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1. Introduction. In the ring Oκ of algebraic integers of a number field

Ky the group Iκ of ideals of Oκ modulo the subgroup Pκ of principal ideals is

a finite abelian group of order hκ, the class number of K. The determination

of this number is an outstanding problem of algebraic number theory.

Leopold has shown in [1] that if K is an absolutely abelian extension of

degree m over the rationals Q, and eu e2, . . . , en are the ramification degrees

of the ramified prime ideals of K, then 77l=i es/m divides hκ.

The aim of this paper is to prove the following partial generalization.

MAIN THEOREM. Let K be a number field of degree m over the rationals

and L be a Galois extension of K of relative degree [_L : K~\ — n. Then there

is an integer R(m, n) depending only on m and n such- that hκlls=i es/R(m, n)

divides hL, where eι, e2, . . . , er are the ramification degrees of all the prime ideals

of K which are ramified in L.

This theorem has the following qualitative result as immediate consequence.

COROLLARY. Let K be a number field and consider the set of Galois extensions

L of K of relative degree n. Then the class number of L goes to infinity with

the number of prime ideals of K which are ramified in L.

The idea of the proof of our main result is to first give an arithmetic

interpretation to the cohomology group H1 (G, UL) where L is a Galois extension

of the number field Ky G is the Galois group of the extension and UL is the

group of units of 0L Then in section 3, we shall find a bound on H1 (G, UL)

by using the Dirichlet unit theorem and standard cohomological techniques.

Putting the two pieces of information together will prove the theorem.

2. The arithmetic interpretation. Using the notation of Section 1, let L

be a Galois extension of a number field K with group G, and let L* be the
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group of non zero elements of L. The exact sequence of G-modules

1-*UL-»L*-»PL-*1

leads to the exact sequence of cohomology groups

0->#°(G, UL)-*H°(G, L*)-*#°(G, PL)->H\Gt UL)-*0

since Hubert's theorem 90 tells us that HHGf L*) =0. For any G-module A,

H°(G, A) = AG, the submodule of all elements of A left fixed by G; if A is

either the group of ideals Iκ, or the group of principal ideals Pκ, we shall

adopt the classical terminology and call the elements of AG ambiguous ideals,

or principal ambiguous ideals. The exact sequence proves

LEMMA 2.1. Hι(Gt UL) is isomorphic to the group of principal ambiguous

ideals modulo those principal ideals of OL which are generated by elements of K.

PROPOSITION 2.2. Let L be a Galois extension of the number field K and

G be the Galois group. Let eu e2, . . . , er be the ramification degrees of the

prime ideals of K which are ramified in L. Then UCL '- PκΛ-eχe2 ' * erhKt

ivhere hκ is the class number of K.

Proof. Let p be any prime ideal of K and let Pu Pz, . . > Pg be the prime

ideal of L above p. Then

pOL=(P1P2' PgY = A(p)e

and the set of ideals A(p) are easily seen to be a set of free generators for

the ambiguous ideals, therefore Uϊ : Iκl = e^ er. Using the index relation

Uΐ ' Pκl = ίlί IKΣIR : PRI, one obtains the desired result.

COROLLARY 2.3. If every ambiguous ideal is principal, then

IH\G, UL) : 1] = ̂ 2 -erhκ

PROPOSITION 2.4. Let L be a Galois extension of K and let T be the Hilbert

class field of L. Then T is a Galois extension of K with group G and

{.Hι(G1 UT) : l ] = £i£2

 # erhκ where eι are the ramification degress of the primes

of K ivhich are ramified in L.

Proof. The ideals of T which are ambiguous for the extension T/K are

also ambiguous for the extension T/L. Since T/L is unramified, the proof of

proposition 2t2 shows that the ambiguous ideals of T/K are extensions of-
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ideals of L. We invoke the principal ideal theorem to conclude that the

ambiguous ideals are principal we may now apply corollary 2.3 noticing that

the ramification degrees in T/K and in L/K are the same.

3. The cohomological interpretation. In this section, we shall obtain a

bound for the order of H\G, UL) where L/K is a Galois extension of group G.

This will be done by using standard cohomological techniques for which the

reader is referred to [2, 3].

We consider first the special case where G is cyclic of prime order p. We

recall that the Herbrand quotient of a G-module A is defined by

h(A) = ΌR\G, A): lϋ/DϊHG, A) : 1]

where H°(G, A) =AG/NA is the Tate cohomology group (N denotes the norm

N~ Σ # ) . Tate's theorem [3] shows that if A is a finitely generated abelian

group of rank a, and AG is of rank b, then h(a) =pc where c = (pb - a)lip - 1).

LEMMA 3.1. Let LIK be a Galois extension with group G. Suppose G is

cyclic of prime order p. Then h(UL) —pr~ι where r is the number of infinite

primes of K which ramify in L.

Proof. Suppose that there are s real and t complex infinite primes in K.

Let r be the number of ramified infinite primes, i.e. r of the real primes become

complex in L (this can occur only if p = 2), and s — r of the real primes stay

real. Then the Dirichlet unit theorem shows that the rank of UL is p(s — r-f t)

-f r - 1 and the rank of UG

L-Uκ is s + t - 1 . Tate's theorem completes the

proof.

PROPOSITION 3.2. Let L/K be a Galois extension with group G. Suppose

G is cyclic of prime order p. Let u be the number of infinite primes of K which

are unramified in L. Then the order of ϋ/HG, UL) divides pu^1. In particular,

the order of H\Gf UL) divides pmL'p\ where R(L,p)= ίL

 p

Q~ + 1 .

Proof The Dirichlet unit theorem shows that Uκ = Wκ x F, where Wκ is

the cyclic group of roots of unity in K and F is a free abelian group of rank

s +1 — 1, in the notation of the lemma.

Thus WK' UPK1 divides ps+t. Since NL/KUL contains Up

Ky it follows that

IH°(G7 Ui,): 1] divides ρs+t. We now apply lemma 3.1 and the definition of
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the Herbrand quotient to prove the first assertion. The second comes from the

inequality u< IK : Ql = ~^^j~

PROPOSITION 3.3. Let L/K be a Galois extension with group G. Suppose G

is of order pn for some prime number p. Then ZH\G, UL) : 1] divides pmL>pn\

tvhere

R(L,p") = ZL: Ql

Proof. We shall apply mathematical induction on n. For n = 1, we use the

last proposition. Now, let n>l, then the group G is nilpotent and we may

find a normal subgroup H such that G/H is cyclic of order p. Let M be the

fixed field of H, then Uΐ = UM and we have the following exact sequence:

UM)-*H\G, UL)-*H1(H, UL)

from which we conclude that ίHHG, UL) : 1] divides the product LrfiG/H, UM):

1] LHι(H, UL) : 1]. The induction hypothesis may now be invoked.

PROPOSITION 3.4. Let LIK be a Galois extension with group G of order n.

Let n = Ylpa(p) be a factorization of n into prime powers. Then \H1{^G, UL)' 1]
V

divides JiρR{L>ί>aV)) where R is the function introduced in proposition 3.3.
V

Proof. Let Gp be any ̂ -Sylow subgroup of G, then [ifHG/,, UL) 1] divides

pR{L,fiPM) b y proposition 3.3. The result now follows from the fact that the

restriction map,

res: HHG, UL) -H\G P y UL)

is injective on the ̂ -primary component of ϋZΉG, UL).

Let Rim, n) = npmL'pa{P)) where n = Πpa(p) is a factorization of n, and L
P P

is any extension of degree nm over the rationals^ note that Rim, n) actually

depends only on m and n. The number Rim, n) is the integer refered to in

the statement of our Main Theorem which we are now ready to prove.

Proof of the Main Theorem. Let T be the Hubert class field of L, then

the extension T/K will be Galois with group G. If H is the subgroup cor-

responding to the extension TIL, then the group of GIH is the Galois group

of LIK and thus is of order n. We now have the exact sequence:

Q-H\G/H, Uι)-+H\G, UT)->H\H7 Ur)
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which shows that IHHG, UT) : 1] divides the product tHHG/H, UL) : 1]

IHHH, UT)- l l Proposition 2,4 shows that the order of H\G, UT) is

£i£2* * * erhκ and that of ^(H, Uτ) is hr,, while proposition 3.4 shows that

the order of H'{GlHy UL) divides Rim, n). The conclusion is now immediate.
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