APPLICATIONS OF EXTREMAL LENGTH TO CLASSIFICATION OF RIEMANN SURFACES

TATSUO FUJI'I'E

Introduction

Let D be a subregion of a Riemann surface F, whose relative boundary consists of at most countable number of analytic curves which do not cluster in F. For a regular exhaustion $\{F_n\}$ of F, we put $D_n = D \cap (F - F_n)$, and define the extremal radius $R(P, \partial D_n)$ of the relative boundary ∂D_n of D_n , measured at a point $P(\subseteq F_0)$ of F with respect to the connected component of $F - D_n$ which contains P. Let $K(|z| \subseteq r)$ be a disk centered at P and contained in a parametric disk of P. And let $\lambda_{n,r}$ be the extremal length of the family of rectifiable curves which join ∂K and ∂D_n . Then, the extremal radius $R(P, \partial D_n)$ is defined as follows [2];

$$R(P, \partial D_n) = \lim_{r \to 0} r e^{2 \pi \lambda_{n,r}}.$$

And we put

$$R(P, B_D) = \lim_{n \to \infty} R(P, \partial D_n).$$

Taking F as D, we define the extremal radius $R(P, B) = \lim_{r \to 0} re^{2\pi \mu_r}$ of the ideal boundary B of F, where μ_r is the extremal length of the family of locally rectifiable curves which start from ∂K and tend to the ideal boundary B of F.

In § 1 we show that it is necessary and sufficient for F not to belong to the class O_{HD} that there exists a subregion D of F for which $\infty > R(P, B_D) > R(P, B)$.

In § 2 we consider a subregion W in place of the Riemann surface F. The corresponding extremal radii are denoted by $R'(P, B_D)$ and R'(P, B).

Then, the existence of a subregion D of W such that $\infty > R'(P, B_D) > R'(P, B)$ is necessary and sufficient for W not to belong to the class NO_{HD}^{11} .

Received November 28, 1963.

 $^{^{1)}}$ NO_{HD} (SO_{HD}) denotes the class of subregions on which there are no non-constant harmonic functions with finite Dirichlet integral whose normal derivatives are zero (which are zero, respectively) on the relative boundary.

And we consider the extremal radius $R'(P, \partial W)$ of the relative boundary ∂W of W and the extremal radius $R'(P, \partial W \cup B)$ of the union of ∂W and the ideal boundary B of W. Then, W does not belong to the class SO_{BD} if and only if $R'(P, \partial W) > R'(P, \partial W \cup B)$.

Some applications of the theorems are also showed in this section.

\S 1. A criterion for the class O_{HD} of Riemann surfaces

In order to evaluate the extremal lengh $\lambda_{n,r}$, we consider the following harmonic function $U_{n,i}$ in $\{(F-D_n)\cap F_{n+i}\}-P^{(2)}$

$$\begin{array}{ll} U_{n,i} \colon \left\{ \begin{array}{ll} U_{n,i} = -\log|z| + u_{n,i} & \text{in a neighborhood of } P, \text{ where } u_{n,i} \text{ is harmonic} \\ U_{n,i} = 0 & \text{on } \partial D_n \cap F_{n+i} \\ \frac{U_{n,i}}{\partial n} = 0 & \text{on } \partial F_{n+i} \cap (F - D_n). \end{array} \right. \end{array}$$

Since the sequence $\{U_{n,i}\}_i$ converges in the sense of Dirichlet norm³⁾, it converges uniformly to a limit function U_n on every compact set in $F - D_n$. The extremal length $\lambda_{n,i,r}$ of the family of curves which join ∂K and $\partial D_n \cap F_{n+i}$ decreases monotonely when i increases. So,

$$\lambda_{n,i,r} \geq \lim_{i \to \infty} \lambda_{n,i,r} \geq \lambda_{n,r}.$$

But, denoting by $U_{n,i,r}$ a harmonic function in $(F-D_n) \cap F_{n+i} - K$ which is zero on $\partial D_n \cap F_{n+i}$, equals $-\log r$ on ∂K , and whose normal derivative is zero on $\partial F_{n+i} \cap (F-D_n)$.

$$\lambda_{n,i,r} = \frac{(\log r)^2}{D(U_{n,i,r})}$$

and

$$\lambda_{n,r} \geq \frac{(\log r)^2}{D(U_{n,r})} = \lim_{i \to \infty} \frac{(\log r)^2}{D(U_{n,i,r})}.$$

where $U_{n,r} = \lim_{i \to \infty} U_{n,i,r}$.

Hence

$$\lambda_{n,r} = \lim_{i \to \infty} \lambda_{n,i,r} = \frac{(\log r)^2}{D(U_{n,r})}.$$

²⁾ When $\{(F-D_n) \cap F_{n+i}\}$ is not connected, we take a connected component which contains P.

³⁾ $\lim_{i \to \infty} D(U_{n,i+p} - U_{n,i}) = 0$. (cf. Strebel [2] p. 8).

While,

$$2\pi \frac{(\log r)^2}{D(U_{n,r})} = -\log r + u_n(0) + o(1),^{4}$$

where $u_n = \lim_{t \to \infty} u_{n,i}$. We conclude that

$$R(P, \partial D_n) = e^{u_n(0)}.$$

And by our definition $R(P, B_D) = \lim_{n \to \infty} R(P, \partial D_n)$.

Using this extremal radius we get the following theorem.

Theorem 1. A Riemann surface F does not belong to the class O_{HD} if and only if there exists a subregion D of F such that

$$\infty > R(P, B_D) > R(P, B)$$
.

For the proof of the theorem, we prove the following lemma.

Lemma. If the double \hat{D} of D is not of the class O_G , the limit function $U_{B_D} = \lim_{n \to \infty} U_n^{(5)}$ is not constantly infinite.

Proof of the lemma. By adding to D a suitable relatively compact subregion Δ which contains P, we build up a (connected) subregion $D' = D \cup \Delta$ whose double \hat{D}' is not of the class O_G . The extremal length of the family of curves in \hat{D}' which start from $\partial K \cup (\partial K)^{\sim}$ $((\partial K)^{\sim})$ is a symmetric image of ∂K in $\hat{D}' - D'$) and tend to the ideal boundary of \hat{D}' is finite because $\hat{D}' \notin O_G$. Then, by the method of symmetrization [3], the extremal length λ'_A , with respect to D', of the family A of curves in D' which start from ∂K and tend to the ideal boundary of D' is finite. Now, we consider a family B of curves in B, each curve of which contains a curve connecting ∂K and ∂D_B for all B. Then the family B contains the family A, so the extremal length A of B with respect to B is smaller than the extremal length A of A with respect to B. And,

$$\lambda_B \leq \lambda_A = \lambda'_A < \infty$$
.

But,

$$\frac{(\log r)^2}{D(U_{n,r})} = \lambda_{n,r} \le \lambda_B < \infty$$

⁴⁾ About these calculation, confer Strebel's paper ([2] p. 13).

⁵⁾ According to Strebel, we call U_{BD} "Strömungspotential".

and

$$\lim_{n\to\infty}\frac{(\log r)^2}{D(U_{n,r})}=\lim_{n\to\infty}\lambda_{n,r}\leq \lambda_B<\infty.$$

So, $U_r = \lim_{n \to \infty} U_{n,r}$ is not a constant, and from

$$2\pi \frac{(\log r)^2}{D(U_{n,r})} = -\log r + u_n(0) + o(1),$$

 $\lim u_n(0)$ is finite.

Therefore, for a sufficiently large number L,

$$U_{BD} = \lim_{n \to \infty} U_n \le \lim_{n \to \infty} U_{n,r} + L$$

in F-K, and this shows that U_{BD} is not constantly infinite in F.

Proof of the Theorem. If F is not of the class O_{HD} , there are two disjoint subregions D and S neither of which is of the class SO_{HD} . And we suppose that the point P and its parametric disk K are contained in S.

For a regular exhaustion $\{F_n\}$ of F, we construct a harmonic function v_n in $F_n \cap S^{6}$ such that

$$v_n$$
: $\begin{cases} v_n & \text{has a positive logarithmic pole at } P \\ v_n = 0 & \text{on } \partial S \cap F_n \\ \frac{\partial v_n}{\partial n} = 0 & \text{on } \partial F_n \cap S. \end{cases}$

 v_n tends to a limit function $v = \lim_{n \to \infty} v_n$ as above, and v is not constant because v has a logarithmic pole at P and v = 0 on ∂S . Let g be Green's function of S with a pole at P. Then, by Kuramochi's theorem (Kuramochi [1] p. 135),

because $S \notin SO_{HD}$.

On the other hand, since $D \notin SO_{HD}$, the double \hat{D} does not belong to O_G . So, by the lemma, there exists a non-constant limit function U_{BD} of U_n . Now, we prove in the following that the inequality

$$U_{Bn}-G\geq v-g$$

holds in S, where G is Green's function of F. Let $G_{n,i}$ be Green's function of

⁶⁾ We take a connected component of $F_n \cap S$ which contains P.

 $(F-D_n)\cap F_{n+i}$ with a pole at the point P, and g_{n+i} be Green's function of $F_{n+i}\cap S$ with a pole at P. We prove the above inequality in three steps.

1) Since $U_{n,i} - v_{n+i}$ is harmonic in $F_{n+i} \cap S$ and

$$\begin{cases} U_{n,i} - v_{n+i} \ge 0 & \text{on } \partial S \cap F_{n+i} \\ \partial (\underline{U_{n,i} - v_{n+i}}) = 0 & \text{on } \partial F_{n+i} \cap S, \end{cases}$$

we have $U_{n,i} - v_{n+i} \ge 0$ in $F_{n+i} \cap S$, especially on $\partial F_{n+i} \cap S$.

2) Since $v_{n+i} = g_{n+i} = 0$ on $\partial S \cap F_{n+i}$,

$$U_{n,i} - G_{n,i} - (v_{n+i} - g_{n+i}) = \begin{cases} U_{n,i} - G_{n,i} \ge 0 & \text{on } \partial S \cap F_{n+i} \\ U_{n,i} - v_{n+i} \ge 0 & \text{on } \partial F_{n+i} \cap S. \end{cases}$$

So, we have

$$U_{n,i}-G_{n,i}-(v_{n+i}-g_{n+i})\geq 0 \quad \text{on } \partial (S\cap F_{n+i}).$$

Hence,

$$U_{n,i} - G_{n,i} - (v_{n+i} - g_{n+i}) \ge 0$$
 in $S \cap F_{n+i}$.

3) Here, let i tend to ∞ , then

$$U_n - G_n \ge v - g$$
 in S.

Since this inequality is valid for all n, we have

$$U_{Bn} - G \ge v - g > 0$$
 in S.

And

$$U_{B_D} - G \ge 0$$
 in F

from the start. Consequently,

$$U_{Rn}-G>0$$
 in F .

But, if we put $u = \lim_{n \to \infty} \lim_{i \to \infty} u_{n,i}$, then $U_{BD} = -\log r + u$ in the neighborhood of P, and $R(P, B_D) = e^{u(0)}$. And

$$R(P,B)=e^{h(0)}.$$

where $G = -\log r + h$ in the neighborhood of P. Therefore,

$$R(P, B_D) > R(P, B)$$
.

And $R(P, B_D) < \infty$ from the lemma.

Conversely, we suppose that there exists a subregion D such that $\infty > R(P, B_D) > R(P, B)$. Then, $U_{ED} - G$ is a non-constant harmonic function with finite Dirichlet integral. And F does not belong to O_{HD} .

Namely, if $U_{BD} - G$ is a constant, $D_{F-|z| < r}(U_{BD}) = D_{F-|z| < r}(G)$. And since

$$D(U_r - U_{B_D}) = o(1)$$
 and $D(G - G_r) = o(1)$

we have $D(U_r) = D(G_r) + o(1)$. Here, G_r is a harmonic function in $F - (|z| \le r)$ with boundary values $\log 1/r$ on |z| = r and zero on the ideal boundary of F. While, from $R(P, B_D) > R(P, B)$, we have

$$\lim_{n\to\infty} \lambda_{n,r} - \mu_r > \frac{1}{2\pi} \log \left(\frac{d}{re^{2\pi\mu_r}} + 1 \right)$$

with a positive constant d, in $F-(|z| \le r)$ for sufficiently small r. This is a contradiction, because

$$\lim_{n \to \infty} \lambda_{n,r} - \mu_r = \frac{(\log r)^2}{D(U_r)} - \frac{(\log r)^2}{D(G_r)} = (\log r)^2 \frac{D(G_r) - D(U_r)}{D(U_r)D(G_r)}$$

and $D(U_r)D(G_r) \sim (\log r)^2$.

Remark. In the proof of Theorem 1, it is also proved that if there exist two such subregions D and S on a Riemann surface F that \hat{D} is not of the class O_{σ} and S is not of the class SO_{BD} , then, the Riemann surface F is not of the class O_{HD} .

§ 2. Subregion

In this section we consider a subregion W, and put $\overline{W} = W + \partial W$. We choose a sequence $\{W_n\}$ (exhaustion of W) of relatively compact subregions W_n such that the relative boundary ∂W_n of W_n consists of closed curves in W, cross-cuts ending at ∂W and parts of ∂W , and such that the intersection of the closures $\{\overline{W-W_n}\}$ of $\{W-W_n\}$ in W is empty. Then, the sequence $\{W-W_n\}$ defines the ideal boundary B of W. For a relatively non-compact subregion D of \overline{W} we put $D_n = D \cap (W-W_n)$. Let $\lambda_{n,i,r}$ be the extremal length of the family of curves in $W_{n+i} - D_n$ which join ∂K and $\partial D_n \cap \overline{W}_{n+i}$. Then $\lambda_{n,r} = \lim_{i \to \infty} \lambda_{n,i,r}$ is the extremal length of the family of curves in $F - D_n$ which join ∂K and ∂D_n and we put $\lambda_r = \lim_{n \to \infty} \lambda_{n,r}$. And let μ_r be the extremal distance between ∂K and the ideal boundary B. By putting $R(P,B) = \lim_{n \to 0} re^{2\pi\mu_r}$ and

 $R(P, B_D) = \lim_{r\to 0} re^{2\pi\lambda_r}$, we have the following theorem.

Theorem 2. W does not belong to NO_{HD} if and only if there exists a subregion D of W such that

$$\infty > R(P, B_D) > R(P, B)$$
.

Proof. If W is not of the class NO_{HD} , the double \hat{W} of W is not of the class O_{HD} and we can find two disjoint subregions D' and F' each of which is symmetric and not of the class SO_{HD} . We write $D' = D \cup \tilde{D}$ and $F' = F \cup \tilde{F}$.

As in the proof of Theorem 1, we construct the "Strömungspotential" U'_{BD} with respect to D' and a point P in W and the "Strömungspotential" $U_{BD}(\tilde{P})$ with respect to D' and the symmetric point \tilde{P} of P. Let G'(P) and $G'(\tilde{P})$ be Green's functions of W with the pole at P and the symmetric point \tilde{P} of P, respectively. And we put

$$U_{B_D} = \frac{1}{2} (U'_{B_D}(P) + \widetilde{U}'_{B_D}(\widetilde{P})),$$

$$G = \frac{1}{2}(G'(P) + \tilde{G}'(\tilde{P})).$$

Then the normal derivatives of them along ∂W are zero. And since

$$U'_{BD}(P) > G'(P)$$
 and $U'_{BD}(\tilde{P}) > G'(\tilde{P})$,

we have

$$U_{Rn} > G$$
.

Hence, as in Theorem 1 we have

$$\infty > R(P, B_n) > R(P, B)$$
.

Converse is also true. If there exists a subregion D of W for which

$$\infty > R(P, B_D) > R(P, B),$$

we find as the proof of Theorem 1 that $U_{B_D} - G$ is a non-constant harmonic function with finite Dirichlet integral whose normal derivative on ∂W is zero. Hence, W is not of the class NO_{HD} .

Denoting by $R(P, \partial W)$ and R(P, B(W)) the extremal radii, measured at a point P, of the relative boundary ∂W of W and the whole boundary $B(W) = \partial W + (\text{ideal boundary})$ of W, respectively, we have the following theorem as a direct consequence of Kuramochi's theorem.

Theorem 3. A subregion W is not of the class SO_{HD} if and only if

$$R(P, \partial W) > R(P, B(W)).$$

As applications of Theorems 2 and 3 to the plane regions, we consider a closed set E on the unit circle |z| = 1. We set W = |z| < 1 and $\partial W = (|z| = 1) - E$. Then, W is of the class NO_{HD} if and only if capacity of E is zero. E is of the class N_D if and only if $R(P, |z| = 1) = R(P, \partial W)$ because if E is of the class N_D W is of the class N_D and vice versa.

REFERENCES

- [1] Z. Kuramochi. Singular points of Riemann surfaces, J. Fac. Sci. Hokkaido Univ. Ser. I vol. XVI. (1962) pp. 80-148.
- [2] K. Strebel. Die Extremale Distanz zweier Enden einer Riemannschen Fläche, Ann. Acad. Sci. Fennicae., A.I. 179 (1955) pp. 1-21.
- [3] V. Wolontis. Properties of conformal invariants, Amer. J. Math. LXXIV. (1952) pp. 587-606.