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It has been shown by Kiyoshi Noshiro [8; p. 35] that a bounded analytic

function w = f(z) in U ! < 1 having radial limit values of modulus one almost

everywhere satisfies a localization principle of the following type. Let (c) be

any circular disk: | vo — a \ < p lying inside | w I < 1 whose periphery may be

tangent to the circumference |u;| = l. Denote by Δ any component of the

inverse image of (c) under w = f(z) and by z = z(ξ) a function which maps

I £ I < 1 onto the simply connected domain A in a one-to-one conformal manner.

Then, the function

W = F(ξ) = ~lf(z(ξ))-al

is also a bounded analytic function in | ξ \ < 1 with radial limits of modulus one

almost everywhere.

Maurice Heins [2 p. 455], [3] has established a localization principle for

conformal mappings of type-JB/ between Riemann surfaces.

The object of this note is to prove an extension of Noshiro's theorem.

Definition 1.

A function w-f{z) which is bounded and analytic in | z | < l and whose

radial limit values lim/(r^θ) =/*(e ίθ) exist and are of modulus one for all
r->l

points etQ on \z\ = 1 except for at most a set S of points etQ of linear measure

zero will be called of class (U) in \ z I < 1. If the possible exceptional set S is

of logarithmic capacity zero, cap (S)=0, w = f(z) will be said to be of class

(17*) in \z\<l.

For the sake of completeness we prove the following lemma.
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LEMMA 1.

If w — f(z) is an analytic function in \z\ <1, then every component G(a, p, k)

of the open set G(a, p) = {z \ \z \ < 1, I f(z) - a I < p} is a simply connected domain.

Proof: If G{a, p, k) is not simply connected, there exists a point zQ in the

complement of G{cc,p,k) and a simple closed polygonal path Γ contained in

G(a, o, k) for which the winding number of Γ with respect to zo is one, n(Γ, zϋ)

= + 1 . Now I f(z) - a I has a maximum value on 7; and max | f(z) - a I = M< p
ZEΞΓ

since ΓaG(a, p, k). Therefore by the maximum modulus theorem, for all z in

the interior of Γ, the relation \f(z) -a\ <M<p is satisfied. This contradicts

the assumption that zQ Φ G(a, p, k) so that \f(zo) - a I > p.

Definition 2.

An analytic function to = f(z) defined in | 2 | < 1 is said to be of class (Z7*)

at a point a if there exists a disk \w — a\<p such t h a t for each component

G(a, p9 k) of G(a, p) = {«| U I < 1 , \f(z) - βr |<ιo} the function

FΓ=F(e)=— Lf(z(ξ))-al

is of class (Z7*) in | ? | < 1 where z-z(ξ) is any one-to-one conformal mapping

of |f I <1 onto the simply connected domain Gia, p, h). If w = f(z) is of class

(£/*) for every α in a domain G, then w = f(z) is said to be locally of class

(U*) in G.

The structure of domains of the type of G(a, p, k) and of their frontiers

Fr(G(a, p, k)) for various classes of functions has been the object of extensive

study by many authors. See for example the work of Lohwater [4], [5], [6],

Noshiro [7], [8], Tsuji [11] and the author [10]. We now prove a lemma con-

cerning the structure of G(αr, p, k) for functions of class (£7*). The proof is a

modification of a technique used in [5] and [10].

LEMMA 2.

Let tv = f(z) be a non-constant function of class (£/*). Assume that for

each e{\ cap {ei*\f*{ei9)=e<(t} = 0. Then for any a, \a\<l and any p, 0<p<

1— |αl the frontier Γ = Fr(G{a, p, k)) is a Jordan curve whose intersection with

I z I = 1 is of logarithmic capacity zero.

Proof. By Lemma 1, G(cc, p, k) is a simply connected domain and we now show

that Γ is locally connected at each of its points i.e. every neighborhood U of
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a point i>εΓ contains a neighborhood V of p such that every point of VOΓ

lies in that component of Z7ΠΓ which contains p. As a consequence, each

point of Γis then [12, p. I l l ] arcwise accessible from G(a, p, k). Now, at each

point of Γ lying interior to I z | < 1, Γ is locally connected, since it is part of a

piecewise analytic arc, namely a level curve of log \f(z) — a |. Let E = ΓΓi {\ z\

= 1}. If p<=E and if Γ is not locally connected at p, then, by an elementary

theorem [12 p. 18], there exists a non-degenerate subcontinuum N of Γ con-

taining p and such that Γ is not locally connected at any point of N. Since N

must lie on \z\ = 1, it is clear that N is an arc of U| = 1. Furthermore, there

must exist [12 p, 18] a circular neighborhood V of p and a sequence of mutu-

ally disjoint components Nlf N2, . . . of V Π Γ converging to a non-degenerate

limiting arc No^N containing p. Thus if q is any interior point of iV0, every

radius of 1 z I < 1 drawn to q must cross infinitely many of the components Nj

arbitrarily close to q. Along such a radius of UI<1, if f(retθ) tends to a limit

of modulus one, this limit must be -p-τ. since \f(z) — a\ = p < 1 — |αl at all

points of Nj. Since this occurs at every interior point of No with at most the

exception of a set of logarithmic capacity zero, we violate the hypothesis that

f o r e v e r y e*\ c a p {eiθ\f*(ei0) = ei?} = 0. T h e r e f o r e Γ=Fr(G(a p , k ) ) m u s t b e

locally connected.

We show next that the set £ = ΓΓi {\z\ = 1} is of logarithmic capacity zero.

Let M be the set of points on I z I = 1 for which the radial limit values are of

modulus one. We let M= {\z\ = 1} - M and observe that cap (M) =0. Because

of the decomposition E= (EΠ M) ϋ (Ef) M) it will suffice to prove that EΠM

is of logarithmic capacity zero.

We divide M into two sets M\ and Mi in the following manner. Let Mi =

ieiB\f*(ei9) = τ~|} and M2 = M-Mu The set Λfi is by hypothesis of logarithmic

capacity zero and at each point eiθ e M2 Π Ey the radial cluster set CP(/, £tθ) is

a single point /*(e1 0) #~p-r Each point ^ ° e M 2 is arcwise accessible from

G(a, p, k) and the curvilinear cluster set C\o(f9 e
t0) along any path λθ lying in

G(a, p, k) and terminating at etQ is contained in {| w — α: I < p). The intersection

Cp(/, ei0) Π Cλθ(/, βίθ) = Φ for every point e*'θ €ΞEΠM2. By a result of Bagemihl

[1], EΠ M2 is at most a denumerable set and so E Π M is of logarithmic capacity

zero.
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Finally, to prove that Γ= Fr(G{a, μ, k)) is a Jordan curve, we must show

that the complement of Γ consists of two components GL and G2 and that every

point of Γ is arcwise accessible from each of d and G%. Since we may identify

G(a, p, k) with Gu it is sufficient to show that the complement G of the closure

of GO, p, k) is connected and that each point of Γ is arcwise accessible from

G. Now E is a closed set of logarithmic capacity zero, so that between any

two points of E exists at least one arc of \z I = 1 belonging to G. Thus if there

exists a point of G interior to \z I < 1 which cannot be joined to a point of

U | > 1 by an arc lying in G, there must exist a simple closed curve γ which

lies, except for one point q of E, entirely inside G(a, p, h) and which encloses

points of G.

Since f(z) is a bounded analytic function in the domain Ω bounded by γ

and since except for the one point q^γ, limsup \f(z) — a\ <p for all points

ξ<=γ = Fr(Ω), we see by the extended maximum principle [8; p. 14] that

\f(z) — a\<p for all points in Ω which contradicts the statement that there

exists a point of G interior to | z | < l which cannot be joined to a point of

\zI > 1 by an arc lying in G. Hence all points of G which lie in \zI < 1 can be

joined by some arc of G to \z I > 1, so that the complement of Γ consists of

two components Gi and G2. The accessibility of each point of Γ from G2 is

trivial however since E lies on \z I = 1 and that part of Γ inside I z I < 1 consists

of smooth level curves. Hence Lemma 2 is proved.

THEOREM.

Let w-f{z) be a non-constant function of class (C7+) and let (c) be any

circular disk I w — a I < p lying inside | tv I < 1 whose periphery may be tangent to

the circumference \w\ = 1. Denote by G(cc, p, k) any component of the open set

G(#, p) = {z\ \f(z) - a\<p). Let z = z(ξ) be a function which maps \ξ I <1 in a

one-to-one conformal way onto the simply connected domain G(a,p,k). Then, if

for every ei? on \w\ = 1, cap {^"°|/*(^θ) =eifi) =0, the function

is also of class (U*) and for every eiτ on \ W\ = 1, cap {έ?ίθ | F*(eiB) = eir} = 0.

Proof. If the closure of G(a,p,k) lies in D UI<1, the theorem is clearly

valid since by a well-known theorem of Caratheodory on the conformal mapping
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of Jordan domains TF=F(f) is continuous on the closed disk If I ̂  1.

We shall now consider the case where G(α\ p, k) has at least one boundary

point on \z\ = 1. We define E(*fp, k) = Fr(G(a, p,k) Π {\z\ = 1}) and observe that

Lemma 2 states that cap (E{a> p, k)) = 0.

The functions z = z(ξ) and W-F(ξ) are bounded analytic functions in | f | < 1 .

Let us denote by E% the set of points etQ on If I = 1 for which the radial limit

z(eiB) exists and the radial limit lira F(rei9) either fails to exist or if it does

exist is of modulus less than one. Let Ez denote the image of E* under z-z(ξ)

i.e. Ez= {z(eiθ)\ei0<=E%}. The set Ez lies on Γ: | z | = l. Because Ezc:E(α, p,

k) we can conclude that cap Ez = 0. We shall now prove that the logarithmic

capacity of E* is zero.

Let A denote the circle |fl = -j- and Γz its image under z = z(ξ). Since

cap (Ez) = 0, by Pfluger's theorem [9 p. 122] it follows that the extremal length

of the totality of paths / joining Ez to Γz is infinite, λ(J) = °°. Now as we

observed above, the frontier of G(αy p, k) is locally connected and if we consider

the subfamily Jz of paths joining Ez to Γz and lying in G(αr, p, k) then, since

Jzαj> it follows that λ(Jz)>λ{)) = «>. Because the extremal length is a con-

formal invariant, we obtain λ(fx) = °° where J\ is the family of preimages of

Jz in If | < 1 under the transformation z = z(ξ). It now follows from another

application of Pfluger's theorem cited above that cap (E%) = 0. Since Ex the set

of points etQ on If I = 1 such that the radial limits limFire10) either fails to exist
j—vl

or is of modulus less than one, is of logarithmic capacity zero we conclude that

fF=F(f)€=(*/*) and hence w = f(z) is locally of class (U*) in | z |< l .

We now prove that for every eir on | W\ = 1, if S r{^θlF*(^θ) =^ τ } then

cap (Sr) =0. Let Zr denote the image of Sr under z = z(ξ). The set Zτ must

lie on \z\ = 1 except for at most a denumerable subset in \z|< 1. Because for

every e ί θ eZr the radial limit /*(£ ίθ) exists and equals petr-\-αf we observe that

cap(Zτ) =0 and thus by the previous argument cap (Sr) =0 and the proof of

the theorem is complete.

For conformal mappings of Riemann surfaces, in addition to proving that

one may localize the notion type-ϋ?/, Maurice Heins also proved that maps

which are locally of type-Z?/ and have as range a Riemann surface with positive

ideal boundary are also globally of type-2?/. This fact leads one to conjecture

that if w = f(z) is locally of class (£/*) in M < 1 , then it is of class (U*).
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The following example, which Kiyoshi Noshiro has kindly shown to the author

answers the conjecture in the negative. The example is based on a result of

P. J. Myrberg (see also Noshiro [8, p. 26]). Consider a domain Φ obtained by

excluding two points ocu αr2 from the disk ] w\ <1. Let Φ be the universal cover-

ing surface of Φ. Let w-f(z) be a function which maps the unit disk U | < 1

conformally onto Φ in a one-to-one manner. Then, the perfect set E, on I z I = 1,

of essential singularities of w = f(z) must be of linear measure zero but the

capacity of E must be positive. The radial cluster set CP(/, etθ) does not lie

on the circumference | w | = 1 for every et0 e E. Therefore, E is considered as

the exceptional set in the definition of class (U). The function u)~f(z) is

locally of class (£/*) in | M > | < 1 because Φ has only logarithmic singularities at

w = ai and w = oco.
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