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The aim of this paper is to investigate the behaviour of Green lines at

Royden's boundary Γ of a Riemann surface R with the Green function g{z, o)

with the fixed pole o in R. We denote by © the totality of Green lines L

issuing from the fixed point o. There exists a positive number e such that the

set Ueiv?; g(z, o)> -loge) is relatively compact and simply connected in R

and the set J = (z&R; g(z, o) = -loge) is homeomorphic*} to the unit circle.

We may represent each point z in J by β (0<θ<2π), if z corresponds to etd

by the above homeomorphism. Using this, we can represent each L in © by

L = LQ (O<0 <2 7r), where θ is the point determined as the intersection of Land

J. For each set S in/; we set S = (β ;(LQn Γ) ΠS* 0) and S = (θ ( I β Π Γ) as).

We denote by m (resp. VI) the outer (resp. inner) normalized Lebesgue measure

on J. These may be considered as the outer and inner measures on ©. For a

measurable set, we set m = m. We also denote by μ the canonical measure on

Γ with the center o (i.e. the harmonic measure for subsets of Γ calculated at o).

The fundamental result of this paper is that

m(K) < μ(K) for any Fσ set K in Γ,

or equivalently that

™(U)>β(U) for any Gδ set U in Γ.

Since the subset of Γ at each point of which the Green function is strictly posi-

tive is an Fσ set with canonical measure zero, the first inequality mentioned above

implies the well-known Brelot-Choquet's result [2] that the set of Green lines on

which the Green function does not tend to zero is of Lebesgue measure zero.

By using the above inequalities and the theory of Royden's compactification,

Received May 10, 1963.
*) This homeomorphism is a special one. See §2.
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we shall investigate the behaviour of HD and AD functions on Green lines.

By a simple application of Riesz-Fisher's theorem, it is seen that the "radial

limit"

f(θ) = \imLQ3Z^r f(z)

exists for every β in [0, 2 π] except a set of measure zero, where / is an arbi-

trary a.c.T. function on R with finite Dirichlet integral taken over R. This also

follows from a result of Godefroid [3]. Hence, in particular, any HD function

u on R possesses the radial limit u{θ) almost everywhere on J. Concerning this,

we shall show an analogue of the mean-value theorem of Gauss'

M(o) = ~[2nu(θ)dθ
& 7T J 0

for any u in HD(R). We shall also show that

for any u and v in HD(R)y where uί\ υ is the greatest harmonic minorant of u

and υ and a Π b = min (a, b). Similarly, any AD-function f on R possesses the

radial limit f{θ) almost everywhere on J. Concerning this, we shall show an

analogoue of F. and M. Riesz's theorem : if / is an AD-f unction on R such that

f(θ) =0 on a subset of J with positive measure, then / vanishes identically on

R. This follows also from a result of Brelot-Choquet [2], Our main result in

this paper is as follows.

A hyperbolic Riemann surface R belongs to the Constantinescu-Cornea}s class

UBΌ if and only if there exists a subset P of J with positive measure such that

u{θ) is a constant almost everywhere on P for any HD function u on R (Theo-

rem 3).

Green lines and polar coordinate

1. Let R be a hyperbolic Riemann surface and o be a fixed point in R and

g(z, o) be the Green function on R with its pole o. Consider a pair (r(z)> 0(z))

of functions of local parameters z defined by the following equations:

ί dr(z)lr{z)= -dg{z,o)

* dθ{z) = - *dg(z, o).
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The function r(z) is uniquely determined by the initial condition r(o) =0 as a

single-valued function on R, i.e.

r(z) =exp( -g(z, o)).

Clearly 0<r(z)<l on R. We set

; r(z)<p) and CP = aGp

for each number p in 0<p<l. The set CP is nothing but the log(l//o)-level

curve for g(z,o). We say that Cp (resp. GP) is regular if dg(z,o)*0 on CP.

Concerning the set GP, the following is very important.

LEMMA 1 (Kuramochi's lemma). Assume that the set G9 is regular. Then

the set GP is a subdomain of R and the double Gp of GP along the relative bounda-

ry Cp is a Riemann surface with null boundary.

For the proof of this, see Kusunoki-Mori [4] or Nakai [7]. Using this, we

prove

LEMMA 2. For any regular CP, ^— \ dθ(z) = 1.
ώ 7ΓJCPc P

Proof. Let (Rn)™ be a normal exhaustion of R with oεi?oci?oCGp and wn(z)

be the harmonic function on Gp Π Rn - RQ with the continuous boundary value 1

on BRQ and 0 on dRn Π G? and the normal derivative dwjdv = 0 on dG? Π Rn. For

convinience, we set wn = 0 outside i?n in GP and M/» = 1 on β . Then by Lemma

1, ton/^l on Gp and D(?p(^n)\0. By Green's formula,

wn(z) -^ g(z, o)ds 4- I ^g{z, o)dsf

CpnBn OV J dR0OV

where ^- denotes the inner normal differentiation with respect to the open set

GpΓ\Rn — Ro and ds denotes the line element on CP. Here

f ^-g(z,o)ds= -2τr

and by Lebesgue's convergence theorem,

limnf wn(z)ξ-g(z,o)ds=\ ξ-g(zfo)ds=[ dθ(z).

On the other hand,
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as n/ °°. Hence we get ί dθ(z) =2π. Q.E.D.

2. Although θ(z) is not single-valued in R- (0), it is harmonic locally on

R- (o). A level arc for 0U) is an open or closed or half open and closed arc

on which dθ^O and θ(z) is a constant, being locally considered at each point.

We call a level arc for θ(z) as a Green arc. The totallity of Green arcs forms

a partially ordered set by inclusion. In this sense, a maximal Green arc is

called a Green line. Hereafter we use the term Green line L only for those L

issuing from o, i.e. Σ B O . We denote by

the totality of Green lines (issuing from o) and we call © as the space of

Green lines. We denote by

R8

the set of all points in R which lie on a Green line issuing from o. Clearly

R8 is a subdomain of R. If we choose ε sufficiently small, then the set Gz is

regular and relatively compact in R and conformally equivalent to the disc

(z; | z | < l ) . Hereafter we fix such an e and use the following particular no-

tations •*

; r(z)<ε)

and

Since there exists a one-to-one analytic mapping ψ of the disc (2; UI<1) onto

the set © U J, we can represent each pointy in J by the coordinate θ in [0, 2π),

where the correspondence p<^θ is given by the relation ψ(eiQ)=p. Using this,

we can represent each Green line L issuing from o by

where θ is the point L Π J, or more precisely, β is the coordinate of the point

L Π J in J. Hence we can write

(S = (Z,θ; 0<ΞJ).

Since the totality of points in R at which dθ(z) =0 is countable, the set
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E = (0 Lθe(S and dθ(z) = 0 at the end point Zθ - U U (o) of Zθ in R)

is a countable subset of J and hence of Lebesgue measure zero.

3. Although θ(z) is not single-valued on R, we may use r{z)emz) as a local

parameter at each point of R except possibly a countable number of points at

which dθ(z) = 0. If we take the branch of θ(z) at ZO^LQ such as θ{z0) = 0, then

we can use the single-valued function

in Rg as the global polar coordinate in R8 with the origin o. We also denote

by

m

the normalized Lebesgue measure on J, i.e.

dθ

Using these concepts, we give a generalization of the mean-value theorem of

Gauss on bounded harmonic functions. As usual, we denote by HB = HB( R)

the totality of bounded harmonic functions on R.

PROPOSITION 1 (Gauss' theorem). Let p be an arbitrary number in 0 < p < l

with regular CP and u be in HB(GP) and continuous in GPUCP. Then

u(o) = Cuipe^dmiβ).

Proof. Let (Rn)T be a normal exhaustion of R with S c M and gn(zy o) be

the Green function on G9 Π Rn with its pole o. For convinience, we set gn(z, o)

= 0 outside Rn in Gv. Clearly g{z, o) — p is the Green function on G9 with the

g\z,o) — p on Lτp. inereiore Dy αeπning

on Cp - CP Π Rn, we have

pole o. Hence gn(z,o) f giz, o) - p on Gp. Therefore by defining ^τ-gn{z,o) =0

on CP, where — denotes the inner normal differentiation with respect to Gp.

Next we denote by wn the harmonic functionon GP Π Rn - © with the con-

tinuous boundary value 0 on J = a© and 1 on BRnΓ\ GP and ~-wn=0 on BGP Π /?„.
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For convinience, we set «;» = 0 on 8 and wn = 1 onG p -i?«. Then by Lemma 1,

wn\0 on Gp and DGp(tvn)\θ

as«/° ° . By Green's formula,

I'*
C 3

= Wn(z) — gn(z, θ)ds
»/9((?poJ?rt-i?o) OV

as n/oo, On the other hand,

n(z)^~gn{z, θ)<-^-g(z, O) OΏ CP

and wn(z)-^-gn{z, o)-*0 on C? and ~g(z,o)ds is integrable on Cp. Hence by
OV OV

the Lebesgue convergence theorem,

Wn(z)^-gn(z, θ)dS = 0.

CpnBn OV

Therefore, we get

dRnnOpOV

Again by Green's formula,

= K- \ U(z)^-gn(z, θ)dS

Here we have

f u(z)^-gn(.
JdRnnGp OV

as nf oo. We also have

I u(z) — gn{zy o)ds-*\
JcpnRn OV Jc

In fact,

I O

«(2)^-^n(2, O)

OV
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and

)^-gn{z, θ) -» u(z)^-g(z, O)ov ov

> oo onCp and (sup<?p \u\)^-g(z} o)ds is integrable on CP. Hence by Lebes-

gue's convergence theorem, we get the above conclusion.

Thus by making n-> °°, we get

On the other hand,

on Cp. Hence by using local parameter 2 = retθ, we finally get

u(o) =~Cu(peiθ)dθ= \u(peiQ)dm(θ). Q.E.D.
ώ 7Zv 0 > 0

End parts of Green lines in Royden's boundary

4. We denote by M(R) the (real) Royden s algebra associated with the

surface R, i.e. the algebra of all real-valued bounded a.c.T. (abbreviation of

the term absolutely continuous in the sense of Tonelli") functions on R with

finite Dirichlet integrals taken over R (see Nakai [5.1, [6]). We denote by i?*

the Royden compactification of R, i.e. the compact Hausdorff space containing

R as its open and dense subspace, and the algebra M{R) can be considered to

be a uniformly dense subspace of B(#*), the totality of bounded real-valued

continuons functions on i?*. We call the set

the Royden boundary of R (see Nakai [5], [6]).

We denote by Δ the set of all regular points in Γ with respect to the

Dirichlet problem considered for harmonic functions on R with boundary values

on Γ. This set Δ coincides with the harmonic boundary of R named by Royden

[9], i.e.

= 0 for all / in MΛR)),
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where we denote by MA{R) the Z?D-closure of Mo{R), the totality of functions

in M{R) with compact carriers in R. Here a sequence (fn) in M{R) converges

to / in M(R) in BD-topology, if, by definition, (/«) is uniformly bounded and

converges to / uniformly on each compact subset on R and Z}R(/« — /)-*0 as

n-* °o (see Nakai [51 [6], [8]). We must notice that g(z, o) is continuous on

/?* and vanishes on Δ, since min (g(zy o), - loge) belongs to M*(R).

We denote by μ the canonical measure on Γ with center oeft, which is

defined as the regular Borel measure on Γ satisfying

u(o) = [ u(p)dμ(p) for any u in HD(R),

where HD = HD(R) is, as usual, the totality of harmonic functions on R with

finite Dirichlet integrals taken over R. We know that the support Sμ of μ is

identical with Δ (see Nakai [6]). Let X be a Borel subset of Γ and fx be the

characteristic function of X in Γ. We know that fx is resoltive and the gener-

alized solution of the Dirichlet problem with boundary value fx, denoted by

Hfx(z)y is related to the canonical measure μ by

H/z(θ)=μ(X).

Hence μ is the so-called harmonic measure and so the set Γ— Δ is of harmonic

measure zero (see Nakai [8]).

5. For each Green line Lθ in (§, we set

where Z9 is the closure of L% in #*. We call eQ the end part of £ θ . We also

denote

<iθ = sup (r(z)

Clearly ε<do<l. If t/θ<l, then we call Lo a singular Green line. We denote

If 0eE, then βθ is one point z in i? at which d#U) =0 and so we get E c N .

For any set S in Γ, we denote by S and S the sets in J = a® defined by

3 -

and
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S = ( 0 e j ; eQc:S).

Clearly S ^ S . The following is one of the fundamental lemmas of our dis-

cussion.

LEMMA 3. Let K be a compact set in Γ- A. Then m{K) = 0.

Proof. We take an open neighborhood U of K in iv?* such that the relative

boundary 3(Z7Π R) of UΠ R consists of a countable number of piece-wise analytic

Jordan curves not accumulating in R and UnΔ = φ. We set

where (Rn)ΐ is a normal exhaustion of R. Then there exists a unique continuous

function wn in M(R) such that

1, on Un\

harmonic, in R—Un\

0, on J.

Then it holds that wn\0 and D(wn)\θ as n/ oo (see p. 161 in Nakai [8]).

Next we set

Clearly U'n is open in J and Un^>U'n+i^>K. For each 6 in C/i, we choose a

point ZΘ in Lθ Π (Un Π i?). Then wrtUθ) = 1 and so

- ιvn(εeiθ) = j [ Q)^

We can find a positive number a such that 1 — wn{z)>a>0 on J for all n.

Then

ί
r(2β) -x

By Schwarz's inequality,

<(-]

Hence we have
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- logs)];, £ ( | | ^ ( r ^ ) f + r-| |^(f^ ) \)rdrdθ

Therefore by putting £ = ( — \ogε)/2πa2, we get

m(U'n)<cDR(wn).

Thus by noticing Un^>U'n+1o>Ky we get

(outer Lebesgue measure of K) <limn m(U'n) <limn cD(Wn) = 0.

Hence m(i?) = 0. Q.E.D.

As a corollary of our Lemma 3, we get the following well-known result due

to Brelot-Choquet [2], which is a fundamental result in the theory of Green lines.

LEMMA 4 (Brelot-Choquet's lemma). w(N)=0, i.e. A = 1 almost everywhere

on J.

Proof. Let Kn = (p^Γ; g(p, o)>lln) (n = l,2y . . . ) . Then each Kn is com-

pact in Γ - Δ and

Since E is countable, miΈ) =0. By Lemma 4, since /Γrt is compact in /' —

J, m(Kn) = 0 and so m( U S=i^n) = m( U n=i^«) = 0. Hence m(N) - 0. Q.E.D.

Functions with radial limits

6. We say that a complex-valued function f on R possesses a radial limit

almost everywhere on J if limr-*i/(rέ?lθ) exists for any θ in J ~ N except a set

of Lebesgue measure zero. Here the meaning of the above limit is as follows :

limr->i f(reiθ) = limr ( z )^ I,Z<=LJ{Z).

We denote the totality of complex-valued functions on R possessing a radial

limit almost everywhere on J by the notation 9i = 3ϊί#).

We also denote by F(R) the vector space of all real-valued a.c.T. functions

on R with finite Dirichlet integrals taken over R (see Nakai [6]). Clearly

F(R) ^HD(R) and F(R)^M(R) =>HBD(R) = HD(R) Π HB{R). Although the

following result follows from the result of Godefroid [3], we shall give an

alternating proof.
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PROPOSITION 2.

Proof, Let L2(J, dm) be the Hubert space of all square integrable functions

on J with respect to the measure m and || || be the norm in L2( J, dm). Let /

be in F(R) and set fr{0) = f(reiQ). Then (/r)o<r<i can be considered to be

a one-parameter family of functions in L2(J — N, dm) = L2(J, dm). For any 0

in J - N except a set of measure zero, by the definition of a.c.T. functions,

we get

Md) -faid) = f —fire^dr (0<a<b<l).
J a or

Hence by Schwarz's inequality,

< log^ £
2

rdr.

Therefore

Thus we get the following inequality:

IIΛ -/«I! < ̂ D^JΓ) / log-^,

where Gafb=Gb-Ga (0<a<b<l).

Let (iΓn)Γ be a sequence of compact sets in J - N such that

n+ι and m{ U n=ιKn) = 1.

For simplicity, we set F = U n^iKn. Let (rn)n=i be a strictly increasing sequence

of positive numbers such that limw/Λ = l and Grn is regular.

Since f(retθ) is uniformly continuous on the compact set (retθ rn<r<rn+i,

n)y there exists a subdivision

rn = tfn, i < Λn, 2 < * * <flw,S(«) + i = fn+i

of Zrn, rn+il such that for any r in [art,y, an,j+J and 0 in ϋΓM,

where j is one of 1, 2, . . . and sin). Let Af be an arbitrary positive integer.
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Then k is uniquely represented as

*=*Σ/-os(./) + f (0<t<s{n))f

where we promise that s(0) =0. Using this expression, we define a new sequence

k=ι by bk~an,t.

Now set

for 0 in / — N. By the triangle inequality,

Jf I h(θ) ?dm{θ) < Σ?-ill/»» -/*.««

Hence h(β) < °° almost everywhere on J and so on F. Hence

converges almost everywhere on F. Since

Σ*-i(Λ*fχW) -fbk(θ))=*limkfbk(θ) ~A(β),

exists almost everywhere on F. Let F' be the set of points in F at which f(θ)

exists. Then m(Ff) = 1. Fix an arbitrary 0 in P. Let T? be an arbitrary posi-

tive number. We can find a positive integer no such that

θ<=Kno and l/wo<τ?/2.

Let &o be a positive integer such that ko>nΣjlis(j) and that for any k>kQ

\ftk(θ)-f(0)\< η/2.

Let r be arbitrary in bkD<r<l. Then we can find a positive integer k such

that

Let the representation of k by means of (s(j)) be
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Then clearly n>n<> and bk = an,t and Θ^Kno^Kn- Hence

\/ΛΘ) -fbk(θ)\ = \f(reiθ)~f(anje
i»)\<l/n<l/nύ<y/2.

Thus

\M0) - f(θ) I < \fΛθ) -fbk(Φ) I + \fbk{0) - f(θ) I <: */2 + V/2 = -η.

This shows that limr-»i/r(0) = /(0) exists for every 0 in F'. Q.E.D.

7. For two numbers a and b, we denote <zΠ& = min (<z, b) and <zU6~

max (α, b), Similarly, for two harmonic functions u and υ, we denote by uf\v

the greatest harmonic minorant of u and v and by «V^ the least harmonic

majorant of u and v. We know that the class HD(R) forms a vector lattice

with respect to the lattice operations V and Λ (see Nakai [6]). Concerning

the general property of functions in HD{R) on Green lines, we state the follow-

ing.

THEOREM 1.1 (Fatou type theorem). Any function u in the class HD(R)

possesses the radial limit almost everywhere on J, i.e.

u(θ) =Hmr->iM(relθ)

exists for every β in J — N except a set of Lebesgue measure zero.

THEOREM 1.2 (Gauss type theorem). Let u be in the class HD(R). Then

u(o) = (*u{θ)dm(θ).

THEOREM 1.3. For any pair of functions u and v in HD(R), the function

ut\v belongs to HD(R) and

{uΛv){θ)=u(θ) Ov(θ)

for every 0 in J — N except a set of Lebesgue measure zero.

Proof of Theorem IΛ. Since HD(R)c^F(R)f this follows from Proposition

2.

Proof of Theorem 1.3. As HDiR) forms a vector lattice, so we may assume

without loss of generality that u and v are non-negative. First we consider the

case where v is bounded. Let f{z) = u(z) Π v(z)> which is a non-negative

bounded superharmonic function on R belonging to the algebra MiR). We take

a normal exhaustion (Rn)T of R with o^Ri. Let p be in 0<ρ<l with regular
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GP. We set wp,n the continuous functionon in R such that

Γ/, on R-GP ΠRn:
Wp,« = \

L harmonic, on G? Π Rn.

Then it is easy to see that
/ > W9t n > Wp, n+i > li A #

and

Thus we can define

on /?, which is harmonic in G? and continuous on R and

w/pU) = u(z) Π ^(2)

on Cp and

/>^>Mlp'>«Ay (pf> p).

Since wΛz; is the greatest harmonic minorant of / and (wp) converges to a

harmonic function on R as p/*ly we can conclude that

limp.*! Wp = M Λ v

on /?. By Proposition 1,

Wp(o) = \tΛw^pei9)dm(d) = f *«(<**) Π ^Wθ)ί/w(^).
Jo Jo

Clearly «;P(o)\(«Λy)(o)(ρ/l). On the other hand, by Theorem 1.1,

u(pei9)nυ(peiQ)->u(θ)nυ(θ)

as p-^1 for every θ in J - N except a set of Lebesgue zero, where u(θ) =

limp^ittίp^9) and z (^) = limp/,iz;(p^θ). Moreover, w(pelθ) Π z;(p^ί0) is uniformly

bounded. Hence by Lebesgue's convergence theorem, we get, by making

(u/\υ)(o) = u(θ) Ov(θ)dm(θ).
Jo

On the other hand, by Proposition 1,

Jo
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and by Theorem 1.1, writing (u/\v){θ) = UmP->i(uAv)(petB)y we get

(uAv)(o) = f n(u/\v)(θ)dm(θ).
Jo

Clearly {uAv){θ) <u{θ) ί)υ(θ) almost everywhere on J - N and

fa*(i*(0) Π v(θ) - (uAv)(θ))dm(θ)=Q.
Jo

Thus

(uAv)(θ)=u(d)Πv(θ)

almost everywhere on J - N .

Next we remove the assunption that υ is bounded. By the above consider-

ation, we get

= u{β) n (υ(θ) n») = (u(θ) n v{β)) nn,

i.e.

KuΛv)(θ) - u{θ) n v(θ)l n w = o

almost everywhere on J - N for any positive integer n. Thus by making

n/ oo,

(uAv)(θ) = «(^) Π z (^). Q.E.D.

/Voo/ o/ Theorem 1.2. Since HDiR) forms a vector lattice, we may assume

without loss of generality that w>0. By Proposition 1, we get

(uAn)(o) = ί "{u
Jo

for any positive integer #. Hence by Theorem 1.1, writing (uAn)(θ)

= limP->i(wΛtt)(pe'θ), we get

(uAn)(o) = (n(uAn)(θ)dm(θ).
Jo

This with Theorem 1.3 gives

(uAn)(o)=-[ u(θ)f)ndm(θ).
Jo

Clearly (uAn)(o)/u(o) and u{θ) Πn/^uiθ) as ?!/* oo. Therefore by making
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«/°° we get

w(o)= ί u(θ)dm{β). Q.E.D.
Jo

8. We know that each function in F(R) is continuously extended to i?*

admitting infinite values (see Nakai [6]). We denote

F\(R) = (/eF(/?) / vanishes on A).

Then FA(R)^MΛR) and / / ( l + | / | ) ε M Δ ( Λ ) for any / in FA(R) and the

following harmonic decomposition holds (see Nakai [6])

i.e. any function / in F(R) is uniquely decomposed into the form f = u

iu^HD(R), φ(=FA(R)), where we have

D(u, ψ)=0 and SUPBI«1 = sup Δ | / | .

PROPOSITION 3. For any function f in the class FA(R), the radial limit

f(θ) =limr->i/(r£ ιe), which exists almost everywhere on J - N by Proposition 2,

vanishes almost everywhere on J — N.

Proof. For each positive integer n, we set

Kn=-(P<ΞΓ; f(p)>lln).

Then Kn is compact in Γ- A and so by Lemma 3, m(Kn) = 0. Next we set

Clearly En is measure equivalent to Kn, i.e. m(KnθEn) =0, where

KnVEn-Kn^En. Thus m(En) = 0.

As ( 0 e J - N ; / ( ^ ) > 0 ) = Uϊ=1J5n, so m(0€=J-N;

Hence /(^) =0 almost everywhere on J - N. Q.E.D.

We may consider J as a representation of the ideal boundary of R. Each

function / in F(R) gives the "boundary function"

on J. By the harmonic decomposition of / ,

f(z)=u(z)+ψiz) (ue-HDiR),

Hence by Proposition 3,
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u(θ) = liπv.! u(rei0) = lim^i (fire*9) - ψ(reiQ)) = fid)

almost everywhere on J. Hence there exists a harmonic function u with

"boundary value" f(θ).

Subsets of the space of Green lines

9. We denote by m (resp. #?) the outer (resp. inner) measure on J induced

by the normalized Lebesgue measure m.

PROPOSITION 4.1. For any compact set K in Γ, m(K) < μ(K).

PROPOSITION 4.2. For any open set U in Γ, tϋifj) >μ(U).

These two propositions are equivalent. In fact, assume that Proposition 4.1

is true. If U is open in Γ, then Γ—U=K is compact in Γ and

βr = ( J - E ) -K.

Hence we have

m(ϋ) = 1 - tή(K)>l- μ(K) = μ(Γ-K) = μ(U).

Conversely assume that Proposition 4.2 holds. If K is compact in Γ, then

Γ— K- U is open in Γ and

K= ( J - E ) - £ 7 .

Therefore

m(K) = 1 - »?(£/) < 1 - Ai(ί/) = μ(K).

Hence to prove these two propositions, it is sufficient to prove, for example,

Proposition 4.2.

Proof of Proposition 4.2. Let -η be an arbitrary positive number. We set

F=Γ— U. We can find a compact set K in Δ Π U such that

μ(K)<μ(U)<μ(K)+'η.

We can find a function u in HBD(R) such that

on R* and

J 1, on K

0, on Δ - U
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(see Nakai [6]). We set

Clearly the set Fn is compact and contained in Γ - J for any positive integei

n. Then by Lemma 3,

Let

Fo = F- Όn^Fn^iP^F; u(p)=0).

Assume that u(θ) =\imr^iu(reiQ) exists at θ in F o . Since L*ΓiFo*0, u(θ) = 0.

Hence by Proposition 2,

u(θ) =0 almost everywhere on Fo.

As m(6Ϊ^Fn) = m(\Jn=iFn) = 0f so w(F-Fo) = 0. Hence

w(̂ ) =0 almost everywhere on F.

Since Γ=FΌU, we have

J - E = F U £7.

Set F = (0; u(θ)>0). Then by the above

and F is measurable. Hence

m(u)>m{V).

On the other hand, by Proposition 1,

= ( u(p)dμ(p) > f dμ(p) =
v Γ ^K

Hence

and by making ??\0, we get

m{ϋ)>μ{U). Q.E.D.

Remark 1. Proposition 4.1 implies that if & is a compact set in Γ with
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μ{K) = 0, then K (and also K) is Lebesgue measurable and of measure zero.

Remark 2. By the increasing (resp. decreasing) monotone continuity of m

(resp. m) and the continuity of μ, we may replace the compact set {resp. open

set) in Proposition 4.1 {resp. 2) by Fσ {resp. Gs) set.

10. As usual, we denote by AD = AD{R) the class of all single valued

analytic functions on R with finite Dirichlet integrals taken over R.

THEOREM 2.1 (Fatou type theorem). Any function f in the class AD{R)

possesses a radial limit almost everywhere on J, i.e.

f{θ) = l i n w f(rei9)

exists for every β in J — N except a set of Lebesgue measure zero.

THEOREM 2.2 (F. and M. Riesz type theorem). Let f belong to the class

AD{R) and Z be a subset of J — N with positive measure. Assume that

/(0)=O

for each β in the set Z. Then f vanishes identically on R

Proof of Theorem 2.1. Since Re{f) and Im{f) belong to the class HD(R)t

our assertion follows from Theorem 1.1.

Proof of Therem 2.2. We denote

S = U mz βθ and ϋf = S".

Clearly K is a compact set in Γ and

Hence by Proposition 4.1,

Since Re(f) and Im{f) are continuous on i?* admitting infinite values, / is

continuous on i?* admitting infinite values. As f{β) ==0 for θ in Z, so / must

vanish on the set e$ for each 0 in Z. Thus / vanishes on S and by the con-

tinuity of /, / vanishes on K. Thus the analytic function / has continuous

boundary value zero at each point of the compact set K in Γ with positive

canonical measure. Hence by Lusin-Privaloff type theorem (see Nakai [8]), /

vanishes identically on R. Q.E.D,
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Measures concerning blocks

11. Let R&OHD. For each point p in the harmonic boundary Δoί R, we set

; uiq) =u(p) for any u in HBD(R))

and we call this set as the block at p. Since the class HBD separates points

in A, we can conclude that

APΠJ = (p)

and

We can find a function u in HBD such that # > 0 in R and u(p) - 0 (see Nakai

[6]). Then u = 0 on Λ/,. Multiplying w by a suitable constant #, we get that

au(z)>g(z, o) on /. Since au>g on J, we get tfwί s) > £ U o) on i?* - (£. Thus

g(q, o) = 0 on Λp.

This shows that

e* Π Λp # 0 implies A = 1 or 0e J - N.

Concerning blocks, we prove

PROPOSITION 5. The set Λp is measurable for any p in Δ and

m(Λp) = μ(p).

Proof. First we consider the case where where μip) = 0. In this case, by

Proposition 4.1, we have

m(Λp)<μ(p) =0.

Hence Λp is measurable and m(Λp) = μip).

Next we assume that μip) > 0. Using the harmonic kernel K(z, q) (see Nakai

[6]), we set

u(z) = I Kiz, q)dμ(q)

Then u(z) belongs to the class H^ considered by Constantinescu-Cornea [1],

where HD_ is the totality of limits of decreasing sequences of non-negative

functions in the class HD. In particular,
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0<u(z)<l on R and lim sup wU)=l.
RSz +P

Hence we can find a decreasing sequence (un) of functions un in the class

HBD such that

Q<Un(z)<l and limrtun(z) = u(z)

on R (see Nakai [6]). Therefore un(p) = 1 and so w« = 1 on Λp. For the sake

of simplicity, we set

For any p in 0<p< 1 with regular GP, we have, by Proposition 1,

j π(w*(pβ/θ) -u(pei0))dm(0) =an.

Let

ΰ(β) = lim supp^iu{petQ).

Since u(petθ) is continuous in p (0<p<l) and measurable in ί e J - N , ΰ(θ) is

measurable on J. By Fatou's lemma,

Λ2Λ

lim inίP^ι(un{peιQ) — u(ρetB))dm(θ)

< lim infp_>i j (un(petQ) — u(μetQ))dm(θ) = #„.

As we have

lim infp-n(#«(|θelθ) - u(peιQ)) = wrt(0) - lim

almost everywhere on J, so we get

0< \ "(un(θ)-u(θ))dm(θ)=an.

The sequence (un(θ))n=1 is decreasing and so v{θ) =\imnun(θ) exists and

almost everywhere on J. By making n/ «>, W e get

f *(v(θ)-ΰ(θ))dm(θ) =0.
Jo

Hence we get
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v(θ) = ΰ(θ)

almost everywhere on J. Let

and

un(q)=l) and F=

Then F«= Γ\k=iϋn,k^>Ap and so F 3 4 By Propostion 2, there exists a s e t /

in J such that m(J - J1) = 0 and for any β in 7', «„(#) = \imr^iUn(ret%) exists

for all positive integers n. Then for any n> un(0) = 1 (0eF*fΊ./') and so

= 1 (tfeFn/0. Hence

= 1 on F Π / .

Therefore, there exists a set /" with m(J —J") = 0 and

w(0) = 1 on FΠJ".

Let w> be an arbitrary non-constant function in the class ΉBD(R). Let

c ~ (SUPZ(=R\IV(Z)— wip)])'1. Since lim snpR^z-^puiz) = 1 and lim supu3Z^w(2)

= 0 (<?ej; ^=^ί) (see Nakai [6]), we get

lim infi?3Z^[(l - u(z)) - c(«;(2) - w(p))l > 0

and

lim infΛ3z^9C(l - «(«)) + c(w(z) - wί^))] > 0

for any q in J. Hence by the maximum principle (see Nakai [6]), we get

c\w(z) -w(p)\<l-u{z)

on R. Hence if Θ^Ff\J", then we can find a sequence rn/^l such that

limΛ u(rne
iQ) = lim supr-*i u(retQ) = w(0) = 1.

Let zn-rne
tQ and ^ be an accumulation point of (zn). Then q belongs to the

set eQ and as

C I w(Zn) - «;(#) I < 1 - u(Zn),

so we get w(ρ) = w(p). This holds for any w in HBD(R), so g-Λi>» or βθ Π .4

. Hence θ<^Λp. Therefore
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This shows that

m(F~Λp) = 0.

Then, since Fn\F,

m(Λp) = m{F) = l im n ^(F r t ).

By the fact that Un,k\Fn and by Proposition 4.2,

m(Fn) = Umk?n(ϋn,k) ̂ Umkϋl(ϋn,k) >lim*μ(Un,k)

Hence

On the other hand, since Λp is compact and Λp Π Δ = (jf>), we get by using

Proposition 4.1,

Thus we get

μ(p) < ™(Λp) <mK2p) < μ(p).

This shows that Λp is measurable and τn(Λp) = μ(p) Q.E.D.

Indivisible set in the space of Green lines

12. Let R be a hyperbolic Riemann surface and

be the class of all functions on R which are the limits of non-increasing sequences

of non-negative functions in the class HD(R). A function u in the class HD(R)

is called an #£>-minimal function on R'ύ u>0 on R and if for any v in HD(R)

with u > v on i?, there exists a constant Cϋ with v = c*;W on /?. If /? carries at

least one ^^-πiinimal function, then, following Constantinescu-Cornea [1], we

denote the fact by

In terms of the theory of Royden's compactification, this condition is character-

ized by the following (see Nakai K ] ) :

R^UHD if and only if there exists a point p in Γ with μ(p) >0.
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Constantinescu-Cornea [1] gave the following characterization of the class UHD

let R be hyperbolic. Then there exists an analytic mapping ψ of the unit disc

(z; | z | < l ) onto R. Consider the class ξ) of all functions v on (z; UI<1) such

that v = u° ψ for some u in HD(R). Then it is proved that for any v in ξ>

\imr->iυ(reiB)=v(θ)

exists almost everywhere on C = (zm, \z\ = l). Constantinescu-Cornea's charac-

terization is as follows:

if and only if there exists a set P of C of positive measure such

that v(θ) - limr+iv(retθ) = const, almost everywhere on P for any v in ξ>.

Here we give the similar result as above for the space of Green lines in-

stead of the universal covering surface.

THEOREM 3. In order that a hyperbolic Riemann surface R should belong to

the- class UHΏ, it is necessary and sufficient that there exists a measurable set P

ί w J - N with m(P)>0 such that for any function u in the class HD(R), u(θ) -
θ is a constant almost everywhere on P.

Proof. First we show the necessity of our condition. Let RG UHD. Then

there exists a point p in Γ with ju(p)>0 (see Nakai [6]). Now we show that

P=Λp is the required set.*} By Proposition 5,

Next let u<= HD(R). We must show that u(θ) is a constant almost everywhere

on P. Since HD(R) forms a vector lattice, we may assume that u>0 on R.

We denote by uc the harmonic function u/\cy where c is a positive constant.

Then by Theorem 1. 3,

Uc(θ) =u(0) ΓΪC

almost everywhere on /, where u(θ) = \imr-+iu(retθ) and uc(0) = \imr-+iUc{retB).

We also have that

uΛq) =*u(q)nc

on A (see Nakai [6]). Since μ(p)>0, u(p)< °°. Hence for any c>u(p)f

uc{q) = u(p)

*) If R^OHD, then our assertion is clear. So we assume that
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for any point q in the block Λp. Let (cn)T be a sequence of numbers such that

u(p)<cn/ oo. Let f be the subset of J with m(J-J') = 0 such that for any

positive integer n, uCn(θ) exists for all θ in J1. lί θ<= POJ1 = ΛpΓiJ1, then uCn

is a constant on eθ and βQΠΛp^0 and so uCn is a constant w(/>) on the block

Λp. Thus uCn(θ) =«(/>). Hence for all positive integers n,

U(θ) f)Cn = UcJθ) ^u(p)

and so

u(θ) =u(p)

for any θ in PΠ/'. Hence

exists and is a constant for Θ<EPΓ\J', where w ( P - P Π / ) =0.

Next we show that our condition is sufficient. For the aim, we denote by

%P the set of all functions u in HD(R) such that

on R and

almost everywhere on P. For any u and υ in $p, by Theorem 1.3,

almost everywhere on P and 0<uί\v<l on R. Thus MΛZ; belongs to Sa-

lience it is well-known that

s{z) = infUU) ; « e g P ) (ze JR)

is a harmonic function on R and there exists a non-increasing sequence (wn) of

functions in gp such that

\\mnUn(z) ~ s(z)

on /?. Therefore s{z) belongs to the class HD(R), AS we have

s(o) = lim»ιιΛ(o) = limwp«»(^) drn(θ) > \ dfwi(̂ ) = m(P) >0,
Jo J/3

so we can conclude that
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s(z)>0 on R.

Now we show that s(z) is -HP-minimal on R. For the aim take an arbitrary

function t(z) in #P(/?) such that s(z)>t(z)>0 on R. Let (v'n) be the non-

increasing sequence of functions in the class HD(R) such that

Then, since the class HP is a vector lattice (see Nakai [6]), vn= unί\Vn belongs

to the class HD(R) and vn\s/\t = t. Hence

\imn Vn(z) = t(z)

on R and

l > w « > : ^ > 0

on R. By the assumption on P,

#n(0) = cn (a constant)

almost everywhere on P. Clearly 0 < cn < 1 and there exists a constant c in

0 < c < 1 such that cn ^ c.

If c = 1, then 0<#«<l and #n(0) = 1 almost everywhere on P. Hence vn^

$P and so vn > s on R or t > s. Hence ί = 5.

If c < l , then we may assume that c n < l Then

belong to the class $P. Hence

^ ^ ? > s a n d

on i? and by making w/^ °°, we get

on R. Then the first inequality shows that s -t>s~cs or

on R. Similarly* the second inequality gives that s + t>s + cs or

cs<t
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on R. Thus t = cs on R.

Hence in any case, the function t is a constant multiple of 5 and so 5 is

ffl?-minimal on R. Therefore we can conclude that R e UΠD. Q.E.D.
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