if and only if it is

equivalentzv to = Γ (or Γ= ). Γ is called invariant if and only if it is right

invariant as well as left invariant.

(2.5) Γ is left (or right) invariant if = Γ (or Γ= ) implies23* /'.

(2.6) ΓΔ is left (or right) invariant if Γ (or Δ) is so. It is invariant if

Γ is left invariant and Δ is right invariant.

(2.7) If Γ and Δ are both left (or right) invariant, then Γί\Δ as well as

ΓVΔ2ι) is also left (or right) invariant.

17> See Foot-notes 9) and 7).
18> Numbers of the form (m, ήD) are for definitions.
19> Numbers of the form (w, nA) are for axioms and axiom schemes.
20} We say that 5 does not occur in 7" if 5 does not occur in some open sentence of the

form XΓY {i.e. in its denning open sentence).
21 > Ono [4].
"> Γ is said to be equivalent to J if and only if {X){Y){XfY=XΔY).
23> Γ is said to imply Δ if and only if {X){ Y){XΓY->XΔY).

and
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(2.8) Any binary relation of the form {D is left invariant.

(2.9) For any right invariant Γ, {D is invariant.

(2.10) {Γ) is unique2δ).

(2.11) G is right invariant.

(2.12) c is reflexive and transitive.

(2.13) = is equivalent to c Λ 2 2 6 ) .

(2.14) c is invariant.

(2.15) X{ = )Y implies FeX.

(2.16) X{Γ)Y->X{ = e)X holds for any left invariant /'.

(2.17) Y{ = e )X implies F{ = e ) y .

(2.18) Any unique and left-invariant relation Δ can be expressed in the

form {Γ).

This meta-theorem is not trivially provable. A formal proof of the theorem

is given in Ono M-(2.31). Although I did not expressly remarked there that

the proof is valid for any system having the e notion, one can check it without

difficulty.

(2.19 D) <p((X)~(S)S$X.

Any object X satisfying ψ(X) is called a null-object.

(2.20) (XΛY)(φ(X)-+XQY).

Hereafter, throughout this work, I assume (1.4 A).

(3) Object theory

In this chapter, some remarkable aspects of the theory of objects in the

system are described.

The following (3.1) and (3.2) follow immediately from (1.4 A) and (2.1).

(3.1) (Λf)(3P)AfeP.

(For any object M, there is an object containing M).

25> See Foot-note 8).
ιi) Ξ2 denotes the inverse relation of c as usual.
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(3.2) (H)(3K)K{{Γ)Q e )H.

(For any object H and for any relation Γ, there is an object K formed by

all the {Π -images, naturally {Π being unique by (2.10), of sub-objects of

members of H).

Theorems (3.3)-(3.6) are not trivially provable, but their proofs can be

carried out quite in parallel with proofs of these theorems in OF. I will sketch

the proofs very shortly.

(3.3) (M){-(T)T<=M).

(No object contains all the objects.)

Proof. If there were an object M which contains all the objects, then, by

virtue of (3.2), there would be another object P satisfying P{{Γ)Q e )M,

where Γ is a relation defined by XΓY^Xe FΦ Y. For this P, two contradictory

propositions P&P and P$P are provable by a pretty long deduction employing

(2.3), (2.8), and (2.16).

(3.4) (3X)φ(X).

(There is a null object.)

Proof. For any object M, there is an object X such that I ( { Γ ) C 6 ) M by

(1.4 A), where Γ is a relation defined by SΓT^ ( S e T-*S<= T). According to

(3.3), X is a null object.

(3.5) (H)(3K)K{{Γ)ίΞ)H. {H should not occur in Γ.)

(For any object H and for any relation Γ, there is an object K formed by

all the {D-images, naturally (Γ) being unique by (2.10), of members of H.

This is a special case of the axiom of replacement.)

Proof. For any object H and for any relation Γ, there is an object

K satisfying K{{Δ)<^ e )H by (3.2), where J is a relation defined by

XΔY~ ( F e H-+XΓY). For this K, K{{Γ) e )H is provable by making use of

(3.3) and (2.12).

(3.6) (M)(3P)P{ = (ΓΛ e ))M. (P should not occur in Γ.)

(For any object M and for any relation Γ, there is an object P formed by

all the objects each being equal to some member X of M satisfying XΓM.

This is the aussonderung axiom if the extensionaίity axiom is assumed.)
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Proof. For any object M and for any relation Γ, there is an object P

satisfying P{{Δ) e )M by (3.5), where Δ is a relation defined by XΔY^iYΓM

). For this P, P{ = ( Γ A e ) ) M is provable by making use of (3.3).

I will prove Theorems (3.7), (3.9)-(3.11) something more in details, as

their proofs in this system show somewhat different features from their proofs

in OF.

(3.7) (M)(3P)P<c)M.

(For any object M, there is an object formed by all the sub-objects of M.

Any object X satisfying X{ c ) Y is called a power-object of Y. The power-set

axiom.)

Proof. For any object M, there is an object Z containing M by (3.1).

By <3.2), there is an object P satisfying P{{Γ)Q<= )Z, where Γ is a relation

defined by SΓT~Se TZEM. This object P satisfies P{^)M. To show this,

one can prove easily (U)(U& P-+UQM). On the other hand, any sub-object

U of M satisfies U{Γ)Uy so U{Γ)U£.MeZ holds. Hence, U is a member of

P by definition.

(3.8D)

Any object Z satisfying Z{X, Y) is called a pair-object of X and Y.

(3.9) (X)(YH3Z)Z{X, Y).

(For any two objects, there is a pair-object of them.)

Proof. To prove the theorem, I will prove existence of an object W which

contains at least two objects U and V. This can be done by taking a null

object U by (3.4), its power-object V, and a power-object W of V by (3.7),

W contains surely U and V, and V is not a null-object because it contains the

null object U according to (2.20).

Now, for any X and F, one can define a relation Δ such that the relation

{Δ) maps every null object to X and every object other than null objects to

Y. Namely, Δ is a relation defined by SΔT^ • ( T = C / Λ S e I ) V ( T Φ f / Λ S e n

Hence, if one take an object Z satisfying Z{{Δ)<z)W by (3.5), Z satisfies

Z{XyY}.

(3.10)
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(For any object M, there is an object P formed by all the objects, each

being equal to a member of a member of M. This is the sum-set axiom, if

the extensionality axiom is assumed.)

Proof. For any M, one can take such an object N that P{ = ee)iV is

equivalent to P{ = e e )M for every P (in other words (SKS=GGiV=S=GeM)

holds) and that every member T of N satisfies T{ = &)T. Any object satisfy-

ing N{ { = e ) e )M taken by (3.5) is proved to be an object of this kind by making

use of (2.3), (2.6), (2.8), and (2.16).

Now, there is an object P satisfying P{{Γ)Q e )N by (3.2), where Γ is a

relation defined by SΓT~((3Z)T{ = )Z-*S<Ξ€ΞT). I will show that this P

satisfies P{ = e e ) AT. At first, I will show that any member R oί P satisfies

i?= eeiV. Namely, for any member i? of P, there are two objects U and V

satisfying R{Γ)UQtV^N by definition. By reductio ad absurdum, existence of

an object Z satisfying U{-)Z can be proved taking (3.3) into account. This

Z can be proved to be equal to R. Because Z is a member of U by (2.15),

R = Z e F e iV holds. Conversely, any object i? which is equal to a member Z

of a member F of ΛΓ is a member of P. Because the member V of N satisfies

V{ = (=)V, P is a member of F. Now, take an object £7 satisfying t/{ = )J?

by (3.9), then (S)(SΓU =St=e=U) holds by definition of Γ. By making use of

(2.15), one can prove R{Γ)U without difficulty. Moreover, U is a sub-object

of F because U{ = )R and F{ = e ) V hold. Hence, # { Γ ) [ / C 7 E N.

(3.11)

(For any object M, there is an object P which contains M and also contains

every unit-object27) of any member of itself.-)

Proof. For any M, one can take a unit object N of M and a unit object

L of iV by (3.9). By technical reason, I will prove existence of an object Q

containing L and satisfying (H)Q( BK)QK{ = )H. If existence of such Q is

shown, then the theorem can be proved as follows- One can take an object P

satisfying (H)(H<=P= H=MVH=NVH=<ZΞQ) by employing (2.3), (3.9),

and (3.10). This P surely contains M by (2.3), and it can be proved to satisfy

(H)pi3K)PK{ = )H by making use of (2.3) and (2.9).

Existence of such Q is proved as follows: By (1.4 A), there is an object

*7> Any object X satisfying X{ = )Y is called a unit object of Y,
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R satisfying L e i ? and (H)R{3K)RK{{Γ)^ e )H, where Γ is a relation defined

by S Γ y ^ ( ( 3 t f θ r { = ) W - » S - Y). For this Γ, one can prove that K{{Γ)Q e ) i/

implies K{-)H as far as i7 is a unit object of a unit object of some object,

by making use of (2.3), (2.8), (2.9), (2.10), (2.12), (2.15), and especially

(3.3). Now, according to (3.6), there is an object Q satisfying Q{ = ( J A e ) )Ry

where Δ is a relation defined by XΔY^ (3J)X{ = ){ = )/. By (2.3), (2.8), and

(2.9), Q is proved to be an object formed by all the members of R, each

being a unit-object of a unit-object. Hence, (H)Q(3K)QK{ = )H holds.

(4) Descendent relation

The notion of the descendent relation δ in this system is the same as that

of the descendent relation in OF. Most remarkable difference between my

new system and the system OF may be that existence of an object formed by

all the descendents (see (4.1 D)) of any object is easily provable in OF, whereas

it does not seem provable in the new system. By this circumstance, I had to

prove Theorem (4.6) in a complicated manner by making use of Lemma (4.5 L)2δ)

compared with the manner of the proof for the corresponding theorem in OF29>.

(4.1 D) Just as in OF, the descendent relation δ is defined by

Any object X satisfying XδY is called a descendent of Y.

By making use of (2.3), Theorems (4.2)-(4.4) are easily provable.

(4.2) The descendent relation 3 is reflexive and transitive.

(4.3) Equality = implies the descendent relation δ.

(4.4) The membership relation e implies the descendent relation δ.

For any object Y in general, I can prove (3Z)Z{δ)Y only under a certain

condition (See (4.5 L).), but the condition does not cause any essential difficulty

for proving the fundamental property (4.6) of the descendent relation.

(4.5L)

(For any Y, there is an object formed by all the descendents of Y, as far

2i) Numbers of the form (nt, nh) are for lemmas.
29> Ono [4], Theorem (7.7) t
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as there is an object P containing all the members of its members and an

object equal to 7.)

Proof. Assume that one can take P such that (SKSeG?->SeP) and

F = G P hold. For this P, take an object Zby (3.6) satisfying Z{ = (ΓΛ e ) )P,

where Γ is a relation denned by SΓT^SδY. Z{δ)Y can be proved without

difficulty by making use of (2.3), (4.1 D), (4.2), and (4.3).

(4.6) (X)(Y)(XδY = X<5e Y\ίX^ Y).

(Any object X is a descendent of another object Y if and only if X is

a descendent of some member of Y or X is equal to F.)

Proof. For any X and Y, Xδ&Y as well as X = Y implies XδY according

to (4.2), (4.3), and (4.4).

Now, I prove conversely that XδY implies X δ e F V J = F . If Y contains

a member U for which no object P satisfies (S)(SeG?-»5G?)Λί/= ε P ,

then any object, especially Xy is evidently a descendent of U, so X satisfies

XδU&Y. Accordingly, without loss of generality, I can assume for every

member U of Y existence of an object P satisfying ( S ) ( S e e P - * S e P ) Λ

£/=<=P. By virtue of (4.5 L), there is an object Z satisfying Z{δ)U for every

member U of Y.

By (3.5), take an object Q such that Q{{δ)^)Yf and thereafter take an

object R satisfying i?{ = Ge)Q by (3.10). This R can be proved to satisfy

R{δ(Ξ )Y by (2.3), (4.2), and (4.3). By virtue of (3.9) and (3.10), there is

an object P consisting of all the objects equal to Y in addition to all the

members of R. In fact, one has only to take the objects Z, B} and P in suc-

cession such that Z{ = )F, B{R, Z}, and P{ = e ε ) 5 . For this P, (SMSeP

= S£e Y\ίS = Y) can be proved by taking (2.3), (4.2), and (4.3) into con-

sideration. Moreover, ( 5 ) ( 5 e e P - ^ S e P ) is provable by (2.3) and (4.2), and

Y=(=P is provable by (2.3). Hence, the descendent X of Y must be equal

to some member W of P.

Because the member W of P satisfies Wδ^YMW^Y, so Xδ&YVX^Y

holds too according to (2.3), (4.2), and (4.3).

(5) Normality

Normality is defined just as in OF. Theorems (5.2)-(5.4) can be proved

very easily.
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(5.1 D) v(X) ~ (S)(SdX-*S( = e)S).

(Any object X satisfying v(X) is called normalm.)

(5.2) (X)<p(X)-*v(X)).

(Any null object is normal.)

Proof. By (4.6).

(5.3) {X)(Y){XδY\v(Y)-->v{X)).

(Any descendent of a normal object is also normal.)

Proof. By (4.2).

(5.4) (X)((S)xv(S)f\X{ = <=)X-->p(X)).

(Any object X consisting of normal objects and satisfying X{ = ̂ )X is

also normal.)

Proof. By (2.3), (2.11), (2.16), and (4.6).

(6) Regularity

Regularity is also defined just as in OF. Theorems (6.2)-(6.4) can be

proved quite similarly as their corresponding theorems in OF.

(6.1 D) The regularity relation p is defined at first, and regularity is defined

thereafter by making use of the regularity relation.

Any object M satisfying p(M) is called regular.

(6.2) (X)(φ(X)-*P{X)).

(Any null object is regular.)

Proof By (4.6).

(6.3) (X)(Y){XδY/\p{Y)--*p(X)).

(Any descendent of a regular object is also regular.)

Proof By (2.3), (3.6), (4.2), and (4.4).

(6.4)

30> See Foot-note 13).
31 > ̂  is naturally the inverse relation of ^ .
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(Any object consisting of regular objects is also regular.)

Proof. By (4.2), (4.4), and (4.6).

(7) Set theory

The set notion is defined just as in OF. I introduce also set variables. By

making use of set variables, I introduce some set-theoretical notions.

(7.1 D) $(X)~-v(X)/\()(X).

Any object X satisfying $ (X) is called a set. Accordingly, any object is

a set if and only if it is normal and regular.

(7.2 R) Set variables are used to denote sets. Lower case Latin letters

are used for set variables. Namely, for a free set-variable x, $(x) is tacitly

assumed. For a bound set-variable x, the following definitions hold.

(3X)( $ (X)

Set-theoretical inclusion ξ, set-theoretical equality Ί , set-theoretical relation

product Γ*J, set-theoretical comprehension-operator {Γ)o, and set-theoretical

pairing Z{X> Y}o are defined as follows:

XΓ*JY~(3s)XΓsJY,

X{Γ)OY~ (s)is e XΞΞ sΓY),

Z{X, YΪ0

Following Theorems (7.3)-(7.8) can be proved very easily.

(7.3) iXM(X)->(xWx) and (3x)%(x)-»(3X)%(X).

(7.4) (X)(φ(X)-+ $(X)) and (3x)φ(x).

(Any null object is a set, and there is a null set32).)

Proof. By (3.4), (5.2), and (6.2),

(7.5) ( M ) ( ( I ) 4 ( I ) A M { = £ ) M ^ $ ( M ) ) .

(Any object M consisting of exclusively sets and satisfying M{ = e )M is

32) I call here a set being a null-object a null-set.
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a set.)

Proof. By (5.4) and (6.4).

(7.6) (χ)(Y)(Yδx->$(Y).

(Any descendent of a set is also a set.)

Proof. By (5.3) and (6.3).

(7.7) ( # ) ( F ) i * § r = * c y ) .

(Any set is set-theoretically included in an object if and only if it is included

in the object.)

Proof. By (4.4), (7.3), and (7.6).

(7.8) ix){y)(x^y^x^y).

(Two sets are set-theoretically equal to each other if and only if they are

mutually equal.)

Proof. By (7.7).

Now, I will show in the following that all the axioms of the Fraenkel set-

theory except the choice axiom are provable in my system with respect to the

set-theoretical notions introduced in (7.2 R).

(7.9) As the set-theoretical equality ΪΓ is so defind that (x)(y)(xzsy Ξ=

(s)(se#==s<=3>)) holds, the extensionαlity axiom can be described as

(x){y)(z)(xϊϊy -> UG2

This can be expressed by my notation shortly as

Proof of the extensionality axiom. By virtue of (2.3) and (7.8), (s)(se2->

^ * e a ) holds. To show conversely (sMs^ίΞz^sez), take any s satisfying

s^ *<Ξ2. By virtue of (7.3) and (7.8). s= ez holds. Since the set z is normal

by definition, so 5 must be a member of z.

(7.10) The pair-set axiom can be described as

(x)(y)(3z)z{x,y}0.

Proof of the pair-set axiom. For any x and yy there is an object Z satisfying

Z{x, y) by (3.9). This Z is a set according to (7.5), because (T)Z$(T) is
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provable by making use of (4.3) and (7.6) and Z{ = e ) Z is provable by

making use of (2.3) and (7.5). Moreover, Z{x, y} implies Z{x, y)o by (7.3)

and (7.8).

(7.11) The power-set axiom can be described as

Proof of the power-set axiom. For any x, take an object U such that U{ c )χ

by (3.7), and next take another object Y such that Y{ = (ΓΛ e ))U by (3.6),

where Γ is a relation defined by SΓT^ $ (S). For this Y, (Z)r $ (Z) is provable

by making use of (4.3) and (7.6), and Y{ = ̂ )Y is provable by (2.3). Hence,

Y is a set by (7.5). By taking (2.3), (7.3), and (7.7) into consideration, one

can prove Y{ ξ )ox.

(7.12) The sum-set axiom is described as

Proof of the sum-set axiom. For any x, take an object Y such that Y{

by (3.10). For this Γ, (Z) y$(Z) is easily provable by making use of (4.2),

(4.3), (4.4), and (7.6), and Y{ = s )Y is provable by (2.3). Hence, by (7.5),

Y is a set. Y{e*e) 0# is provable without difficulty by taking (2.3), (4.2),

(4.4), (7.3), and (7.6) into consideration.

(7.13) The aussonderung axiom can be described as

(x)(3y)y{Γ/\ e )ox.

Here, the relation SΓT could be assumed expressible in terms of set variables

only except for the free variables 5 and T. This assumption is really neces-

sary for proving the theorem.

Proof of the aussonderung axiom. For any xt take an object Y such that

γ{ = (ΓΛ e ))x by (3.6). For this Y, (Z)r $ (Z) is provable by making use of

(4.2), (4.3), (4.4), and (7.6), and Ύ*{ = e ) Y is provable by making use of

(2.3). Hence, Y is a set by (7.5). Y{Γ/\G)OX is provable by taking into

account Theorems (2.3), (4.3), and (7.6) together with assumption for Γ that

SΓT can be expressed in terms of set variables only except for 5 and T.

(7.14) The axiom of replacement can be described as
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where Θ is a set-theoretically unique mapping, i.e.

(s)(t)(u)(sΘuMΘu ->sτt).

Moreover, as a set-theoretical relation, Θ can be assumed to be set-theoretically

left-invariant, i.e.

(s)(t)(u)(sτ tMΘu ->sθu).

Now, I define another relation A by

SAT~-SΘT/\ $(S)Λ $(Γ).

This relation is unique in general sence, i.e. (S)(T)(U)(SΛUATΛU ~>S= T\

and also left-inveriant. These are easily provable by making use of (4.3), (7.6),

and (7.8). Since A and Θ are set-theoretically equivalent, i.e. (s)(t)(sAt = sβt),

so the axiom of replacement can be described as

(xH3y)y{Λ*<Ξ)ox,

where A is left-invariant and unique.

According to (2.18), the left-invariant and unique relation A can be expressed

in the form {D, so the axiom of replacement can be described as

(x){3y)y{{r)*e).x.

In my system, this formula is provable without imposing any condition on Γ.

Proof of the axiom of replacement (x)(3y)y{{Γ)*& )ox. For any x, take an

object U such that U{{Γ)<=)x by (3.5). Next, by (3.6), take an object Y

such that Y{ = (JΛ e= ))U, where Δ is a relation defined by TΔV^ $ (T).

By making use of (4.3) and (7.6), one can easily prove (T)y$(T), and

Y{ = <E)Y holds evidently by (2.3), so 7 is a set according to (7.5). For

any set-member 5 of F, holds s=e£7 by definition, so there is an object T

such that s = T&U. Accordingly there is an object W such that T{Γ) W^xby

definition. Because {Π is left-invariant by (2.8) and the member W of the

set x is also a set by (4.4) and (7.6), S{Γ)*<ΞX holds. Next, conversely, for

any s satisfying s{Γ)*eχ9 holds s{Γ)e* by (7.3), so by making use of (2.3),

s is a member of Y by definition. Hence, y{{Γ)*e)o* holds for the set Y.

(7.15) The fundierung axiom may be stated as that any set m must be a
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null set as far as every set-member % of m has a common set-member with

m. This can be described in my system shortly as

Proof of the fundierung axiom. For any set m satisfying (x)mx^*& m,

mpm is easily provable by making use of (7.3) and (7.6). Consequently, if

m were a non-null-object having a member X, then m can not be regular

because mpm^Xδm holds by (4.4). However, this can not hold for a set

m, as any set must be regular by definition.

(7.16) I describe the axiom of infinity in a seemingly stronger form as

follows

(m)(3p)(meΞpΛ(h)p(3k)pk{τ)oh).

Proof of the axiom of infinity. For any set m, take an object R such that

m e RMH)R(BK)RK{ = )H by (3.11). By (3.6), take next an object P such

that P{ = (ΓΛ e))/?, where Γ is a relation defined by 5ΓΓ^ $ (5).

(X)/>$(X) is provable by making use of (4.3) and (7.6), and P{ = <=)P

is provable by (2.3). Hence, P is a set by (7.5). Evidently, mΓR holds, so

m is a member of P.

I will prove next (h)p(3k)pk{τ)oh. Namely, for any set member h of P,

there is an object G satisfying h-= G e R by definition, and this G must be a

set according to (2.3), (4.3), and (7.6). For the member G of R, there is a

member K of R satisfying K{ = )G. For this if, (X)K${X) is provable by

making use of (4.3) and (7.6), and K{ = e)K is provable by (2.3). Hence, K

is also a set, which implies KΓR by definition of Γ. Since K= K{Γ/\^)R

holds by (2.3), HΓ is a member of P.

According to (2.3), (2.5), and (2.9), K{ = )G implies K{ = )h. K{τ)oh

can be derived from K{ = )h by employing (7.3) and (7.8).
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