
HOMOMORPHISMS OF CONTINUOUS PSEUDOGROUPS

JOSEPH E. DΆTRI*

Introduction. In this paper we attempt to set up a notion of homomorphism

for continuous pseudogroups and show that the kernel exists (as a continuous

pseudogroup) in the transitive case. This paper is really an extension of the

paper by Kuranishi and Rodrigues [11] which essentially examines the question

of the existence (as a continuous pseudogroup) of an image of a homomorphism.

A certain amount of overlap in definitions and statements of results was una-

voidable, especially in sections 2 and 3, but for many proofs and constructions

the reader is referred to that paper. For the basic notions of the theory of

continuous pseudogroups as used in section 4, see Kuranishi [9] and for the

terminology of the Cartan-Kahler theory used in section 5, see Kuranishi [61

Fuller expositions may be found in Cartan [ l l Kahler [4], Kumpera [5], Kura-

nishi [7J, and Schouten and v.d. Kulk [131

The author would like to take this opportunity to express his deep gratitude

to Prof. M. Kuranishi for his assistance in this work for the last several

years.

§ 1. Basic Notions

Since important parts of this theory hold only in the real analytic case,

we assume that all manifolds, maps, etc. are real analytic. Most frequently,

we assume that our manifolds are pointed manifolods, i.e., pairs consisting of

a manifold and a distinguished point in that manifold. We write (M, p) to

indicate that p is the distinguished point of M. Since our theory is primarily

local, it will often be desirable to "shrink" M, i.e., to replace M by an open,

connected neighborhood of p. We will usually not indicate such shrinkings in

our notation. It is usually assumed that a mapping from one manifold to
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another will carry the distinguished point into the distinguished point.

We assume familiarity with Ehresman's concept of jet spaces. If M is a

manifold, we let Jk(M) denote the space of invertible β-jets on M, while a and

β will denote respectively the source and target projections. We also let Ak(M)

denote the space of analytic β-forms on M considered as a module over A°(M),

which is just the space of functions on M.

Given manifolds M and N and a map p from M onto N, we will call the

triple (M, N, a) a fibered manifold if p* maps the tangent space to M at each

point onto the tangent space to N at the image point We usually assume that

each fiber is connected. Note that if we let Ik(p) denote the identity β-jet on

M at p, then (/(Af), Ik(p)) is a pointed manifold and (/(M), Af, a) and (/(Af),

Af, β) are fibered manifolds. If (M, N, p) is a fibered manifold and we are

given a point p^M and a coordinate system (#) = (#,•) defined in a neighborhood

of p(̂ >), it is always possible to choose coordinates (y)-(yj) defined on a

neighborhood of p such that Xj°ρ=yj. Such coordinates (y) will be called

fibering coordinates and we will loosely refer to this process as raising the

coordinates {x) to p. We will usually not distinguish notationally between Xi°p

and Xi. If we are given a "diagram" of manifolds and maps, we will call this

a diagram of fibered manifolds if each "arrow" M—>N gives a fibered manifold

structure (M, N, p). Lastly, if it is necessary to shrink any of the manifolds

in such a diagram, it will be assumed that the others are also shrunk so as to

preserve the fibered manifold structures.

By a homeomorphism element on a manifold Af, we will mean a homeo-

morphism /from an open set of M (frequently denoted by U(f)) onto another

open set of M (frequently denoted by V(f)) which is bianalytic. If / and g

are homeomorphism elements on M such that V(g) Π U(f) is not empty, then

we define/^ in the obvious way as a homeomorphism element with domain

equal to g~1(U(/)). Let Γ be a set of homeomorphism elements on M. Then

Γ is called a pseudogroup of transformations on Λf if : (1) / contained in Γ

implies that f'1 is contained in Γ, and (2) / and g contained in Γ implies that

f°g is contained in Γ whenever defined. Let Γ denote the collection of all

homeomorphism elements / on M such that for any point ΛΓG £/(/), there exists

an element g in Γ which coincides with / in some neighborhood of x. T is

again a pseudogroup which is called the completion of Γ. Γ itself is caUed
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complete if Γ=Γ. We call Γ transitive if for any two points x and y in M,

there exists an element g in Γ such that g(x) ~y. If Mi is an open submanifold

of M9 then by Γ\Mt we will mean the set of g<=Γ such that U(g) and V(g)

are contained in Mi. Every time that the manifold M is shrunk, it will be

assumed that Γ is also shrunk in this way.

An important class of pseudogroups is formed as follows. Let Λ\t(M)

denote the space of analytic Pfaffians on M considered as a vector space over

the reals and let Ω be any subspace of ΛR(M). Then Γ(Ω) will denote the set

of all homeomorphism elements f on M such that /*ω = ω on U{f) for any

. Clearly Γ(Ω) is a complete pseudogroup on M.

§ 2. Cartan Spaces

DEFINITION 2.1. Let (M, p) be a pointed manifold and suppose we have

a system of real analytic Pfaffians ωu . . - , ωn, α)i, . . . , ωm on M such that:

(1) α)i, . . . , ton, (δi, . . . , ωm are linearly independent at each point

(2) We can write dωi-cikωj/\ωk + aiλωj/\ωχ where the c{k and a{x are

constants.

By the structure matrices of such a system, we mean the matrices ax = (βίλ).

If such a system also satisfies:

(.3) The matrices a1, . . . , am are linearly independent

then {ωu . . . , ω«; ωu . . . , ώm) is a Cartan basis. The ω\ will be called sup-

plementary forms for the ωi and the equation in (2) will be called the structure

equation for the basis. It will usually be assumed that the c{k have been made

skew-symmetric in the upper indices so that the structure equation is uniquely

determined. We rehiark that if we have a system of forms (α>, ; y<,) satisfying

(1) and (2), then we can find forms ωλ in the real vector space generated by

the τ?τ so that (α?, 5)λ) is a Cartan basis.

Now suppose we have vector subspaces Ω and Π of Λ1R{M) and suppose we

can find a Cartan basis (ωίy . . . , ωn\ αh, . . . , ωm) such that (ωi, . . . , ωrt)

is a basis for Ω and iωu . . . , ωn, ωJt . . . , ωm) is a basis for IT. Then (Ω, Π)

is called a Cartan system and (α>, ; ωλ) is called a Cartan basis for (Ω, 71).

It is easy to see that if (Ω, Π) is a Cartan system, then (ω, ; Sλ) is a Cartan

basis for (Ω, 77) if and only if (o>f) is a basis for Ω and {ωi, ω\) is a basis for

77. The system is called complete if dim 77= dim M.
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Lastly suppose we have any subspace Ω of ΛR{M) for which there exists

a subspace 77 making (Ω> 77) into a Cartan system. Then we call Ω a Cartan

space and (Ωf IT) will be called a system for Ω.

DEFINITION 2.2. Let {Ω, 77) be a Cartan system with basis {ωt•; ωχ) and

structure matrices (a{λ). Let Ω* denote the dual of Ω witb dual basis ω1, . . . ,

/ and let <zλ e Horn (£*, Ω*) be defined by ax(ωJ') = aγω\ The ax generate a

subspace of Horn (J2*, Ω*) which is independent of the choice of Cartan basis.

This subspace is denoted by L(Ω9 IT) or simply L. Choosing a Cartan basis

induces natural bases on Ω* and L and hence associates to every element £ e

Hom(J2*, D a canonical matrix representation (b{). We let Φ(i2, 77) denote

the subspace of elements b satisfying

ά}λbk

λ - aϊxb{ = 0 for all i, j\ and A.

This is called the derived space in Kuranishi-Rodrigues [11] and the prolonged

space in Guillemin-Sternberg [3]. This space is also independent of the choice

of Cartan basis. Finally the system (Ω, 77) will be called involutive if L(Ωt

77) is involutive in the sense defined in Kuranishi-Rodrigues.

PROPOSITION 2.1. Let (Ω, IT) and (Ω> IT') be systems for the Cartan space

Ω. Then dim 77= dim 77', 77̂  = Ώ'q for any point q, and L(Ω, 77) = L(Ω9 770. Now

let (ωil ωλ) be a Cartan basis for (Ω, IT) with structure matrices (a{x). Then

there exists a basis of (i?, 77') of the form (ω, ; ξλ) satisfying:

(1) ωλ = ξ\ + h\ωk ivhere hχ are functions on M.

(2) For each point qy the matrix (h\{q)) is the canonical representation,

with respect to the bases induced by (ω, ; wλ), of an element of %(Ω, 77).

(3) The structure constants of the two bases are the same.

Conversely, if ξu . . . , ξm are Pfafflans on M satisfying (1.) and (2), then

(ω, ; ςλ) is a basis of a system for Ω and (3) follows. We remark that we can

always choose the supplementary forms £λ so that hl(p) = 0 where p is the

distinguished point of M.

See Kuranishi Rodriques for proof.

Because of this proposition, we can introduce the notation L(Ω) and Φ(β.)

to denote the spaces of Definition 2.2. In particular we see that the property

of being involutive is a property of Ω alone and is not dependent on the choice

of system. The same holds true for completeness.
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DEFINITION 2.3. A vector subspace Ω1 of a Cartan space Ω is a Cartan

subspace-if Ω' itself is a Cartan space.

PROPOSITION 2.2. A vector subspace Ω1 of a Cartan space Ω is a Cartan

subspace if and only if the equation Ωf = 0 is completely integrable. Under these

conditons, if (Ωt IT) is a system for Ωt then there is a unique system (Ωf, IT')

of Ω1 such that IT1 c 77. The vector space P Π Ω is independent of the choice of

system (Ω, IT).

Proof. The first assertion appears in Kuranishi-Rodrigues and their proof

shows that under these conditions, Ωf will have a system (&', 77') with Γ'c77.

Suppose we had another system (Ω\ IT") with IT"all. Then at any point qy

Πq = 77̂ '. Since any two subspaces of IT which agree at each point must be

equal, we have 77' = 77".

Now let (Ω, Ξ) be another system for Ω and let (Ωf, Ξf) be the unique

system for Ω: induced by Ξ.. We can choose the basis (ω; Six) of (Ω, 77) so

that

( 1 ) lΰJiy . . . , (ύn>\ O)n>+it . . . , Cύn'+s', 5>i, . . . , ωm>-S')

is a basis for (Ω\ 77'). We can also choose a basis (ωil ξy) of (Ω, Ξ) so that

the conclusions of Proposition 2.1 hold, in particular so that (ωil ωλ) and (ωil

ξλ) have the same structure constants. Then we see easily that

(1)' (ωi, . . . , Φn>\ (ύn'+l* . . , (0n>+s>, ξu - . , ^m'-S')

is a Cartan basis, having the same structure constants as (1), and hence, by

uniqueness, must be a basis for (£', £'). Clearly then 77' Π J2 = S'Π Ω.

DEFINITION 2.4. Let Ω' be a Cartan subspace of the Cartan space Ω. Let

(Ω, IT) be a system for Ω and let (Ω't 77') be the induced system. Then s(Ω,

Ω1) = dim (77' Π Ω) — dim Ωf is called the supplementary dimension of Ωr in Ω.

DEFINITION 2.5. Let (M, N, p) be a fibered manifold and let Ω and i2' be

Cartan spaces on M and N respectively. The Cartan spaces are called compatible

if p*i2'ci2. In this case p*β' is a Cartan subsystem and we set s{Ω, Ω') =s{Ω,

e*Ω').

DEFINITION 2.6. Suppose we are given a diagram of fibered manifolds.

This is called a diagram of fibered manifolds and Cartan spaces if a complete
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Cartan space is given on each manifold and if these are all compatible with

the fibrations.

DEFINITION 2.7. Fix a complete Cartan space Ω on a pointed manifold (Λf,

p), a system (Ω, 77), and a basis iωu . . . ,ω w ; ωu ,S«) with structure

matrices (#/λ). Let D~MxM and let oc and /9 denote the projections of D

onto the first and second factors respectively. Set Ωi = β*ωi and 77λ = β*ωχ.

We will also want to consider α:*ω, and α*ωλ but we will simply write these

as (Oi and ω\.

Let Σ(Ω) be the exterior differential system on D generated as an ideal by

ωi-Ωi and dωi-dQi. Let Θ(Ω) = α:*(Λ1(Λf)), i.e., Θ is equal to the Λ°(D)

submodule of Λ1(D) generated by ω, and ω\. Θ is a system oϊn^-m independent

variables. The pair (21, Θ) is called the exterior differential system with inde-

pendent variables assosicated to the Cartan space Ω. It is clearly independent

of the choice of basis or system. Using the structure equations for (ωi\ αh),

we see that Σ can also be characterized as the ideal generated by ώ, - Ω% and

aiλ(ωj/\(ωλ-IJλ)).

Let Sc:D. Then S is a solution manifold of (Σ, Θ) if and only if S is the

graph of a transformation in Γ(Ω). Also it is easy to show that the set of

nΛ m dimensional integral elements of (Σ(Ω), Θ(Ω)) is a submanifold of the

n\ m dimensional Grassmannian of M with dimension equal to 2 dim (D) 4-

dim®(i2). Finally it is well known that the Cartan space is involutive if and

only if the associated exterior differential system is involutive in the sense of

the Cartan-Kahler theory.

§ 3. Prolongations of Cartan Spaces

In this section we fix a complete Cartan space Ω on a pointed manifold

(Λf, p). We let Jk(M, p) denote the manifold of invertible &-jets with target p.

For any Z = yί/e/ι(Λf, p) and any form θ on M, we note that (f*0)x is inde-

pendent of the choice of representative/. Let X*0 = (f*θ)x.

DEFINITION 3.1. Let B(Ω, M, p), written B{Ω) for short, be equal to the

set of X^fiMy p) such that X*ω = ω and X*dώ = dω for all ω&Ω.

Choose a system (Ω, IT) and a basis (α>i, . . . , ωn\ ωu . . . , ωm). Let (xr)

be a coordinate system on M with origin at p. We now construct a coordinate

system on /(Λf, p) associated to these choices. For any J e / f M , p), Set
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Xr(X) =Xr(ac(X)). Also we can uniquely define pri(X), qliX) so that

Z*α>x = q{(X)(ωj)x + tfΓ

where # = α:(X). It is clear that (xr, prι> ql) give coordinates on fiM.p). We

find that B(Ω) is defined as a subvariety of /HM, p) by theequations

(2)

Let 6σ,...tf = 1, . . . , & be a basis of $K£) and let (&Γ) be the matrix repre-

sentation of b° associated by the choice of Cartan basis. From (2), we know

that if XeB(Ω), then (g[(X)) represents an element q(X) in ©(42) and so we

can write q{X) =bnuΛX)> i.e., q\{X) =tfλ°Ua(X) It is clear that (xr, u<,) form

coordinates on B(Ω) which is therefore a submanifold. Iι(p) is taken as the

distinguished point of B(Ω). Note also that (BiΩ), M, a) is a fibered manifold,

in fact the fibration by maximal integral elements of the system du* = 0

Now define Pfaffians ωn+\t l<λ<m, on B(Q) by the equation (ωrt+λ).r =

X*ωχ. The real vector space generated by ωu . . . , ωn+m is independent of

the choice of basis or system of Ω. This vector space is denoted by P(Ω).

Kuranishi and Rodrigues show that Γ(P(Ω)) is equal to the set of homeomor-

phism elements on BiΩ) which coincide locally with a Pf for some f^Γ(Ω).

Here Pf is the homeomorphism element on Jι(M, p) defined in cc~\U(f)) by

the formula

Pf(X)=Xo(jι

xfΓ
ι

where x = ac{X). If f^L(Ω), then it is clear that Pf induces a homeomorphism

element, also denoted Pf, on B(Ω).

Let (Λf, M\ p) be a fibered manifold with dimM=ίf, aim M'^d' and

suppose we have compatible, complete Cartan spaces Ω and Ω1 on M and Mf

respectively. Let (yt) be a system of coordinates on M1 and raise these to

coordinates (xs) on Λf. For any X^jx

xf<aj\M> p), let

and similarly for any Y = j1

ygeJίiM',pl), define o>1. Then (ΛS, fs) and (jyί(
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w~t) give coordinates on jHMtp) and jHMf, p1) respectively. For any

define pB(X) = Y<z]\M\ pf) by the equations

uiK Y) - vi(X) for τ, t=* 1, . . . , d'.

A simple calculation shows that Ye£(£') .

A priori it would appear that the map pB depends on the choice of coordi-

nates. However if

(3) Vs(X) = 0 for 1 α < d' and ά < s < d

then it is easy to see that pB(X) is independent of choice of coordinate. One

can show that (3) holds for all X<ΞB(Ώ) and so p* : B{Ω)-+B(Ωf) is well

defined. In addition, (pR)*(P{Ω'))c:p(Q). This calculation also shows that for

/eΓ(fl) and x&Uif), there is a unique g(aΓ(Ω'), defined in a neighborhood

of y = p(χ), such that P°f = g°p in a neighborhood of x. If X^B(Ω) is of the

form jlf where /eΓ(J2), we find that pB(X) =Jyg. This makes the description

of μR particularly simple when Ω is involutive since then every element of B(Ω)

has this form.

It should be noted here that the operator B is actually a functor from the

category of pointed manifolds with complete Cartan spaces and compatible

fibrations to the category of pointed manifolds and ordinary maps. The following

propositions, from Kuranishi-Rodrigues, show the effect of the operator P when

Ω is involutive.

PROPOSITION 3.1. If Ω is involutive then P(Ω) is α complete, involutive

Cαrtαn space on B(Ω).

PROPOSITION 3.2. Let (M, M\ p) be a fibered manifold with complete, com-

patible Cartan spaces Ω and Ω' and suppose Ω is involutive. Then P{Ω'))pB{B{Ω)

is a complete Cartan space compatible with P{Ω) under the fibration (B(Ω),

pR(B(Ω))t p*). AJso each map in Γ(P(Ωf)\pJί(B(Ω)) is the restriction of a map

in ΓiPiΩ1)) and conversely.

This section concludes with a lemma needed in our main proof.

LEMMA 3.3. Suppose ive have complete Cartan spaces Ω and Ω1 on (M, β)

and (M, β1) respectively and a compatible fibered manifold (M, M\ K). Assume
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that Ω is involutiυe and S(Ω, Ω') = 0. Let Mi equal B(Ω, M,p) and M[aB{Ω'y
M\ pf) equal the image of Mi by κB. Then S(P(Ω), P(Ω')\M[)) = 0

Proof. Let (Ω, 77), respectively (Ω't Πf), be a system for Ω, respectively Ω'.

Let £* = /Λ2' and let (β*, 77:ic) be the unique system with 77*c77. If θ is a

Pfaffian on M\ we let 0* = κ*θ. We can find bases

((Oi,...1(ϋn> (Oίi > δ?m)' θ f (^> 77)

( 0 1 * . . . . , » ? > ; - ξi, . . . ,ξm>) Of ( 0 * , 7 7 - )

( 0 1 , . . >θn>l Vι, . . . ,-ηm ) O f ( £ ' , 7 7 ' )

so that rjt = ςλ - Λχ̂ f ω; = 0*. 1 < ί < ri ωλ = f λ> 1 < A < m', where the h\ are

functions on M such that the matrix (h\) represents an element h in Φ(i2') at

each point. We can assume that h\(p) = Q. For simplicity, set Ωι-P(Ω) and

^ί = P(i2') |Mί. Lastly, choose a coordinate system (xr) on M' and lift this to

a coordinate system (xr, ys) on M.

Let o^, respectively «^, be the structure constants of {ωjm, ωμ), respectively

(0i*; fx) (and hence also of (0, ; τ?λ)). It is easy to see that

a$ = δj> for ί, ί' = 1, . . . , n1 A = 1, . . . , tri

aψ = 0 for / < n1 and either j> ri or λ > nϊ.

From this we see that if b = (£'μ)eΦ(£), then

is in ©(£') and the mapping ĉ  defined in this way is a vector space homomor-

phism. Let D equal the image of %{Ω) by ^ and let ψ be an injection of D

into ©(β) so that ψoψ is the identity and %(Ω) = 0(D)ΘKer <p. Let b\ . . . ,b'

be a basis for Ker ^.

An element X in Z?(i?) has a unique representation of the form (xr, ys,

q{X)) where q(X) = (qliX)) is in Ί)(Ω) and any expression of this forrri defines

an element in BiΩ). Likewise any element in B{Ω') has a unique representation

(xr, q(X)) where q(X) = (^l(Z)) is in ©(£'). Let Z be in S(i2). Since β is

involutive, there is a ^ in Γ{Ω) with j\x,y)g~X and since tc*(Ω')c:Ωy g in a

neighborhood of (#, jy) is the prolongation of some/ in ΠΩ'). Then

Raising this equation to (x, y) by K* and comparing with the equation for
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we have

5i(«Λ(jr)) = ΛU)-*iu^)
or

qoκ

B - (poq — h°a.

Now (Mί, Mi, α) is a ίibered manifold so we can find coordinates (xr> uσ)

on M[. Let ZeMi = J5(i2). Then

is in the kernel of φ and so can uniquely be written as

vΛX)bι+ +Όt{X)bf.

Since (Mi, Ml κh) is fibered manifold, it is easy to see that (#,, ys, uσ, v-J

give coordinates on Mi compatible with the fibrations.

Let p be a cross-section of (Mi, Mί, κB) passing through pι-I(p). There

exists a transformation family {gx} in Γ(J?i), indexed by Mi, so that gx{X) ~pι

(although each gx need not be defined on all of Mi). We construct a similar

transformation family {/*} in Γ{Ω[) by letting fx be the local homeomorphism

induced by g~{X) in a neighborhood of r(Z).

Supplementary forms ωl for Ωι are obtained by spreading around the (dua)p1

and (dvx)pί using {gx) (this gives us a system {Ωu 77Ί)) and supplementary

forms )?!. for Ω[ are obtained by spreading around the (du<,)px' using {fx} (this

gives us a system (Ω'u TT[)). Therefore (κB)*ηl is equal to ώl on the image of

ξ and hence surely at px. Let Ω* = (/c/?)*i2ί and let (£*, 77*) be the system

with Ίlΐ a Hi. The supplementary forms ξ\ for (i2i*, 77*) will be linear com-

binations with real cefficients of forms in Ωi and of the ωl and they can be

chosen so that fJ, = (/c2>>)\ί at p. But therefore ££= ώμ, i.e., S(ΩU Ω[) =0.

§4. Fibrations and equivalences

DEFINITION 4.1. Let /', respectively /'', be a complete pseudogroup on (M,

p), respectively (M', ^ ' ) , and suppose (M, M;, /c) is a fibered manifold, Then

(Γ, M, i>)—>(Γ', M\pf) is called a homomorphic fibration if for each #e/" and

y^U(g), there is an / e Γ defined in a neighborhood of κ(y) so that κog~f°κ

in a neighborhood of jy. The fibration is called surjective, respectively injective,

if in addition it satisfies condition (S), respectively (/), below.
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(S) There is an integer k and for any y e M, neighborhoods U of y and it

of Ik(κ(y)) so that each transformation family in F defined around a point κ(z)

where z<=U and having Λ-jets in 11 can be lifted to a covering family in Γ defined

around z, provided we restrict to small enough neighborhoods of z and YΛz).

(I) There is an integer k so that if g^Γ prolongs an f^P which satisfies

j*f= Ik(χ) for some # e £/(/), then g\κ~1(x) is the identity.

The isomorphic fibrations of Kuranishi [9] are those which satisfy both (S)

and (/).

The kernel of a homomorphic fibration (Γ, M, p)—>{Γ\M'ip')i denoted by

Ker U), is the complete pseudogroup of elements in Γ which prolong indentities

of M.

DEFINITION 4.2. A pseudogroup (Γ, Λf, p) is called an isomorphic prolon-

gation of a pseudogroup (Γo, Mo, po) if there exists an isomorphic fibration (Γ,

M, p)-+{Γ0, Mo, po). A homomorphic fibration (Γ, M, p)-+(Γ, M',pf) is called

an isomorphic prolongation of a homomorphic fibration (Γo> Mo, PQ) -* (Γ{, Mi,

ί<)) if there exist isomorphic fibrations making the following diagram com-

mutative.

In the following definition, Jk

x(My x) denotes the Lie group of invertible k-

jets on M with source and target x and Aχ(Γ, x) the abstract subgroup of #-jets

coming from a pseudogroup Γ.

DEFINITION 4.3. A complete pseudogroup Γ on a manifold (Mtp) is called

a continuous transformation pseudogroup if

(1) There is a fibered manifold (M, N, p) whose fibers are the orbits of

the action of Γ.

(2) Any #e Aί has a neighborhood U and a transformation family {fy'z} in

Γ on U with parameter manifold equal to {(y, z)^Ux U : p(.y)=pU)} such

that fy'z(y)=z.

(3) For large enough k, Ak

xU\ x) is a Lie subgroup (in the sense of Chevalley)

of Jχ( Mf x) with dimension independent of x.
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(4) If / is a homeomorphism element on M and if x is a point in U(f) so

that jxf^Aχ(Γ, x) for all k, then /, restricted to some neighborhood of x, is in

Γ.

Condition (3) of this definition is slightly weaker than the corresponding

condition of the definition in Kuranishi C9].

In Kuranishi [9], page 78, a sequence of standard isomorphic prolongations

of a continuous transformation pseudogroup are defined. For example, the first

standard prolongation of a Cartan pseudogroup (Γ(Ω), M, p) where Ω is com-

plete and involutive is (Γ(P(Ω))9 B(Ω), /(/>)). It is easy to extend this defini-

tion to give a sequence of standard isomorphic prolongations of a homomorphic

fibration of transitive continuous transformation pseudogroups.

DEFINITION 4.4. Two continuous transformation pseudo roups are called

equivalent if there exists a continuous transformation pseudogroup which is an

isomorphic prolongation of each of them. Two homomorphic fibrations of con-

tinuous transformation pseudogroups are called equivalent if there exists a

homomorphic fibration of continuous transformation pseudogroups which is an

isomorphic prolongation of each of them.

Kuranishi [9] has shown that the first definition actually gives an equivalence

relation. A slight extension of this proof shows the same for the second.

An equivalence class of continuous transformation pseudogroups is called a

continuous pseudogroup and a homomorphism of continuous pseudogroups is an

equivalence class of fibrations.

If (Γ, Mf p)—>(P, M'y pf) is a common isomorphic prolongation of (ΓV,

Mi, pi)—>(Γί, Mh P\)> t = 1, 2, then Ker U) is an isomorphic prolongation of

each Ker(/c, ) even though none of these need be continuous. If each Ker(*/)

is continuous then, though Ker U) may still not be continuous, there will exist

some continuous common isomorphic prolongation of the KerU;) making them

equivalent. Thus if at least one representative of a homomorphism ψ has a

continuous kernel, we say that Ker(^) exists and can unambiguously define it

to be the equivalence class of the kernel of that representative.

Finally if a homomorphism ψ has an injective representative, then Ker(^)

exists and is trivial. The converse is not clear except in the case where ψ has

a representative which is a fibration of transitive pseudogroups when it follows

from the calculations of the next section.
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§ 5. The kernel problem

In this section we prove our main result on the existence of kernels. Unfor-

tunately our results are restricted to the transitive case. Quite likely a generali-

zation of the theory of Cartan spaces, starting from a definition of Cartan basis

where the structure "constants" could be functions (of the invariant variables)

would overcome this restriction but we remark that the intransitive case has

shown a peculiar obstinacy in the past. Thus Kuranishi's correspondence between

infinite Lie (F)-groups and continuous pseudogroups and the results of Kuranishi

and Rodrigues on the existence of homomorphic images of a given continuous

pseudogroup must both be restricted to the transitive case

THEOREM 5.1. Let ψ be a homomorphism of continuous pseudogroups which

has a representative (Γ% M, p)—>(P, Mf, pf) so that Γ is transitive. Then ψ

has a kernel

Clearly P will also be transitive and by the result of Kuranishi and

Rodrigues, we can assume that K is surjective. By taking a high enough standard

prolongation and using one of the main theorems of Kuranishi [9], we see that

the representative can be chosen so that 1\ respectively P, is the Cartan

pseudogroup determined by the complete, involutive Cartan space Ω, respectively

Ω\ It is obvious that every g in Γ= Γ(Ω) leaves each element in /e*β' invariant.

Hence, taking one more standard prolongation of Γ if necessary, we may assume

that κ*Ω'aΩ, i.e., that the Cartan spaces are compatible with the fibration. If

in addition it could be assumed that S(Ω, Ω1) = 0, it turns out that the Cartan-

Kahler theory could be applied to Σ(Ω) and Σ(Ω') simultaneously in a very

illuminating way. Thus our first task is to construct a representative for which

this is so, starting from the representative we have at hand.

Since Ω is involutive, P(Ω) is a complete, involutive Cartan space on B(Ω)

and we can define B2{Ω) = B(P{Ω), B(Ω)) and P\Ω) = P(P(Ω)). We have the

same construction for 42'. Since everything is involutive, it is easy to see that

κB(B(Ω)) = B(Ω') and so we can define the map κ2B = UΎ from B\Ω) to B2iΩ').

Continuing inductively, we can define the fibered manifold (BS(Ω), Bs{Ωί)) /cs/i)

bearing the compatible Cartan spaces PS(Ω), PS(Ω') by the conditions

BS(Ω)=B(PS~1(Ω), &
1{Ω'), BS~\Ω'))
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SB __ / (S-1)B\B
fC ~~ \ h> /

For simplicity, let Ms = Bs(Ω), M's = Bs(Ωf), Ωs = Ps(Ω)t Ωf

s = PS(Ω') and *, = κsB.

Kuranishi and Rodrigues have shown how to construct a complete Cartan space

Ω* on a pointed manifold (M*, p") and, for all sufficiently large s, maps making

the following a commutative diagram of fibered manifolds and compatible Cartan

spaces:

M

The point of their construction is that S(Ω, Ω*) = 0. In addition, one can easily

show that in our situation, (Γ(Ω), M) -* (ΓiΩ*), M*7) is a surjective homomorphic

fibration which is equivalent to (Γ(Ω), M, p)-»(Γ(Ω'), M',p') since {Γ(Ω*), M*)

->(Γ(i2'), M1) is an isomorphic fibration.

However this still does not give us the representative of ψ which we want.

The trouble is that Ω* need not be involutive. To remedy this defect, consider

the fibered manifold (jfcf, M*, K3) with the compatible Cartan spaces Ω and J2*

and let K* be the natural map from B(Ω) = Mi into B(Ω*). Let M? = «f(Λί1)

and let Ωt * P(Ω*)\M*. Now consider the fibered manifold (Mi, Mt, ιA) with

the compatible Cartan spaces Ωι and Ωt and let κ\ be the natural map from

B{Ωi) = M2 into B(Ωt). Let the image of κ\ be Mt and let Ωΐ = HΩΐ)\Mt.

We proceed inductively, constructing a sequence of fibered manifold structures

{Ms, Mt, κ$) with compatible Cartan spaces Ωs and Ωt which fit into the follo-

wing commutative diagram of fibered manifolds and Cartan spaces.

(4)

By Lemma 3.3, we see that S{ΩS, Ωt)=O. Also, the lower line of (4) is a

Cartan sequence and so by Kuranisht-Rodrigues, Ωt is involutive for large

M +
1

Ψ

—Ml<r

I
—Mϊ<-

— M 2

I
—Mi
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enough 6'. On the other hand, we can show by induction that for each s, we

have the following commmutative diagram of fibered manifolds and compatible

Cartan space:

Finally, and again by induction, we see that (Π&), Ms)-* {Γ(Ω$)t Mt) is a

sur jective homomorphic fibration which is equivalent to (Γ(ΩS), Ms) -+ (Γ(Ω'S), Ms)

since (Γ(Ωt), Mt)-*{Γ(Ωrs)M's) is an isomorphic fibration.

Thus we know that we can find a representative of φ, which we might as

well call (Γ(Ω), M)->(Γ(Ω'), M') so that Ω, Ωf are complete, involutive Cartan

spaces compatible with the fibration and S(Ω, Ω1) = 0. Let (Ω, 77), respectively

(Ωt 77'), be a system for Ω, respectively Ω'. Let Ω* = κ?Ω' and let (X?*, 77*) be

the unique system with 77* c IT. If 0 is a Pfaman on M', we let 0* = κ*d. We

can find bases

, ωn

0 *
On' , ξi,

(01,

ωm) of (J2, 77)

£„,) of (Ω*\ 77*)

of (£', 770

so that 7}x = £λ ~ /*λ0* ω; = 0*, l i ri; ωλ = ξλf l x rri, where the h\ are

the usual functions on M which we assume vanish at p. Let af, respectively

β'\ be the structure constants of (ωr\ ωμ), respectively (0*, ίλ) (and hence

also of (0* ; Vμ))- As in Lemma 3.3, we have

(5)

Suppose u-

aΫ = aJiλ for ι, j = 1, . . . , ri A = 1, . . . , m'

«rμ = 0 for r ri and either s>ri or μ>m'.

t, . . . , ««/), respectively v= {vι, . . . , vn) is a vector in 9fn',

respectively SRΛ. Let A(t ) denote the nx m matrix (αTvs) and A(u) the ri

matrix (aiλuj).

that

(6)

If s; = (#1, . . . , z;rt), let u = (t>i, . . . , vn>). From (5) we find

Λ(v) 00 1J
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If we have vectors u\ . . . , uQ, respectively t > 1 , . . . , vq, in 9Γ\ respectively 9fn,

we let

A(u\ . . . ,««) =

, . . . ,vQ) =

We can find Λ' vectors in 3tn' and a neighborhood of these vectors so that, for

each q = 1, . . . , n\ the rank of Ά(vι, . . . , uQ) in this neighborhood is maximal.

Proceeding inductively and using (6), we can find vectors vι, . . . , vn in ίfin so

that for each q = 1, . . . , n, the rank of A(vι, . . . , vq) is maximal and for each

q = 1, . . . , n'f the rank of A(vι, . . . yv
q) is also maximal. We fix these vectors.

Let D = MxMy D' = M'xMf, p = κXtc; (D, D\ p) is a fibered manifold.

Associated to Ω and Ω\ there are the exterior differential system (Σ, Θ) and

(Σf, &') on and D' respectively. Let Δ, respectively Δ\ denote the diagonal of

MxMy respectively M'xM'. Note that ωr, ωμ, ωr-Ωr, ωμ — ITμ, respectively

θi, flu Oi-Θi, -ηx-Hx, are a basis of Pfaffians of D, respectively D't over func-

tions and that ωr, 5μ> respectively βt> τ?λ, generate Θ, respectively Θf. We use

a "partial derivative" notation to denote the tangent vector fields on D and Df

dual to these bases of Pfaffians.

Define tangent vectors K\ . . . , Kn' in D' at p'xp1 and L\ . . . , Ln in D

at >̂ x^ by

^ x = v'j-^a: summation from j = 1 to / = w'

summation from s = 1 to s = n

where the vr'= (e Γ, . . . , t S) are the vectors chosen previously. Define contact

elements at pf xpf by

' dθn

 %

0 < λ < m'
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The double definitions of Fn' and En are consistent. Now it is clear that £ n + m ,

respectively Fn'+m't is an integral element of (2, Θ), respectively (Σf, Θf), and

is in fact just equal to the tangent space to Δ, respectively Δ\ atpxp, respectively

p'xp'. Since Ω and Ωf are involutive, it is easy to check that

(7) {pxpjczE'ciE2^- -ciEn*m

(7)' {p'xp^czF'cF2^ c F n ' + m '

are regular flags with respect to (2", 60, (2"1', (9'). Direct calculation shows that

En+1 = Fn'+\ . . . , p*En+m' = F n ' + m '

p*En+m'+1 = = p*En+m = Fnfλ~m\

We have En*m = M ^ n + m ) = = H(En) and likewise F w / + m ' = H{Fn'+m') =

• • # = (FM/). If ^ < w - 1, then ffί^) is equal to the set of vectors L at pxp

of the form

for which α^vlGμ. = 0 for 1 < r < w, 1 < t < q. lί q>ri and we apply p* to such

an L, we obtain the vector

and by (5) we have ά/λz>) = 0 for l < *'<?*', 1 < ^ < W ' . Since the number of

linearly independent equations in this system is just m\ we have Gi = =

Gm> = 0. It follows that p*(H(EQ)) = Fn'+m' for <? > «'. Similar arguments show

us that corresponding to the sequences

En+m = H(En+m) = =H{En)dH{En'1)

(9)'

we have the relations

p*(mEn-1)) = = p*(H(En')) = F

(10)
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It is in order to be able to construct regular flags satisfying conditions (8) and

(10) that we needed the assumption S(Ω, Ω')=0.

Now let Si, . . . , Sn+m> respectively j l t . . . , Sn>+m>> denote the system of

characters of Σ, respectively Σ\ at En+m, respectively Fn>+m>. Note that sn+m =

• = Sn+ι = 0 and Ίn>+m> = = sWi = 0. Let (xu • . , Xd*) be a coordinate

system on U compatible with the flag (7) '; i.e. the origin of the coordinate

system should be at p' x pf and

should form a basis of Fr for l<r<n' + m1

} should form a basis of H{Fr) for

0<r<ri

dXi

where hr = dim H(Fr). Because of (8) and (10), these coordinates can be raised

to a coordinate system (yJf . . . >y<i) on D compatible with the flag (7). The

correspondence between the two coordinates is of a rather complicated form

which is perhaps best expressed diagramatically as

Sn-

Uι, , Xd')

Lastly, we can assume that (yu . . . ,yn+m), respectively (xu . . . , xn.+m.) come

from coordinates on M, respectively M\ which have been raised by a, and

which are fibering coordinates on (M, M\ K).
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Let Φ denote a system of

sn f u n c t i o n s <p(n + l), . . . ,ψ(n + sn) of yu . . , yn

Sn-ι functions <p(n+sn + l), . . . , ψ(Λ + S« + S»-I) of yu . . . , yn-i

si functions <f(n + sn+ +s t + l ) , . . . ,^(w + s«+ . +s* + si) of

so constants ψ(n + sn + * + Si + 1), . . .

all these functions being defined in some neighborhood of the origin. By the

norm of such a system, we mean the maximum of the absolute values of the

functions ψ and their first partials at the origin. The Cartan-Kahler theory

tells us that there is a one-one correspondence between systems Φ with small

enough norm and solution manifolds of (21, Θ) which pass through a point of

the form p x q in Mx M and whose tangent space at p x q is sufficiently near

is r t + m, i.e. in one-one correspondence with germs of transformations in Γ(Ω)

defined at p whose /-jet at p is near enough to Iι(p). This correspondence is

"analytic" in a sense which can be made precise and has the property that if

the system Φ corresponds to the transformation /, then

(0, . . . ,0, <p(n + l)(0, . . . ,0), . . . tφ(n + m)(0, . . . ,0)) = (& f(p))

Naturally, similar statements can be made for the system (Σ't Θf). Let Φf = {ψ1}

be the unique system of fnnctions which corresponds to the solution manifold

Δ1 of Σ1, Θf). Then it is clear that the systems φ = {ψ} which correspond to

transformations in the kernel of

), M, p)-^>(Γ(Ω'), M\ p')

are precisely those such that

are equal respectively to ^ '(n ' + m' + l ) , . . . , <p'(ri + m'-f

ψ(n + in + Sn+ ' ' ' +s«/ + l ) , . . . , <p(n +

are equal respectively to

), . . . , ψ(n+
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are equal respectively to

ψ'iri + m' + sn>+ +S1 + I ) , . . . ,φ'{nt + mf + sn>+ * * + s i + 50).

Under these circumstances, we say that Φ contains Φ\

It is now easy to see that the orbit of p under the action of Ker U) will

just be the points q^M such that κ(q) = κ{p), at least if we stay in some small

enough neighborhood of p. Since this entire discussion can be carried out for

any point in M, we see that (M, M\ K) is actually the fΐbration of M by orbits

of Ker(Λ ). It is also easy to construct explicitly a transformation family in

Ker (K) which satisfies condition (2) of Definition 4.3 at p by explicitly construe

cting the corresponding family of systems Φ. Again this argument works for

any point in M.

Now let Gp denote the manifold of β-jets of systems Φ such that ψ(n + r)

(0, . . . , 0) =0. We have an obvious one-to-one bianalytic map L : Gp->Jp(M,

p) (the manifold of invertible β-jets on M with source and target p) and there

is a neighborhood Up of lk(p) so that the image of L is Up Π Ap(Γ, p). Restricting

ourselves to &-jets of Goursat systems which contain Φ[ determines a submanifold

G of G whose image by L is just lljπ Ap(Keτ(κ), p) which is therefore a con-

nected submanifold of Up. Again this argument works for any point in M.

It is now easy to verify condition (3) of Definition 4.3 for Ker(*r).

Finally let g be a homeomorphism element on M and suppose there is a

point y in U(g) such that g{y) =y and j%g & A* (Ker (κ)> y) for all k. Certainly

then there is an element in ΓiΩ) which coincides with g in a neighborhood of

y. Also g in a neighborhood of y is the prolongation of some element / in

ΓiΩ'). Since jlg^Ak

y(Keτ(κ)i y) for all ft, the partial derivaties cf / of all orders

at fc(y) must agree with the partials of the identity and so /must itself be the

identity in a neighborhood of tc(y). Hence g must agree with some member of

KerU) in a neighborhood of y. This shows that Ker(κ) is a continuous trans-

formation pseudogrόup and thus guarantees the existence of Ker(^).
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