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1. The classification of Riemann surfaces has largely reached its completion.

The purpose of the present paper is to lay the foundation for a new intriguing

field in the classification theory: Riemannian spaces with Euclidean metrics.

The paper is self-contained, both for the Riemann surface expert and the reader

whose main interest is with higher dimensions.

The significance of locally Euclidean spaces lies, first of all, in that their

function-theoretic nature differs for dimensions n>2 and w = 2. The existence

or nonexistence of Green's functions and positive or bounded harmonic functions

in Rn, punctured Rn, and in the punctured flat torus offer simple examples. A

striking phenomenon is that, despite such differences, the basic inclusion re-

lations remain valid. Moreover, capacities and null-classes can be defined for

components of point sets in Rn.

These results are established by an extension of the linear operator method

(Cβ], [7]). The main points of the generalized method are given in Nos. 2, 3,

8, 17, 21, and 23-27. The significance of this extension is in the fact that the

absence of such devices as conformal mappings, conjugate harmonic functions,

the reflection principle, and doubling of bordered regions necessitates new tools.

Another promising aspect of higher dimensions is the introduction of new

function classes (Nos. 29-34). In No.35 we give a list of questions, an essen-

tial part of our paper. The important unsolved problem on the strictness of

the inclusion OHB^-OHD, well-known for Riemann surfaces (No. 24), is typical

of these.

Several interesting topics are meaningful only in locally Euclidean spaces.

However, at the cost of somewhat heavier equipment, some of our reasoning

can be generalized to arbitrary Riemannian spaces.
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§ 1. Two lemmas on harmonic functions

2. We start with two simple properties of harmonic functions.

Let £ be a compact set in a locally Euclidean space V.

LEMMA. Consider the family of harmonic functions u in V with

sgn uIE =^const. There exists a constant 0<q<lf independent of u, such that

(1) q mίv u^u\E^q sup̂  u.

We shall actually prove slightly more: if min/? u 0 and sup^ w 0, then

there is a q&(0, 1) such that u\E^q sup^ u. The first inequality (l) then

follows on applying this result to — u.

Proof. If SUPF u = 0 or », there is nothing to prove. In other cases we

multiply by a constant so as to make sup? w = 1. The functions # = l - w t h e n

have the properties mU v = 0 and max?? v 1. We are to find a constant #i>0

such that minEV>qu

Cover E by a finite number of solid spheres Cm, m-1, . . . , N, Cmc: V,

with radii rm such that slightly smaller solid spheres C'm concentric with Cm

and with radii r'm = &/m already cover E. We shall denote by I z \ the length of

the vector z = (xΪ9 . . , , xn) e i?M. The area of the unit hypersphere U| = 1 is

and the Poisson formula for viz), z e Cm, reads

(2) ι ; ( 2 ) = — JJ ( | 2 | 2 + r ^ - 2 | 2 | r m c o s £)«/*>

where ^ is the angle between the radius to z and that to the integration point.

For z e Cm* (2) gives the Harnack inequality

where 2M is the center of Cm. For any two points z, z1 e Cm we have

(3)

We may suppose that £ is connected, for if this is not the case we first
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replace E by a larger connected compact set in V and cover it by spheres as

above. By assumption there is a z^E with v(zo)^l. This point can be con-

nected with any point z e E by a sequence of points ZJGE, j = 1, . . . ,jz N,

Zjz = z, such that any pair Zj-u ZJ is in some Cm- We have found a constant

0ι = cΛ'>O with the desired property υ(z)^qi for all z^E and all υ.

3. Given a locally Euclidean space V and a point z0 e F consider regions

i2c j2' of F containing z0. Let wΩ be a uniquely determined harmonic function

on 42.

LEMMA. //* ffte Dirichlet integral DQ over Ω has the directed limit

(4) lίm^Γ DΩ{uΩ - UQ>) = 0,

then UQ(Z) — UQ{ZO) converges uniformly in compact subsets to a harmonic limit

(5) viz) =limQ-»κ(wΩ(2) -

Proof. For any i = 1, . . . , n, the partial derivative uXi of a harmonic func-

tion u is harmonic. Its value at the center z of a solid sphere C of radius δ

and with volume Fδ is

1 Γ
Wx<(2) = Ύf~ \ UXidV,

where dV is the volume element. On applying the Schwarz inequality and

summing from i = 1 to i= n one obtains

Igrad wl2^4- f igrad ufdV= ~

Given a compact set E^ V cover it with solid spheres C m c F, m = 1, . . . ,

N, of radii rm such that the spheres Cm concentric with the Cm and of radii

r'm = rm - dm already cover E. Again we may assume that E is connected and

we join 20 to any z e E by a sequence 2,-, y = 1, . . . ,jz^N, with ZJ-\, zj in some

Cm. The line segment dj from zj-ι to 2/ has length <2r 0 , where r0 = max rm,

and we find for δ = min £« and for harmonic u in G = U Cm that

I u{zj) -uizj-i)\£2 n max |grad ui ^ 2 n Vδ~
 2 V^M«Γ.

This implies

I u(z) - «(2o) 1 ^ 2 nNVδ- 2~y/D6(u) .
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An application to u(z) = UQ(Z) -U&(Z) with Gc:Ω gives the desired result.

§ 2. Normal operators and principal functions

4. Let Ω be a region of a locally Euclidean space V. Designate by C the

solid unit sphere ] z \ < 1 and by P a coordinate hyperplane, Xi = 0, say. We

shall call Ω a bordered region of V if

(a) BΩ is compact in V,

(b) every z&dΩ has a neighborhood iV2 and a diffeomorphism h of iV* with

C such that h(NzΠdΩ) = C n P and h(NzΠΩ) is one of the two half-balls of

C-P.

A bordered region Ω<^V shall be called a regular region if

(c) J? is compact in F,

(d) Ω and F-Ϊ2 have the same boundary in F,

(e) each component of V— Ω is noncompact in V.

We note that the border of a bordered region has a well-defined continuously

turning normal and we can speak of the flux

across dQ of a sufficiently regular function w in i2. Here dS is the area element

of BΩ and -̂ -— is the normal derivative exterior (or interior, if so specified) to
dn

Ω.

5. A function is, by definition, harmonic in a set Ec V if it has a harmonic

extension to an open set containing E. Let / be harmonic on the border a =. dΩ

of a bordered region i ? c F . Suppose there is a function u e C1 in J2 with w| α:

=/, we2/ in Ωy u-Lf in J2, where H denotes the space of harmonic functions

and L is an operator which satisfies the following conditions:

(6) Lf\«=f,

(7) L( ci/i + c2/2) = d Lfi + c2 Lf2,

(8) min/^Z/^max/,

(9) f QLdS = Q.

An operator with properties (β)-(9) will be called a normal operator.

For a regular £ the operator solving the Dirichlet problem is trivially
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normal. In § 5 we shall see that even in the general case of a bordered region

there are normal operators. Their effect is that, in an intuitive sense, there

is no source or sink of Lf on the "ideal boundary" β of the region, i.e., β is

"removable" for Lf

Special significance to normal operators is given by the fact that on a

noncompact bordered region there generally are several operators, each with

its own extremal property.

6. Let V be a locally Euclidean space, and Vι the complement of a regular

subregion with border au On Vι let there be given a continuous function a,

harmonic in Vlt and a normal operator L. We are interested in the problem

of constructing on V a harmonic function p, to be called the principal function,

that imitates the behavior of a in VΊ. More precisely, we require that/>| VΊ = <r

+ L(p- a). This means that, in the sense of No. 5, p — a must have no singularity

on the ideal boundary of V. We also set out to find explicit upper and lower

bounds for p — a in terms of a.

Suppose V is given by removing a finite number of points Zj, y = 1 , . . . ,

N, from a locally Euclidean space F*. Then \\ may consist of disjoint solid

w-spheres Cj punctured at their centers zj, and of the complement V* = τ/* - ώ*

of a regular region β * c F * , UCyCβ*. In Cj-Zj the function a can be a

singularity function, e.g., r2~n or any of its partial derivatives of any order.

In VΊ*, a can be an arbitrarily behaving harmonic function. For L we may

take different normal operators in the various components of VΊ. Thus our

problem is to construct, on an arbitrary locally Euclidean space F*, a harmonic

function with given singularities at a finite number of preassigned points, and

with a given behavior near the ideal boundary of V*.

The theory of principal functions derives its significance from the triple

generality in the choice of Vu a, and L.

§ 3. The main existence theorem

7. To construct principal functions p in a locally Euclidean space V we

may assume that

(10) <7ki = 0.

Indeed, if this condition is not met,-we replace a by σQ = a — Lα. Then p —



92 LEO SARIO

is the desired function in VL.

It is in the nature of the problem that a have vanishing flux:

The flux of p vanishes by Stokes' formula, and (11) follows from (9).

The solution of the problem will be uniquely determined up to an additive

constant. Suppose indeed p't p" were two solutions. Then by the maximum

principle,

maxK-F, (pf -p") = maxaSP1 ~P")

and by (8),

maxfx(i>' -p") = max α i (ί ' -p").

It follows that

maxr(i>' ~p") = maxtfl(^>' -p"),

and one infers that p' —p" is constant on V.

We shall give an explicit expression for a solution p.

8. Let Vo with border α0 be a regular region of V such that a0 c Vι and

one Vo. Our problem is to find p\aQ. In fact, then p is obtained on V= V0U

V3 from the identities

(12) ί lV β = L'A ί |VΊ = tf + LA

where L' is the operator providing us with the solution of the Dirichlet problem

in Vo. We set

(13) K=LL'

and obtain on OΌ

(14) p = a + Kp.

The n th iterate of K will be denoted by Kn.

Let q be the constant of Lemma 2 applied to the compact set cci in the

region Fo, and set

(15) o = ^ ,

(16) m = min*0 <r, M= max«0 <?.

We are ready to state the main existence theorem:
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THEOREM. Given a locally Euclidean space V, let VxczV be a boundary

neighborhood with compact border ecu and VQC V a regular region with border

XQCVU 'αtC VQ. On Vi let a be a harmonic function satisfying conditions (10),

(11), and let L be a normal operator defined by (6)-(9). Then the function

(17) p =

on Vι gives by (12) the principal function p on V:

(18) p-a = Lp.

The function satifies the inequalities

(19)

(20)

9. Proof. We are to show that p = *Σ?Knσ\cc<> converges uniformly. Then

K can be applied term by term, for

which tends toOasw-^oo, We have Kp = *Σ?Kna -p - a as required by (14).

The proof will be based on Lemma 2.

Let h be continuous in F o n F i and harmonic in Vo Π Vx with /*|αri = O, /*ko

= const, such that \ (dh/dn)dS = l, the derivative here and later being interior

to FoΠFi on αi, exterior to it on α0. By Green's formula we have for any

M G C 1 in VQΠVU harmonic in F0Π Vu with j -~dS = Ot

This holds, in particular, for functions u = σ, L'φ, Lψ, Kψ with any harmonic φ,

ψ on cto, αri.

We claim that

(21)

For w = 0 this is so by (10). Suppose this holds for n = i. Then the same

integral over oco vanishes, hence
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Here ao can be replaced by ceu and then V by LL\ Equality (21) follows for

i+lt and consequently for w = 0, 1, . . . .

Since dh/dn>0 on aci we conclude that sgn Kn o I ui =¥ const. Lemma 2

and relation (8) give for w = 1,

qm i

Each increment of n brings another factor q and we obtain

We have shown that *Σ£Kna\aQ converges uniformly:

By the maximum principle the same bounds hold for p\Vot hence for p\oc\ and

p — a I cc\ and consequently for p - a in Vu This completes the proof of Theorem

8.

Our next task is to show the existence of operators L. We shall first consider

regular regions, then noncompact bordered regions.

§ 4. Normal operators for regular regions

10. Let Ω be a regular region with disconnected border of a locally Eucli-

dean space V. Partition the components of the border into two disjoint sets a

and β. Let f&H on or and consider the family U of functions u such that

(22) weC 1 in J2, u\Ω<=H, u\oc^f.

There exists a function UQ^ U determined by the additional property duo/dn = 0

on β (for existence see Fichera [3], p. 196)*'. We set uo =

Define the function u\ e U by the conditions

(23)

The existence of the constant c is seen as follows. For ue U with u\β = c the

flux across a toward Ω increases with c. In fact, for c1 < cn and the corres-

ponding functions u\ u", the difference v-utt-ul satisfies v\a = 0, v\β^>0,

v\Ω>0, dv/dn>0 on a, hence I {ovldn)dS^^. A similar reasoning shows
J a

*> The author is indebted to Professor G. Weill for pointing out this reference.
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that the flux of um^U with um\β =• min / is nonpositive and that of

with UM I β = max / is nonnegative. Consequently there is a c e (min /, max /)

that gives vanishing flux. We set uι = L\f.

11. We shall also introduce an operator (P)Lι as follows. Take a partition

P of the components rk, k = 1, . . . , &Ω of β into disjoint sets j9y, y = 1, . . . ^'Q.

LEMMA. There exists a function (P)«jG U with

(24) (P)wilA = cy(co>ιsί.), f ^f^-1 JS = 0.

Proof. Choose disjoint regular regions Da, Dk c j?, A = 1, . . . , ΛΩ, with

disjoint borders αUα1, rfeUrϋ respectively. In 5* take the function u* e C1,

ua\Da^H, uΛ\a=f, u*\a' = ca, \ (dujdn)dS = 0. Apply Theorem 8 to J2 with

Vi = Da U A U U DkQ and <; = wΛ - c* in /)«, <; = 0 in each Dk- For L take

in jDα and each U Dk the operator Lu The resulting principal function p is

/ + c on a and the desired function is (P)ui=p — c. Write

(25) (P)uχ = (P)Lιf.

12. The most important partitions are the identity partition where yΩ=l.

and the canonical partition, where ja^ka. In the former case, (P)Li = £i.

For the sake of simplicity we shall henceforth assume that a partition P has

been given in advance and we let L\ and ui stand for (P)LX and (P)ux.

With this understanding we take a real constant λ and introduce

(26) ux = (1 - λ) uo

Clearly Lλ satisfies the conditions (6)-(9) of a normal operator, for so do Lo

and Lu

13. Let C/o c U be the class of functions u with the additional property

(27) J p ~ < / s = o, y = i , . . . ,yΩ.

For w, v e Z70 we set

(28) AU) = ί w|~ί/S, A(u, v) --= f Ml v dS,

(29) B(ιι) = ( u~dS, B(u, v) = ( u | - d S .
J ft σW J ft C77ί
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The Dirichlet integral of u over Ω will be denoted by D(u).

LEMMA. The function u\ minimizes the functional B(u) + (2 λ -1) A(u) in

Uo. Explicitly,

(30) B(u) + (2λ- l)A(u) = λ2A(uiϊ - (1 - λ)2A(uQ) -f D(u - »λ).

Thus the value of the minimum is λ2A(ui) - (1 - Λ)2A(w0) and the deviation

from this minimum is D{u — uχ).

Proof. In view of u — uχ I a = 0 we have

D(w-κ λ )=B(i#) + JB(wλ)-B(w, uλ)-B(uλt u).

Here

Similarly,

B(u, ux) = λ(B{u,

and

J5(«λ, «) = ( l - λ ) (B(«o, u)-B{u,

= ( 1 - ; ) (Λ(n)-iK«o)).

Equation (30) follows.

§ 5. Normal operators for noncompact regions

14. Let Vι be a noncompact bordered region, with border or, of a locally

Euclidean space V. Take a regular region Ωa Vt with border a U βQ. We shall

consider partitions βaj of /9Q such that the border of any component of VΊ — Ω

belongs to exactly one /fey. A partition {βaj*} of βQ, i * = l, . . . ,,/Ω, is said

to be a refinement of a partition {J9Ω./}, y = 1, . . . ,/Ω> if βSi* is contained in

only one βaj.

Let GQJ be the union of those components of VΊ — Ω whose border belongs

to βoj. Let ΩdΩfy dQ'^aϋβu', j9Ωci2'. A partition {β^j} of β& is said to be

induced by the partition {/9oy} of β& if βa>j = βa>ΓlGQj. Partitions of the ^Ω for

all Ω are said to form a consistent system of partitions if for Ω c β' the partition

of βa, is a refinement of the partition induced by that of βΩ. We shall only
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consider consistent systems of partitions. The most important systems are the

identity partition, where J9Q constitutes one part βΩj only, and the canonical

partition, where βQj is the border of exactly one component of V\ - Ώ.

15. Given a consistent system of partitions, the function UΩX and the operator

LΩ\ are formed in each regular Ω as in Nos. 10-12. Note that we cannot prove

the existence of the directed limit of uΩλ by Lemma 3. The reason is that

the points zo where we know that the limit exists are on the border or, not

interior to V\. In the 2-dimensional case the difficulty can be overcome by

choosing a to be an analytic Jordan curve and by forming the double Vι of VΊ.

But for n>2 such reflection is not possible. For this reason we shall, in this

section, make use of normal families.

The functions uΩ\ are uniformly bounded between min / and max /. Every

nested sequence {Ωm} with Ωm-* VΊ as m-* oo has a subsequence, again denoted

by {Ωm), for which the corresponding functions um\ converge uniformly in

compact subsets of VΊ. By the maximum principle the convergence is uniform

in Vu and the limiting function wλ is continuous on Vu harmonic on VΊ.

Every limiting function u\ belongs to the class £/0 of functions weCMn Vlt

u\V!(=H, u\a=f and

(31)

for every βQj in the given consistent system of partitions.

16. Let

(32) Ba(u) = [ u ?u dSt BQ(u, v) = f u ^ dS,
JβLί on J ξiu on

and define

u d S(33) B(u) =\im^Vl[ u
jpΩ on

where symbolically B(u) is the integral over the ideal boundary of Vu

By way of preparation of (30) for the noncompact Vx we first prove:

LEMMA. Any limiting function u\ = \\mm^um\ minimizes the functional

B(u) + (2 λ - I) A(u) in Uo.

Proof Let um = um\ and

(2/t - 1) AU),
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Fm{u) = Bm(u) + (2λ- l)A(u),

where Bm refers to βm^dΩm Then

F(«χ) = limm-+*>Fm(u\) =limm-*oolim«_>»Fm(wn). For m 71, Fm(un) Fn(un)

and consequently

(34) F(uλ) £ liminfn-mFn(un).

On the other hand,

for all fi e Z70. It follows that

(35) lim supn->»FM(wn) ^inί

We conclude from (34) and (35) that

(36) minu0F(u) = F(«λ) = limM->»Fn(wn).

17. We are ready to state:

THEOREM. On an arbitrary bordered region VΊ, compact or not, of a locally

Euclidean space there is a unique function ux which in Uo has the extremal

property

{2λ-l)A(u)=λ2A(uί)-(l~λ)2A{uo)+D(u-uλ).

Proof. For any limiting function ux = lim un and for u e Uo set u — u\ = /Ϊ.

Then uχ + ε/i e ί70 for any real e and

Fn(uλ + eft) = FM(wλ) + e2 A,(ft)

4ε[βnίwλ, h)+Bn(h, ux)

+ (2λ-l)A(uχ, ft)].

Suppose D(ft)< co. As n-> 00 the first three terms have limits and, as a con-

sequence, the bracketed expression /«->/:

+ eft) = F(»λ) + ε2D(h) + εL

By the minimum property of ux we have dF/dε = 0 for e = 0, hence 7=0. On

setting ε = 1 we obtain the desired deviation formula

F(u) =F{uχ) + D(u-Uχ).

The formula remains valid in a degenerate form for D(h) = 00.
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Suppose u\ u" are two minimizing functions. Then

D{u' - u") = F(u') - F(u") = 0

and the uniqueness follows.

COROLLARY. UQ minimizes Diu), u\ minimizes A(u) + B(u) in UQ.

18. The uniqueness established, we can write

(37) ux = Lχf,

where L\ is a normal operator satisfying conditions (6)-(9). Indeed, the ap-

proximating operators LΩχ were seen to enjoy these properties and the same

is true of the limiting operators because of uniform convergence.

The principal functions pλ corresponding to the Lλ possess important minimal

properties which we proceed to establish.

§ 6. Extremal properties of principal functions

19. First let Ω be a regular region with border β. Take two solid spheres

Cay Cb centered at a, b and with disjoint closures Ca, G>c Ω. Consider the class

P of functions jpeC 1 in Ω-a~-bfp\Ω-a-b^H and with the following pro-

perties :

(38) p \ a T ^ ζ
O)n(n— ύ

(39) p \ C b = - l * ζ Z
ωn(n—

(40)

Here ωn is the area 2πnl2/Γ(n/2) of the unit hypersphere | z | = l ; h, k are

harmonic in Ca, Cb, and {#/} is a given partition of β. We let ho, hi signify

the h corresponding to p0, pi.

LEMMA. On a regular region Ω of a locally Euclidean space the function pλ

has the property

(41) B(p) + (2 λ - 1) h(a) = λ2hAa) - (1 - λ)2h,(a) + Dip -pλ).

Proof, For short we write r for |z —α| or U - 6 | and set

s{r)=£^
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The flux of p across aa = dCa away from the center is — 1, and that across

ocb = dCb away from the center is 4-1.

We again start with

Dip -px) = B(p) + B(pλ) - B(p, px) - B(pλt p)

and use Aa, Ab for A taken over oca, ocb. Here

B(pχ) = λ(l - λ) {B(po, pi) - B(pu Po))

is the sum of

and a similar expression containing i4δ. In the bracketed quantity, Aa(st hi)

= 0 for i = 0, 1, Aa(ho, hi) - Aaihu ho)=O, and the only nonvanishing terms

are

Aaiho, s) — Aaihi, s) = hχ(a) - hQ(a).

Because of the normalization k(b)=O the corresponding expression for Ab

vanishes and we obtain

B(pλ)=λ(l-λ)(h1(a)-h0(a)).

Analogous computations yield

B(p,pk)=λ(hi{a)-h(a))9

and (41) follows.

20. If V is a locally Euclidean space, let a consistent system of partitions

be given for the borders /3Ω of all regular subregions Ω^V that contain a and

b. Let ΩCLΩ* with βςi^Ω1 and denote by px, hx, B quantities corresponding to

Ωy and by p'λt h[, B' those corresponding to Ω'. For p=*p%\Ω> px-p*> (41)

gives

(42) B(pl) - h[{a) = - ho(a) + D(p[ -po)

(43) B(p[) + h'Aa) = Λi(β) +

for p= pu pχ=pOt

(44) B(Λ) ~ hiia) = - Λo(α) + D(pi -
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By virtue of B(pi) = 0, B(pi) ύ B'(p'i) = 0, we have:

LEMMA. ho(a) decreases, hi(a) increases with increasingΩ and hι(a)^ho(a)

for every Ω.

One concludes that the directed limits hi(a) - limΩ->r/z,Ω(β), i = 0, 1, exist

and so do

limΩ^r DaipΩi — p&i) = 0.
ΩCC

From this and from the normalization pQ(b) — pa>(b) = 0 Lemma 3 gives the

harmonic directed limits

pi = lima^vpoti

on V—a — b, the convergence being uniform in compact subsets. Write

(45) Px = (l

21. We consider the family P of functions p<Ξ H on V' - α-b with singu-

larities (38), (39) and the property

for all βaj in the given partition.

To establish the extremal property (41) of pλ in P for the noncompact V

we let J2'-> V in (42), (43) and obtain

— ho(a) = -

i) + Mβ) = W β ) + DQ(PI -

On letting i?-> V we infer by BΩ ^ 0 that

liiϊiΩ-*rDα( ί ί ~~ Pai) = 0

for i = 0, 1.

By virtue of the triangle inequality this gives

HmQ^vDΩipx-pΩx) =0.

From this and the definition D(p-pλ) ^Wm^vD^p - pκ) one concludes, again

by the triangle inequality, that

Q ^rD Q ( ί -pax) = D{p-pλ).

The deviation formula for i2 and j i e P o n V reads
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BQ(p) + (2 X - 1) h(a) = A2/zΩi(β) - (1 - X)2hΩo(a) + DQ(p - j W

We let £ -* F and obtain what we set out to find:

THEOREM. In the class P in a locally Euclidean space V the function px mini-

mizes the functional Fip) =B(p) + (2 X — 1) h(aK The value of the minimum is

X2hχ{a) - (1 — X )2hoia) and the deviation of F(p) from this minimum is Dip-px).

It is an open question what is the extremal property of px if the singularities

s, —s of (38), (39) are replaced by partial derivatives of s.

For later reference we observe that

(46)

This follows by choosing p = pi, pχ-pi, i = 0, 1.

22. We have these immediate consequences:

COROLLARY 1. The function p0 gives to B(p) — h{a) the minimum — ha(a)t

and the function pi gives to B(p) -hh(a) the minimum hι(a)y both in P.

COROLLARY 2. Among functions in P with B(p)^0, ive have

(47) h1(a)ύh(a)^ho(a).

DEFINITION. The span of the region V is

(48)

Observe that the span depends on the class P, i.e., on o, b, and the system

of partitions.

COROLLARY 3. The function -^(po + pi) gives the minimum

(49) mivipBip) = - A .

In particular, B(p) i>0 for all p e P if and only if the span vanishes. We

shall return to the span in Nos. 23, 24.

The function po~pi is not in P, and a separate discussion will be needed

to establish its extremal property.

§ 7. Extremal harmonic functions

23. Let Ω be a regular region of a locally Euclidean space. For any real
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μ, λ let

(50) pμ\=μpo+λpi,

where p0, pi are in P, defined for the compact Ώ (No. 19). We introduce the

class Q of functions # e C1 in Ω - α-b, q<= H in Ω — α-b, and with the addi-

tional properties

(51) q\Ca= (μ + λ)s + et

(52) q\Cb^ - (y + λ)s+f, βb)=0y

(53) [ $ίdS = 0,
Jflj an

y = 1, . . . JΩ, where eJ^H in Cay Cb. If μ+λ=09 then # e C 1 in Ω, q\Q^H.

We retain the meaning of ho, hi for po, A e P and state:

THEOREM. The function pμ\ in Q has the minimum property

(54) B(q) + (λ-μ)'e(a) = λ2hx{a) - μ2h0(a) + Dig -p^).

The proof is an analogue of that in No. 19 when we note that the singularity

at a of q is (μ + λ)s while that of p0 and pi is s. The intermediate results are

now

B(pμλ)=μλZhAa)-ho(a)l,

B(q, pμλ) = λίiμ + λ) hx(a) - e(a)l,

B(pμk9 q) =μίe(a) - (μ + λ)ho(a)],

and (54) follows.

In the case of a noncompact locally Euclidean space V the only change in

defining the class Q is that the flux of q e Q is to vanish across every βQj in

a given consistent system of partitions. Since the convergence proof of pΩμλ

is based on that of pΩo, Pai> the reasoning in 20-21 applies mutatis mutandis.

We conclude that the deviation formula (54) holds for the limiting function

pμλ in V.

The main motivation for considering μ, λ without the earlier restriction

μ-bλ = l is that we can now have μ + λ=0. The competing class Q then is

the class U of regular harmonic functions u on V with the normalization u(b)

= 0 and with vanishing flux across each βΩj.

THEOREM. The function po—pi has the following minimum property in U:

(55) D{u) -
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On setting w = 0 we obtain

COROLLARY. The span has the value

(56) S = D(po-pι\

and po =-pι if and only if the span vanishes.

24. The class HD for a given locally Euclidean space V consists, by defini-

tion, of harmonic functions with a finite Dirichlet integral over V. A space V

is in OHD if there are no nonconstant ϋ/D-functions in V.

THEOREM. V<$OHD if and only if S^ 0 for some a, b and the identity parti-

tion.

Proof. From (46) and the triangle inequality we conclude that po—pi& HD.

Suppose there is a nonconstant u^HD in V. Then there is a nonconstant

u G HD in V with u(b) = 0. Let o e F b e a point for which u(a) ^0. lfpo-pi

were constant, we would conclude from

D(u)-2 u(a)= - D(po-pι)+D(u-po + pi)

that u(a)=Q. Thus S= D(po-pi) *0.

Conversely, if S#0, then po-pi is a nonconstant ΉDίunction in V.

Let HB be the class of harmonic bounded functions in V.

LEMMA. The existence of nonconstant HD-functions in V implies that of

nonconstant HB-functions:

(57)

In fact, po — pi = L(p0-pi) is bounded in a boundary neighborhood, hence

in V.

Other O-classes of interest are introduced in §9.

§ 8. Capacity functions

25. We shall introduce the capacity of the ideal boundary and of a boundary

component of a locally Euclidean space V.

Consider a regular region Ω c V with border β = γ U βι U U βjά, where γ

is a set of components of β and each βj, j = 1 , . . . , jQ% is a component of β — γ.

Let Cα be a solid w-sphere centered at a given point a> with Ca^Ω. Denote

by P the class of functions p^C1 on Ω - a, p e I? in i2 - α,
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(58)

(59) \ ψ-dS=l,
Jγ on

(60) J !£-<«=o,

Here h^H and fc(α) -0 . Clearly (59) is a consequence of (60).

In P the capacity function pr of γ is defined by the properties

(61) ί τ l r = *τ.

(62) Pr\βj = kj,

kr, kj being constants. The existence can easily be established by the main

existence theorem (No. 8).

THEOREM. The capacity function minimizes B(p) in P:

(63) minpB(p) = kr + D ( ί - ^ Γ ) .

Proof On adding to the right side of

(64) Dip -fir) = B(p, p -pr)

the quantity

B(pr, p)-B{pr)=0

one obtains

D(p -pr) = Bip) - Bipr) + JB(ίr, />) - Bip, pr).

One transfers B(^ τ, p) ~ B(pt pr) to 9Cσ and shows in the same fashion as in

No. 19 that its value is hria) —Mα), hence 0. This proves the theorem.

26. In passing we note that for γ = β, p} also has the following extremal

property.

THEOREM. The capacity function p? of the border β of a regular region gives

In fact, for any harmonic function u

(65) Biu, p?) =uia).

In particular, this is true for u = p—p?. Since Bip?) = k?, it follows from uia)

= 0 that Bip, pt) = ftp, and the possibility of snpQp<k? is excluded.
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27. Let {i2«} be a nested sequence of regular regions of a locally Euclidean

space V with U #*,= V. Consider a consistent system {βnj} of partitions of the

{BΩn}. A sequence {γn} = {βnjw) defines a subboundary γ of the ideal boundary

β of V if βn+ij(n+D is in the component of V - i2rt bordered by j9n/<«). Equivalence

in two exhaustions is defined in an obvious manner. For the identity partition

γ is the ideal boundary β. For the canonical partition each γ is a boundary

component. In general γ is a boundary component if each γn in the sequence

defining γ is the border of exactly one component of V~Ωn.

For a regular ΩaV let β& be the part of βΩ that corresponds to a given

r Let ^Ωγ be the capacity function of γΩ on Ω with /torlro = £ΩT.

LEMMA. For \

{66) kςxr

Indeed,

) ^ BΩ(pa>r) BΩ,

We conclude that the directed limit exists:

(67) kr = lima^r^QT.

In the case kr< ™ we could derive from this the uniform convergence of

^ Ω r to a unique limit ^r on V-α, the capacity function r> for which Theorems

25, 26 continue to hold in a class P defined in an obvious manner. If kr = °°,

limiting capacity functions still exist but uniqueness is lost. We shall not use

limiting functions in either case but introduce:

DEFINITIONS. The capacity of the subboundary γ of a locally Euclidean space

is
1_

(68) Cr = kr2-"

A boundary component γ is weak if cr = 0.

We distinguish two classes of locally Euclidean spaces:

Cr = {V|each boundary component γ is weak}.

The capacity of a compact set in a solid sphere I z \ < p of Rn can also be

defined on replacing the singularity (58) by \z\2~n(ωn(n — 2))~ι + h(z) in \z\^p,
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with h(z) -* 0 as I z I -* υc.

§ 9. Classification of locally Euclidean spaces

We have arrived at four classes of locally Euclidean spaces: OUB> OHD> C?,

Cx. We conclude our study by introducing other significant classes and by

listing problems they lead to.

28. A Green's function gΩ(z, a) for a regular region Ω has, by definition,

the singularity \z — a\2~n at a, and g\3Ω = 0. By the maximum principle gΩ^g&

for ΩaΩ', and the directed limit gv = \\xnΩ^vgΩ either exists or is °o in V. In

the former case it is called the Green's function in V. A space V is said to

be parabolic, 7eO<?, if it has no Green's function; otherwise it is hyperbolic.

We note in passing*

Every region VczRn is hyperbolic.

In fact, every gQ, β c 7 , is dominated by the Green's function \z- a\2~n of

Rn.

29. In strict analogy with the concept of the real part of an analytic

function in the 2-dimensional case we introduce

DEFINITION. The class R for V consists of harmonic functions in V ivith

vanishing flux across every component TΩJ of the boundary βΩ of every regular

region Ω of V:

If the span S is defined for the canonical partition, the preceding reasoning

for HD applies to RD and we obtain:

(69) ORBCZORD.

30. In a canonical exhaustion each βΩj has the property that V— βΩj consists

of two components. We shall refer to such hypersurfaces βΩj as dividing cycles.

DEFINITION. The class K for V is composed of harmonic functions in V

with vanishing flux across every dividing cycle.

For Vα Rn the classes R and K coincide. For an ^-dimensional V imbedded

in a higher dimensional Rm

9 they differ in general.
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31. In Rtn = Cn we consider the class A of analytic functions of n complex

variables and the class of real parts of such functions.

32. Let pa be the capacity function of dΩ = βΩ in Ω with singularity

(cf. No. 19) at a given point a^ Ω.

DEFINITION. The class HMq in a locally Euclidean space V consists of those

on V for which the mean (# > 1)

(70) M= f \u\*%£-
JβΩ an

is bounded for all

33. In analogy with log \w\ of a meromorphic function w ona plane region

we introduce: L is the class of harmonic functions in a given locally Euclidean

space VaRn with singularities cjs at isolated points zj, j -1, . . . , the coefficients

Cj being nonzero real numbers.

Given a<s V and t e L o n V, take a regular region Ω containing a and decom*

pose v\βΩ into v+ = max {v, 0) and υ" = max ( — v, 0). Let #£, XQ be the solu-

tions in Ω of the Dirichlet problem with boundary values v+

y v~, respectively.

Let tfμ (μ = l, . . . , μs)t b* (v = 1, . . . , vΩ) be the positive and negative

singularities of v in Ω. Denote by gQ(z, ZJ) the Green's function on ~Ω with

singularity s at ZJ and set

Σ
αμEQ
« Q = XΩ

DEFINITIONS. The car acteristic C(Ω) of v&L is

(71)

The class LC of functions of bounded characteristic in a locally Euclidean

space V consists of v&L with bounded C(Ω) for all ΩaV.

We can thus speak of harmonic functions of bounded characteristic without

reference to meromorphic functions.

34. Let P stand for positive. We have introduced classes // with / = / / ,

Kt A, R, L and / = P , B, D, MQf C. Some of the classes, such as LB, are
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obviously void, and we only consider nondegenerate classes.

Given a locally Euclidean space V let Vι be the complement of a regular

region with border aci. With each nondegenerate class TJ we associate the class

To/ of functions we// on Vi with u\ ax = 0. Such functions are useful in studying

removability properties of the boundary.

35. A general classification theory can be developed for locally Euclidean

spaces. As special cases one can consider regions in Rn, and w-dimensional

submanifolds in a higher dimensional space Rm. The following problems arise:

(1) What are the inclusion relations between the various classes OJJt OIύJt

CP, CT? DO the classes OlQj for a fixed / coincide (cf. [5])?

(2) Which inclusion relations are strict for VnaRn, which for VnaRm

t

and which for locally Euclidean spaces VI Do the classes Ou for a fixed /

generally coincide in the first case ? Is OHMq = OHP for (7 = 1, but OHMq = OHB

for q>1 (cf. [2]). Can counterexamples be constructed by removing from the

unit ball equidistant radial segments of "meridian" planes and by suitably

identifying the "faces" of such segments?

(3) The modulus of a regular region Ω of a locally Euclidean space V can

be defined analogously to that on Riemann surfaces. Can Ω be subdivided into

two regular regions each with a modulus arbitrarily close to 1 ? Are there

modular tests for a given V to belong to a given class?

(4) Can tests in terms of deep coverings or of Riemannian metrics be

formed (cf. [2])?

(5) What metric properties do the boundaries of Vnc0Ut CP, CT possess

in Rn or Rm (cf. [1])?

(6) In what classes are the complements Rn - C and Rn -S of the n-

dimensional analogues of Cantor sets C and Schottky sets S (cf. [41)? What

can be said about their complements with respect to compact locally Euclidean

spaces (cf. problem (8))?

(7) Is the complement of a generalized Cantor set in some class Ou if and

only if the volume ΠΓ(1 - (l/pn))n vanishes [4]?

(8) Compact locally Euclidean spaces can be formed by identifying opposite

faces of an n-cube. Can unramified Abelian covering spaces [4] be formed

and do they all belong to an Oul

(9) Remove a disk D from Rn and take two copies Vu V2i of the remaining
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space. Identify the upper (lower) face of D in VΊ with the lower (upper) face

of p in V2 so as to form a locally Euclidean ςovering space of Rn. More

generally, construct covering spaces of the "cube" of (8) by removing several

disks and using several duplicates of the remaining space, in the same manner

as forming covering surfaces of i?2, with the branch points replaced by circles,

the connecting line segments by encircled disks. Develop a classification of

such covering spaces based on the ramification properties, in analogy with the

classical type problem.

(10) If the potential p of a unit mass distribution dμ on a compact set E

in Rn is defined as

p i z ) =lj\z-<\2~n/ωn(n-2))dμ(C)t

what is the relation between the equilibrium potential and our capacity function

C7, 2]?

(11) Is the component γ of a compact set E in Rn a point if and only if

cr = 0 (cf. [8])?

(12) Can an "equivalence" of locally Euclidean spaces, (or at least of n-

manifolds V in Rm or in R2m = Cm) be defined in terms of isomorphisms of

suitable function spaces or by quasiconformality ?

(13) In the affirmative case, is a component γ oί 'dV always a point or

always a continuum or are there "unstable" components [81?

(14) Cover Rn with a set of cubes with side 1 and arrange the cubes in a

sequence {Qi) such that the Rj= U{(?,•, y = 1, 2, . . . , form a nested sequence

of regions exhausting Rn. For ε > 0 remove from Qi a Cantor set C, such that

Qi-Ci has volume 2"1 ε. Then the region V = i?n— UΓC, has an arbitrarily

small volume ε, yet is dense in Rn. Does V have an equivalent V* in Rn (at

least if n = 2 m) such that one boundary component of F* is a continuum?

Can F* be a bounded region?

(15) Under what self-mappings of Rn is a class Ou preserved? In particular,

what can be said about quasi-conformally equivalent regions?

(16) Can the classification theory be extended to mappings of the complex

space Cn into itself, with suitable modifications of properties P, B, D, M, C?

(17) To what extent can an analogue of the theory of meromorphic func-

tions of bounded characteristic be developed for LC ? In particular, can func-
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tions in LC be decomposed into extremal LP-f unctions? Do the Poisson-Stieltjes

formula and the decompositions by Parreau and Rao generalize?

(18) Can a value distribution theory be developed for analytic functions

suitably associated with harmonic functions in locally Euclidean spaces?

(19) Can the following interpolation problem be solved in terms of linear

combinations of functions po — βι with suitable singularities' given a locally

Euclidean space F, points zu . . . , zm^V, and real numbers n, . . . , rm, find

a harmonic function u in V with u(zi) =n, *'= 1, . . . , m, and such that the

Dirichlet integral is minimized?
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