APPLICATIONS OF EXTREMAL LENGTH TO
CLASSIFICATION OF RIEMANN SURFACES

TATSUO FUJITE

Introduction

Let D be a subregion of a Riemann surface F, whose relative boundary
consists of at most countable number of analytic curves which do not cluster
in F. For a regular exhaustion {F,} of F, we put Ds= DN (F—F,). and define
the extremal radius R(P, 2D,) of the relative boundary 9D, of D, measured
at a point P(€ F,) of F with respect to the connected component of F— D,
which contains P. Let K(|z|<7) be a disk centered at P and contained in a
parametric disk of P. And let 1., be the extremal length of the family of
rectifiable curves which join oK and @D,. Then, the extremal radius R(P, 2D,)
is defined as follows [2];

R(P, 9D») = lim re* ™»r,
r-0

And we put
R(P, Bp) =lim R(P, 2D,).

n-»>o

Taking F as D, we define the extremal radius R(P, B) = lim r¢* ™ of the ideal

>0

boundary B of F, where p, is the extremal length of the family of locally recti-
fiable curves which start from 9K and tend to the ideal boundary B of F.

In § 1 we show that it is necessary and sufficient for F not to belong to
the class Oup that there exists a subregion D of F for which o > R(P, Bp) >
R(P, B).

In § 2 we consider a subregion W in place of the Riemann surface F. The
corresponding extremal radii are denoted by R'(P, Bp) and R'(P, B).

Then, the existence of a subregion D of W such that « >R'(P, Bp) >
R'(P, B) is necessary and sufficient for W not to belong to the class NOup'.
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1) NOgp (SOgp) denotes the class of subregions on which there are no non-constant

harmonic functions with finite Dirichlet integral whose normal derivatives are zero (which
are zero, respectively) on the relative boundary.
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And we consider the extremal radius R'(P, 3W) of the relative boundary oW
of W and the extremal radius R'(P, 2W U B) of the union of 3W and the ideal
boundary B of W. Then, W does not belong to the class SOjp if and only if
R(P,oW)>R(P,oWUB).

Some applications of the theorems are also showed in this section.

§1. A criterion for the class Oup of Riemann surfaces

In order to evaluate the extremal lengh .-, We consider the following
harmonic function Uy ; in {(F~ Dy) N Fpsi) — P2

Uni: | Uni= —loglz|+us; ina neighborhood of £, where un,; is harmonic
Uni=0 on 9Dy N Fuyi
Gui_g on dFy.: N (F=Dy).

Since the sequence {Un,:}; converges in the sense of Dirichlet norm®, it con-
verges uniformly to a limit function U, on every compact set in F— D,. The
extremal length 1n,i, of the family of curves which join @K and @D, N Fp,;

decreases monotonely when 7 increases. So,

Xn, 1,7 g lim Xn, 1,7 ____>_ Xn_r.
>0

But, denoting by Un,i,r a harmonic function in (F—D,) N F,.; — K which is
zero on 9D, N Fy4j, equals — log 7 on 9K, and whose normal derivative is zero on
OFn+i N (F—Dy),
An,i,r = _Uog7)”_ 7y
BT D(Un, i, r)
and

og r)? _ lim . log 7)’?

Xn,r,Z_ D(Un.r) - ihrgm'

where Un,, =lim Uy, ;,,.
{50
Hence

. ( 2
Anr = l_lm Anyiyr = %l%

# When {(F—Dn) 0 Fn+:} is not connected, we take a connected component which
contains P.
3 lim D (Unyi+p—Un,i) =0. (cf. Strebel [2] p. 8).

>
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While,

(logr)? _ _ 0
ZHMD(U,“) = —log 7+ us(0) + 0(1),

where u, = lim #,,;. We conclude that

{>

R(P, 3Dy») = “"".

And by our definition R(P, Bp) =1lim R(P, oD,).

n-»>0

Using this extremal radius we get the following theorem.

THEOREM 1. A Riemann surface F does not belong to the class Ounp if and
only if there exists a subregion D of F such that

% > R(P, By) > R(P, B).

For the proof of the theorem, we prove the following lemma.

LemMa. If the double D of D is not of the class O, the limit function
Us, =lim U, is not constantly infinite.

n->0

Proof of the lemma. By adding to D a suitable relatively compact sub-
region 4 which contains P, we build up a (connected) subregion D'=D U 4
whose double D' is not of the class Os. The extremal length of the family of
curves in D' which start from 8K U (0K)™ ((9K)™ is a symmetric image of 9K in
D'— D) and tend to the ideal boundary of D' is finite because D'é&0;. Then,
by the method of symmetrization [3], the extremal length 1’4, with respect to
D', of the family A of curves in D’ which start from 9K and tend to the ideal
boundary of D' is finite. Now, we consider a family B of curves in F, each
curve of which contains a curve connecting 9K and 9D, for all n. Then the
family B contains the family A, so the extremal length 1z of B with respect
to F is smaller than the extremal length A, of A with respect to £. And,

Ap=da=Aa< o,
But,

(log 7)?

T = <
D(Un.,) Ayr S Ap<

4 About these calculation, confer Strebel’s paper ([2] p. 13).
5) According to Strebel, we call Ug;, “Stromungspotential”.
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and

2
i 5y = mdnr Sdn <

So, U, =lim Uy, r is not a constant, and from

n->m

(log7)* _ _
2”D(Un,r) = —log 7+ u(0) + 0(1),

lim %,(0) is finite.

n->ow

Therefore, for a sufficiently large number L,

Upp=lim U, £ lim Up,» + L

1> 0 n->x

in F— K, and this shows that Us, is not constantly infinite in F.

Proof of the Theorem. If F is not of the class Ogn, there are two disjoint
subregions D and S neither of which is of the class SOxp. And we suppose
that the point P and its parametric disk K are contained in S.

For a regular exhaustion {F,} of F, we construct a harmonic function v,
in F,NS” such that

Un: | vn has a positive logarithmic pole at P
Vn = 0 on oSN Fn

OUn
on =0 on oF,NS.

v, tends to a limit function » =1lim v, as above, and » is not constant because
n->w

v has a logarithmic pole at P and »=0 on 2S. Let g be Green's function of S

with a pole at P. Then, by Kuramochi's theorem (Kuramochi [1] p. 135),
v>g

because S¢ SOpp.
On the other hand, since D& SOuy, the double D does not belong to Og.
So, by the lemma, there exists a non-constant limit function Uj, of U,. Now,

we prove in the following that the inequality
Upp—GzZv—g

holds in S, where G is Green’s function of F. Let G, be Green's function of

6) We take a connected component of F.NS which contains P.
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(F— Dn) N Fusi with a pole at the point P, and g,+i be Green’s function of
Fn+iNS with a pole at P. We prove the above inequality in three steps.

1) Since Upn,i — va+i is harmonic in Fu+; NS and

Uni—0n+i =0 on 0SN Fpy;

a(Un,i - vn+i) -

7 0 on aFn+i N S,

we have Un,i — v2+i =0 in Futi NS, especially on 9F,+; N S.
2) Since vn+i=gn+i=0 on 3S N Fp4i,

Uni— Gni— (Un4i "'gn+i) = I Un,i— Gni=0 on 9SN Fuyi
L Up,i—vn+i=0 on o0Fy4;iNS.

So, we have
Un,i = Gn,i = (Un+i—~gn+i) 20 on a(SN Fpyj).
Hence,
Unpi—Gni— (Vpsi—gn+i) =0  in SN Fusi.
3) Here, let ¢ tend to <, then
Uy-Gp=v—g in S.
Since this inequality is valid for all #, we have
Upp—G=Zv—-g>0 in S.

And

Ug,—G=0 in F
from the start. Consequently,

Upp,—G>0 in F.

But, if we put % =lim lim %,,;, then Up,= —logr+ » in the neighborhood

Nn->® (>0

of P, and R(P, Bp) =¢“”. And
R(P, B) =¢"",
where G = —log 7+ k in the neighborhood of P. Therefore,
R(P, By) > R(P, B).

And R(P, Bp) < © from the lemma.
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Conversely, we suppose that there exists a subregion D such that o >
R(P, By) > R(P, B). Then, Uy,— G is a non-constant harmonic function with
finite Dirichlet integral. And F does not belong to Ogp.

Namely, if Uz, ~ G is a constant, Dy_zj<(Usp) = Dp_21<»(G). And since

D(U, = Ug,) =0(1) and D(G— G,) =o0(1)

we have D(U,) = D(G,) + 0(1). Here, G, is a harmonic function in F— (|z|<7)
with boundary values log1l/7 on |z|=7 and zero on the ideal boundary of F.
While, from R(P, Bp) > R(P, B), we have

. 1 d
lim Au,r — Mr>'2‘7;10g<w+ 1)

ns>w

with a positive constant d, in F— (| 2| =7) for sufficiently small . This is a

contradiction, because

. __(log7)® (logr)® _ » D(G,) = D(U;)
Wm & r = 1 =575 ~ DGy = 108 Do DG

and D(U,)D(G,) ~ (log r)%

Remark. In the proof of Theorem 1, it is also proved that if there exist
two such subregions D and S on a Riemann surface F that D is not of the
class Oq and S is not of the class SOgy, then, the Riemann surface F is not of

the class Onp.

§2. Subregion

In this section we consider a subregion W, and put W= W4+0oW. We
choose a sequence {W,! (exhaustion of W) of relatively compact subregions
Wa such that the relative boundary oW, of W, consists of closed curves in
W, cross-cuts ending at oW and parts of 9W, and such that the intersection
of the closures {W—W,) of {W— W,} in W is empty. Then, the sequence
{W — W,} defines the ideal boundary B of W. For a relatively non-compact
subregion D of W we put D =D N (W~ Wa). Let As,ir be the extremal length
of the family of curves in Wi+; — D, which join 9K and @D, NWa+i. Then
An,r = 1im An,i,» is the extremal length of the family of curves in F~ D, which

i>®

join oK and oD, and we put A =lim A,,». And let ur be the extremal distance

n->w

between oK and the ideal boundary B. By putting R(P, B) = lim 7¢"™r and

r—0



EXTREMAL LENGTH 165

R(P, Bp) =lim 7¢*™, we have the following theorem.

r-0

THEOREM 2. W does not belong to NOgp if and only if there exists a sub-
region D of W such that

% >R(P, B») > R(P, B).

Proof. If W is not of the class NOup, the double W of W is not of the
class Ogp and we can find two disjoint subregions D’ and F' each of which is
symmetric and not of the class SOzp. We write D'=DUD and FF'=FUF.

As in the proof of Theorem 1, we construct the “Stromungspotential” U's;,
with respect to D' and a point P in W and the “Strémungspotential” Usz,(P)
with respect to D' and the symmetric point P of P. Let G'(P) and G'(P) be
Green’s functions of W with the pole at P and the symmetric point P of P,

respectively. And we put
Usp =5 (Uhp(P) + U5y P)),
G=4(G'(P)+G'(P)).

Then the normal derivatives of them along oW are zero. And since
Ul (P)>G'(P) and Uj,(P)>G'(P),
we have
Ug,>G.
Hence, as in Theorem 1 we have
% > R(P, Bp) > R(P, B).
Converse is also true. If there exists a subregion D of W for which
o > R(P, Bp) > R(P, B),

we find as the proof of Theorem 1 that Up,— G is a non-constant harmonic
function with finite Dirichlet integral whose normal derivative on 9W is zero.
Hence, W is not of the class NOup.

Denoting by R(P,oW) and R(P, B(W)) the extremal radii, measured
at a point P, of the relative boundary oW of W and the whole boundary
B(W) =2W + (ideal boundary) of W, respectively, we have the following

theorem as a direct consequence of Kuramochi’s theorem.
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THEOREM 3. A subregion W is not of the c’ass SOup if and only if
R(P,oW) > R(P, B(W)).

As applications of Theorems 2 and 3 to the plane regions, we consider a
closed set E on the unit circle |z| =1. Weset W=|z|<1land oW = (]z|=1) — E.
Then, W is of the class NOgp if and only if capacity of E is zero. E is of the
class Np if and only if R(P, |z| =1) = R(P,oW) because if E is of the class
N, W is of the class SOup and vice versa.
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