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In the frame of the recent axiomatic theories of harmonic functions [2],

[3], [1], it has been shown that the continuous bounded functions on the

boundaries of relatively compact open sets are resolutive [5], [1]. The aim

of the present paper is to substitute in these results the continuous functions

by Borel-measurable functions and to leave out the restriction that the open sets

are relatively compact. H. Bauer has replaced the axiom 3 of Brelot's

axiomatic by two weaker axioms: the axiom of separation (Trennungsaxiom)

and the axiom K\. Since the axiom of separation is not fulfilled in some impor-

tant cases (e.g. the compact Riemann surfaces) we shall weaken this axiom

too, substituting it by one of its consequences: the minimum principle for

hyperharmonic functions.**

0. Notations and terminology. We shall use the following notations and

terms. A real (resp. numerical) function is a map in the real axis (resp. real

axis completed with the points -f oo, — oo). For a topological space T we

denote by ¥>(T) the set of real continuous functions on T. If U is an open

set in a topological space T, dτU-dU (resp. UT = U) will stand for the

boundary (resp. for the closure) of U in T. For a locally compact but non-

compact space T we shall denote by tyT the filter of sets with relatively compact

complements.

1. The axioms. Let X be a locally compact Hausdorff space and J& a

sheaf on X of real vector spaces of real continuous functions called harmonic

functions. We shall suppose that Jύ' will satisfy the axioms Hi, H2, H3 stated

in this paragraph.

Let U be an open set of X. An open relatively compact set of X is called

regular in U if:
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* } A similar axiom has been proposed by M. Brelot [4].
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a) F c U and dV is not empty;

b) for any / G ^ O F ) there exists a unique continuous extension on V whose

restriction to V> denoted by H} = H/t is harmonic

c) from / G ^ O F ) and / > 0 it follows # / > 0.

We shall say simply regular instead of regular in X.

Let V be regular and #e V. The map f-*Hf(x) is a positive linear func-

tional on '(o{'dV) and so, there exists a Radon measure ωΊχ on 3F, called the

harmonic measure of V at the point *, such that for any

H}{x) = \fdωv

x.

Axiom Hi. The regular sets form a basis of X.

A point x e X will be called a zero-point if any harmonic function on a

neighbourhood of x vanishes at x; we shall denote by Xo the set of zero-points.

THEOREM 1. Xo is closed, nowhere dense and totally disconnected.

Let x G Xo and let u be a harmonic function defined on a neighbourhood U

of x. Since u vanishes at the points of Xo Π U it vanishes also at x. Hence

and Xo is closed.

Let X^XQ and V be a regular neighbourhood of x. Then

is an open neighbourhood of x contained in V whose boundary does not

intersect Zo. Xo is therefore nowhere dense and totally disconnected.

A numerical function on an open non-empty setU is called hyperharmonic on

U if:

a) it does not take the value — oo

b) it is lower semi-continuous

c) for any point x^U there exists a neighbourhood Us(x)<^U of x, such

that for any regular set V in Us(x) and any y&V

sdωl.

A numerical function s on U is called hypoharmonic on U if — s is hyper-

harmonic on U.
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The harmonic functions are hyperharmonic and a function which is

simultaneously hyperharmonic and hypoharmonic is harmonic. The sum and

the minimum of two hyperharmonic functions and the product of a positive

real number with a hyperharmonic function is also hyperharmonic. The hyper-

harmonic functions form a sheaf on X.

We shall say that the minimum principle is valid on an open non-empty

set U if one of the following conditions is fulfilled:

a) U is compact and all hyperharmonic functions on U are non-negative;

b) U is non-compact and any hyperharmonic function s on U for which

lim infw s > 0

is non-negative.

The open non-empty sets on which the minimum principle is valid will be

called M P.-sets.

THEOREM 2. Let Ut U
f be open non-empty sets, IP c U, and s {resp. s') be

a hyperharmonic function on U {resp. Uf). We suppose that the function s*,

defined on U equal to s on U-W and equal to min (s, sf) on £/', is lower

semi-continuous. If any point # e UΓidU* possesses a neighbourhood Ux such

that either s <> s' on Ux Π Uf or Ux Π U' is an M.P.-set, then s* is a hyperharmo-

nic function.

The conditions a) and b) of the definition of the hyperharmonic functions are

satisfied trivially by s* and the same is true for the condition c) at the points

of U-dU1. Let x be a point of UΠBϋ1 and Ux be a neighbourhood which

satisfies the condition from the statement. There exists a neighbourhood W

of x, PFc UXy which satisfies the condition c) for 5. We shall prove that W

fulfils the condition c) also for 5*. This is trivial if s<sf on UxΠUf since

then s* = s on W. On the contrary case let V be a regular set in W and

/ e ^ ( 3 F ) , / < s * . The function s* — H/ is lower semi-continuous on V, non-

negative on V - U\ hyperharmonic on V Π £/', and

lim inf(s*(y)-H?(y))>0

for any z e dV. The function s0 defined on Ux Π IP equal to 0 on (Ux Π £70 - V

and equal to min (s* — H/, 0) on FΠ U' is hyperharmonic by the above proof,
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where Ux Π U* (resp. VΠ Uf) replaces U (resp. IP) and 0 (resp. s* - H/) replaces

5 (resp. sf). If UXΠ U' is non-compact then it can be easily verified that

Urn i

Since UXΠ U' is an M.P.-set we get s 0>0, s*>H} on V. f being arbitrary we

get for any jye F

COROLLARY 1. Let U be an M.P.-set and U1 be an open non-empty subset of

U. If any point x&UΠdUf possesses a neighbourhood Ux such that either

there exists a finite hyperharmonic function sx on Ux Π ZP with inf s* > 0 or

UxPi IP is an M.P.-set, then U1 is an M.P.-set. The intersection of any regular

set with U is an M.P.-set.

Let s' be a hyperharmonic function on U1 such that if IP is non-compact

lim i n f o s ' > 0 .

We suppose firstly that there exists a finite hyperharmonic function so on

Uf with inf 5o>O. Let e be a positive number and s denote the function on U

equal to 0 on U—LP and equal to min (s'-f εso. 0) on Uf. From the theorem

it follows that s is hyperharmonic. If U is non-compact it can be verified easily

that

lim inf

Since U is an M.P.-set we get 5 > 0, s1 > - es0. e being arbitrary and s0

finite it follows sf > 0 Uf is therefore an M.P.-set.

From this proof we see that for any point ΛΓG UΠdU' the set UXΓ\ Uf is

an M.P.-set. Let s* be the function on U equal to 0 on U— U1 and equal to

min (s', 0) on Uf. From the theorem it follows that s* is hyperharmonic. If

U is non-compact it can be verified easily that

lim in% l7s*>0.

Since U is an M.P.-set we get s* > 0, 5' > 0 U' is therefore an M.P.-set.

If V is a regular set, the set U' — V V\ U fulfils the required conditions taking

<Ξ V\HΪ<-i} and sx - HΪ for any #eUΠdU' = UΓίdV.
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COROLLARY 2. Let U be an open non-empty set, s be a hyperharmonic func-

tion on U and V be a regular set in U. If V is an M.P.-set then the function

sv defined on U equal to s on U-V and equal to

•rsdωζ

on V, is hyperharmonic and not greater than s.

Let /e= ̂ O F ) , f<s. Since V is an M.P.-set s>H/ on V

s > sup H/ = sv.

Being on V the least upper bound of a family of continuous functions, sv

is lower semi-continuous on V. It follows immediately that sr is lower semi-

continuous on U. In order to show that sv is hyperharmonic on V let us take

a regular set V in V. We have for any x<=Vf and / e ^ ( a K ) , /<s,

sv(x) > Hv

f(x) = JfiFrfωί', sv{x) > sup JflJtfoΓ = J VdώΓ.

Taking UX=U for any ΛΓG9F it follows from the theorem that s r is

hyperharmonic.

Axiom H2. T/ϊβ M.R-sets form a covering of X.

This axiom is a theorem in Brelot's [2], [3] and Bauer's [1] axiomatic since

in these axiomatics all regular sets are M.P.-sets (Theorem 3 (ii) and 4 ([3]

part IV) and Korollar of Lemma 2 [1]).

We shall denote by SB the set of regular M.P.-sets. From Hi, H2 and the

corollary 1 it follows that 35 is a basis of X. For any open non-empty set U

and any hyperharmonic function s on U and F G S , Va JJ9 we see by corollary

2 that sv is hyperharmonic and for any # e V

r
s{x) >J

From this fact it follows that any M.P.-set can be taken instead of Us(x) in

the definition of hyperharmonic functions, this means independently of s.

THEOREM 3. The least upper bound of an upper directed set of hyperhar-

monic functions is also hyperharmonic.
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Let έ/ be such a set of hyperharmonic functions and s0 its least upper

bound, so is lower semi-continuous, does not take the value — °o, and for any

and xe V we have

sdωl = \
_ _ „ J

. For any open non-empty set U the least upper bound of any

upper directed set of equally bounded harmonic functions on U is harmonic.

An equivalent statement of this axiom is- on any regular set V the function

x->\fdωζ

is harmonic on V for any bounded lower semi-continuous function f.

Let U be an open non-empty set. A set <y of hyperharmonic functions

on U is called a Perron set if it is lower directed and for any Fe$8, VajJ,

and s^icϊ/ it follows sFGe5/, where sv denotes the function defined in Corollary 2.

THEOREM 4. ([1] Satz 11) The greatest lower bound of a locally equally

bounded Perron set is harmonic.

Let u denote the greatest lower bound of a locally equally bounded Perron

set J/ on an open non-empty set U and let Fe33, Vc χjt such that έ/ is equally

bounded on V. Then u is equal on U to the greatest lower bound of the set

{sv\s^<y} and therefore harmonic by H3.

A potential is a non-negative hyperharmonic function for which any hypo-

harmonic minorant is non-positive. If s is a hypoharmonic minorant of p + s,

where p is a potential and 5 a hyperharmonic function, then £ < s, since s — s

is a hypoharmonic minorant of p. It follows that the sum of a finite number of

potentials is again a potential. It follows further that if the sum of a series

of potentials is finite it is also a potential. A non-negative locally bounded

hyperharmonic function can be set in exactly one way as a sum of a potential

and a harmonic function.

LEMMA 1. Let p be a locally bounded potential on X. There exists for any

i G l f l non-negative hyperharmonic function pXi finite at x, such that for any

*) This axiom was introduced firstly by H. Bauer [1] (Axiom Ki).
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filter $ on X with empty adherence for which

lim i

we have

Let J/7 be the smallest set of hyperharmonic functions which contains p

and such that for any s e <</ and F e S , s F 6 y . From Theorem 4 it follows

that the greatest lower bound of έ/ is a harmonic function. This function

vanishes because it is non-negative and not greater than p. For any natural

number n let pn^έ/, pn(x) < -^n T n e function i>* = Σi>« fulfils the re-

quired condition.

2. The normed Dirichlet problem. Let U be an open set for which dU is

non-empty and let / be a numerical function on BU. We denote by jff x = ά^y

(resp j/ftX = ci//) the set of lower bounded hyperharmonic (resp. upper bounded

hypoharmonic) functions s, such that

lim inf s(x)>f(y) (resp. lim sup s(x)
U

for any y e 3Z7 and there exists a compact subset Ks of X such that s > 0 (resp.

5 < 0 ) on U-Ks. We denote by H? x = 5/ = 5 / (resp. £[/'* = fi? = Hf) the

greatest lower bound of j / / " (resp. the least upper bound of cV/). The open set

U is called an M.Po.-set if HΪ'X = O. Obviously an M.P.-set for which BU is

non-empty, is an M.P0.-set. From the proof of corollary 1 it results that U is

an M.Po.-set if and only if for any open relatively compact subset U1 of X

such that UΠXoΠ dUf is empty IFΠUis an M.P.-set. // U is an M.Po.-set we

have Hu

f < Hf.

If {/«} is a decreasing sequence such that H/n are harmonic then

lim H/n = gllmfn.

Indeed let x be a point of U and for any n, sn^cyϋ/n such that sn(x)>

S/nix) - ^n- The functions
00

S = lim Hfny Sm= Σ ( Sn ~ SfΏ)
n-* oo n-m

are hypoharmonic (Theorem 3) and s \-sl

m^Δ/ϋfn for any n. Hence s+s'm^ 3Ίim /„,
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- -O^ΓΓ <s(x)+Sm(x)<Hiίmfn(x)>

six) < Shn,/nix) < lim Sfnix) = six).

Hfι+ft < Ήfl + #>„ Hfί+/2 >Hfx + #/2,

wherever the right side has a sense, where /1+/2 is defined arbitrarily on the

set

^ +00, My) =: ~ oo}n{j^eaZ7|/1(ty)= - «> f / f (^)= +00},

and for a>0

7/ the functions H/t Mf are finite (resp. harmonic) and equal the function

f is called resolutive (resp. harmonic resolutive) and

is called the normed solution of Dirichlet problem with f as boundary func-

tion. If U is an M.Po.-set, the set of resolutive (resp. harmonic resolutive) real

functions on dU form a real vector space. If' fu f2 are non-negative harmonic

resolutive functions then max (/i, f2) is resolutive and HmΆχ(fltf2) is the least

harmonic majorant of Hfu H^.

LEMMA 2. Let U be an open set, y^dU and g be a filter on U converging

to y. We suppose that there exists a fundamental system 23 of regular neighbour-

hoods of y such that for any Fe5S there exists a non-negative hyperharmonic

function sv on Vf)U such that

g = 0

and for any z(ΞUndV

lim inf svix) >0.
Ur\V3x-+z

Let s be a hyperharmonic {resp. hypoharmonic) function on the intersection of

U with a neighbourhood of y for which

lim inf s(x) = 1 (resp. lim sup s(x) = 1).
ί73 U3
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Let f be a non-negative numerical function on dU, for which H/ (resp. 3

is harmonic on U and bounded on a neighbourhood of y. Then

lim supg///< (lim sup/(#)) dim
dU3x->y

(resp. lim in%#/>(lim inf/(*)) dim i
dU3x-*y

We shall prove this lemma following the proof of Theorem 22 [3] Part IV.

We suppose that

lim sup/(#)<°° (resp. lim inf/(#)>0)
d(7 dU3

since on the contrary case the assertion is trivial. Let a be a positive number

α:>lim sup/(#) (resp. α:<lim i
dU3+ dU

ε be a positive number smaller than 1, and F e 55 such that H/ (resp. H1}) is

bounded on FΠZ7, f<a (resp. f>a) on VOdU, and s > l - ε (resp. s < l + e)

on VΠU. Let further K be a compact set in UΠBV for which

There exists a positive number β such that for any

lim inf ί ^ s(x)

(resp. lim sup ( •* six) — /9SF(#)) <Z?/U))

We denote by h the harmonic function on F

by γ the number sup Ή/(x) (resp. sup #/(#)), and by sQ the function defined
x&VnU x&VnU

on U, equal to Ήu

f (resp. ///) on U— V and equal to

min (Ήf

(resp. max (///, 3 x 7 ^ - j9sr- (α

on C7Π F. From Theorem 2 we see that s0 is a hyperharmonic (resp. hypohar-

With the convention 0 OQ = OO, og 0 = 0.
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monic) function. For any s'^ έ/j (resp. off) it can be verified that

s' - Ήυ

f + so e <]// (resp. s' - S/ + s0 e j / ? ) . Hence

s ' - 5 ? + Sb>5? (resp. s'- S?+ so<3f),

So^Hf (resp. s o < # / ) ,

lim supgϊ/f <lim supgso<lim supg ί-~^-s+/9sr

< y^— lim supgs + rε

(resp. lim in%:fl
Γ7>:lim infg,so>lim infg ί-y^—s —/3sr —(

e and a being arbitrary, we get

lim sup^H/< (lim sup/(*)) (lim supgs)

(resp. lim inf^ίf/ > (lim inf/(Λτ)) (lim i

REMARK. If in this lemma s is harmonic and lim s(x) = 1, then it can be
r/3α>->?/

proved in the same way that

lim superHf < lim SUP/(Λ:),

lim i

for any / (not necessarily non-negative) provided that H/y Hj are bounded.

This remark will be not used in the sequel.

Let U be an open set and y<=BU. For any non-negative hyperharmonic

(resp. hypoharmonic) function 5, defined on the intersection of U with a neigh-

bourhood of y for which

lim inf six) = 1 (resp. lim sup s(x) = 1),
U3x-*y U^χ-*y

we set

oΐiiyy s)=lim sups(#) (resp. o*υ(y, s)=lim infs(#)),
U^x-*y U3x~*y

ouiy) =σ*(y) = i n f σu(y9 s) ( r e s p . o*u(y) =<r*iy) =&VLpσ*υ(y, s ) ) .

If there does not exist an 5 with the required conditions we set σ*iy) = °°

(resp. σ*iy) =0). We observe that the existence of a harmonic function on a

neighbourhood of y which is different from zero in y implies σ*iy) = <?*(>>) = 1 .
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Hence if o*(y)>l or if σ*(y)<l, y is a zero point. The function σ* (resp. a*)

is upper (resp. lower) semi-continuous as can be easily verified. We set

AS = A* = {y<Ξ dU\ σ*(y) = 1}, A*σ = A* = {y(Ξ dU\ σ+iy) = 1}.

Of course dU - A* Π A* c Xo.

LEMMA 3. Z,£ί £/ be an open set with non-empty boundary, p be a locally

bounded potential on U, positive on a neighbourhood of any point of 3£7— Xo,

and f be a non-negative function on 317. a) If f is lower semi-continuous and

Hf harmonic on U bounded in a neighbourhood of any boundary point of U

then

b) If f is upper semi-continuous, Hf harmonic on Uand bounded in a neighbour-

hood of any boundary point of U, and if U is either relatively compact or an

M.Po.-set then

Let A; be a point of U and px be the hyperharmonic function associated to

x and p by Lemma 1. Let e be a positive number and y e dU. We want to

prove that

lim sup (Hf{z) - epx(z)) <f(y)σ*(y)
(ϊaz-*y

(resp. lim inf (Sf(z) + εpx(z)) >f(y)o*(y)).
UΞiz->u

Let yΦXo and II be an ultrafilter on U converging to y for which

limu (Ήf - εpx) = lim sup (Hf{z) - εpx(z))

(resp. limu (Sf + epx) = lim inf {H/(z) + epx(z))).

If

then

limn Px== °°

and the required inequality is proved. In the opposite case the inequality

follows from Lemma 2 taking 35 equal to the set of all regular neighbourhoods

*> With the convention QQ Q = 0, 0 OQ=OQ,
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of y and for any F G 95, sv-p\ in the role of the function s we can take here

any harmonic function in a neighbourhood of y equal to 1 at jy. Suppose now

y G XQ. Then for any regular neighbourhood V of y we have Hl(y) = 0. Let

s be a hyperharmonic (resp. hypoharmonic) function on the intersection of U

with a neighbourhood of y with

lim inf s(z) = 1 (resp. lim sup s(z) = 1).
U3z-*y U3z-*y

Taking in Lemma 2, 95 the set of all regular neighbourhoods of y, for any Fe9S

Hi as svt and the trace of 95 on U as $ we get from this lemma

lim sup Ήf(z) <f(y) σ*(y, s)

(resp. lim inf H/(z) >f(y)σ*(y, s)).

s being arbitrary the assertion is proved also in this case.

a) SfΛ-φx^^1/^ Indeed the above proof shows that the condition at

the points of 3U is fulfilled- Since H/t px are non-negative, Sf+εpχ is non-

negative on ϋ. From this relation we get

Hfc, <Sf+ εpx.

px being finite at x and e and x being arbitrary we obtain

b) Suppose now that U is relatively compact. Then from the first part of

the proof we have H/ — εpx e ^

px being finite at x and e and x being arbitrary we obtain

Hf<Hf0*.

Suppose now that U is a non-relatively compact M.P0.-set. Let G be a relatively

compact open set whose boundary does not intersect Xo. From the proof of

Corollary 1 it follows that G Π U is an M.P.-set. Let fG be the function defined

on d(GΠ U) equal t o O o n G Π a t / and equal to Ήj on UOdG. Since U is an

M.Po.-set Hf is non-negative. From ΪJ/ e ^/%u and the fact that G Π ϋ is an

M.Po -set we deduce that Ή%v is non-negative harmonic and bounded. The
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function sQ on U equal to Ήf on U— G equal to Ή%ϋ on G Π U and equal to

lim inf Ή%ϋ(z)

at any y^UΠdG is hyperharmonic. Indeed sσ fulfils the conditions a) and b)

from the definition of hyperharmonic functions. Let s G c / / ^ . The function

JQ on U equal to Ήf on U- G and equal to min (s, Hf) on G Π U is hyper-

harmonic by Theorem 2. Let F be a regular set in U and /

We have on V

From this inequality we get on V—dG

s<? = inf sQ>Hf.

For any y<=VddG we have

= lim inf sG(z) >HVf(y).

sG is therefore hyperharmonic.

Let © denote the set of open relatively compact sets G for which XQ Π BG = φ.

By Theorem 1 Xo is closed and totally disconnected. Hence for any compact

set Ky there exists an open set G ε ® containing K. The family (SG)G(=% is

contained in a Perron set with the same greatest lower bound since from

Gu G2, G e ©, G 3 Gi υ G2, it follows

All functions sG being non-negative and dominated by Hf the greatest lower

bound u of this family is harmonic by Theorem 4 and non-negative. Let -η be

a positive number, and y e 3Z7. Taking a G e ©, which contains y we get from

the first part of the proof

lim sup (u(z) -ypx(z))< lim sup (Ή%ϋ{z) - -ηpx(z)) < 0
U ̂ z^y GnUaz +y

if y$Xo. If y&Xo, let V be a regular neighbourhood of y, VaG, and.αr a

suπiciently great number such that

Hf < a

on VΠU, We denote by s0 the function on ί/ΠG equal to Ήf on U^G- V
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and equal to min (H/, aH^) on VΠ U. From Theorem 2 it follows that s0 is

hyperharmonic. s0 belongs to ^//G° and we get

lim sup (u(z) - vpχ(z)) < lim sup H/a°(z) < lim sup so(z) < ccHΪ(y) = 0.

U3z-+y UnG^z-*y U nQ3z-*y

Hence for any J £ y / and y<=3U we have

lim mf(s(z)-u(z)+ypx(z))>f(y).
U3z-*v

From this inequality and from s > u it follows s — w -f # *

s and 7? being arbitrary and px(x) finite we deduce u(x) =0. Let {Gn} be a

sequence from (S for which

and let us denote by sx the hyperharmonic function

CO

Sx = Σ S<?n.
n = 0

It is easy to verify that Ήf — εsx is non-positive outside a compact set of X.

From this and from the first part of the proof it follows

Hf - εpx - εsx <== c5f/σ , ϊ?/ ~ e^ - εsx < Hfa*.

px and sx being finite at Λ; and e and x being arbitrary we obtain

Ήf<Hfa*.

THEOREM 5. Let U be an M.P0.-set, p be a locally bounded potential on U,

positive on a neighbourhood of any point of dU—Xat and s be a non-negative

hyperharmonic function on U bounded in the neighbourhood of any point of U

and for which

lim inf s(#);>l

for any )»G A*. If f is a bounded lower semi-continuous function on dU, then

f%A* is harmonic resolutive, where %A* is the characteristic function of A*.

Let us denote

B = iy e dU\ lim infs(*)>-ίU.
V U3x->y & '
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B is an open set on BU and A*<^B. Suppose firstly/>0. Then, for a suitable

positive numberα,αsey/ i B σ «, where XB is the characteristic function of B

and n a natural number. Hence Hf^B0» is harmonic and bounded in a neigh-

bourhood of any boundary point of U. We get by the preceding lemma

It follows

3/xA, < Ή/χu < lim H/xBo? = £f*As

For a general / denote

a = inf / .

The functions XM, (f-a.Y/.A* being resolutive, the function

is also resolutive.

T/' Z7 zs «w MPo.-set, a set Ma dU is called negligible if H%M = 0, where XM

denotes the characteristic function of M. A set M is negligible if and only if

for any x^U there exists a non-negative hyperharmonic function sx finite at x

for which

lim inf sx(z) = °°
V 3z-+y

for any y^M. The condition is obviously sufficient. If M is negligible there

exists for any natural number n an sn^I7\M such that

< -ψΓ*

and we can take

If two functions /, g on dX differ only on a negligible sett then

Hf =. Hg, ϊϊf - Hg.

Indeed we have for x&U and ε>0, εs*eJ7Ί/-έri, and therefore

/-*ι -= 0,
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THEOREM 6. Let U be an M.Po.-set, p be a locally bounded potential on U,

positive on a neighbourhood of any point of dU—Xo, and /o be a non-negative

upper (resp. lower) semi-continuous function on dU for which H/o (resp. Hf0)

is harmonic on U and bounded in a neighbourhood of any boundary point of

U. If dU- A* (resp. dU- A*) is negligible then any Borel function^ /, \f\ </<>,

is harmonic resolutive.

Let / be a non-negative upper (resp. lower) semi-continuous function on BUt

f<fo. Hf (resp. Hf) is harmonic and bounded in a neighbourhood of any

boundary point of U. This is obvious for Hf. Let ^/ be the smallest Perron

set containing the set {min (s, SfΛ) I s e ci//0}. For any 5' e <y% and any 5 e έ/

we have s+ s' - H% e ci//. Hence

Ή% Ή%<mί s.

The converse inequality being trivial, Hf0 is the greatest lower bound of a

Perron set and therefore harmonic.

From Lemma 3 and from the fact that / and fa* (resp. /</*) differ only on

a negligible set we have

Sf<Ήf< Hfσ* = Hf

(resp. Hf<Hf = Ήf<H < gf),

and / is resolutive.

Let 33 be the class of Borel-sets MadU for which fo7M is resolutive. 33

contains the closed (resp. open) sets and from M ε S it follows 3U— M e 39.

Let Mi, Mi e 33. From

it follows that MiUM2e33. Let {Mn} be an increasing sequence of 33. Then
CO

/oZitfn t/oZ « ^ and U M«esB. 33 coincides therefore with the class of all Borel

sets.

Let / be a Borel function on dU, 0 < / ^ / 0 , and n a natural number.

For any natural number i, 0<i< 2n, we design

*) A function is called a Borel function if it is Borel measurable. The class of Borel
sets is the smallest class of sets which contains the open sets and is closed with respect
to countable union and contians together with a set its complement.
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n
fn = /0 i j ô̂ ~ Λ^

/n is resolutive and fn t/. Hence / is resolutive. This result can be extended

immediately to a Borel function /, |/ | </0.

COROLLARY 3. Let s be a positive finite and continuous hyperharmonic func-

tion on X, U be an M.P0.-set*\ and p be a locally bounded potential on U

positive in a neighbourhood of any boundary point of U. Then any Borel

function /, \f\ < s, is resolutive.

In this case A* = dU and Hs is harmonic and bounded in the neighbourhood

of any boundary point of U.

Let U be an open set and U° be the set of points x^U for which any

locally bounded potential on U vanishes at x. U° is closed in U. If U is a-

compact and U° compact, then there exists a locally bounded potential on U

positive in the neighbourhood of dU.

LEMMA 4. Let x^U and Ux denote the set of points y<=U- {x} such that

if si, s2 are locally bounded non-negative hyperharmonic functions on U then

si(x)s2(y) -siOOsaOO = 0.

// x $ Xo U Ux then x Φ U°.

Let *€ denote the set of restrictions on U° of the set of non-negative har-

monic functions on U. If /i, /2 e ^ then min (fu f2) e <€. Indeed let «, (i =* 1,

2) be a non-negative harmonic function on U whose restriction on U° coincides

with/,-. Then min («i, «2) is a locally bounded non-negative hyperharmonic

function on U. Denote by u the greatest harmonic minorant of min (ult u^).

Since min (ui, uz)—u is a potential on U

min (/i, /2) = min (uu th) = u

on Z7°.

Let V be a regular set in Z7, Λ: e F, F Π C7̂  = φ, F be the carrier of ωv

Xi and

ί be a locally bounded potential on Z7. Since Λ;$Z 0 , F=^̂ 6, for a sufficiently

small V. Suppose x e U°. From

*) If «# satisfies Brelot's axioms, the existence of s implies that any open set is an
Λf.Po.-set ([3], Part IV, Theorem 3 (ii)).
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it follows that p vanishes on F and Fa U°.

Let 3»εF and si, s2 be two locally bounded non-negative hyperharmonic

functions on U such that

s2(y) - si(x) sx{y) # 0.

Let ui (ι = 1, 2) be the greatest harmonic minorant of s/. Since Si — m is a

locally bounded potential on £7, s, = w, on U° and

If «,-(#) =0 then from

mix) =)Ui

it would result uiiy) =0 which contradicts the above inequality. We may sup-

pose therefore

mix) =

Since #e£/°, Fcί/°,

\min(«i, Ui)dωlχ• = min

and we get the contradictory inequality

0<\(u2 — min (wj, w2))^ωi = %(#) -min (^I(ΛΓ), «2(Λ:)) =0.

It follows from this lemma that if J& satisfies Bauer's Trennungsaxiom,

then U° is empty.

THEOREM 7. Let U be an M.Po.-set with a-compact boundary for which

either (U° Π BU) U OJ7- A*) or (ϋ° Π 9ί7) U (9Z7- A*) zs negligible. If f is

a real continuous function on dU for which H\f\ is harmonic and bounded

in the neighbourhood of any boundary point of U then f is harmonic resolutiυe.

It is sufficient to prove this theorem for a non-negative /. Replacing X by

X - {x<EdU\f{x) =0}, we may suppose further / positive. Let # e U and sx

be a non-negative hyperharmonic function finite at x and such that
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lim inf sx(z) = °o

for any ytΞ(U° ΓidU)\J(dU-A*) (resp. y<= {U° Γ\dU) U OZ7- A*)). For any

natural number n we denote

Λw = {jye3ί7|lim inf sx(z)>n max (/(jy), lim supϊϊf(z))}.
U3Z-+y U3z-*y

An is an open set on dU which contains the set (U° ΌdU) U (dU- A*) (resp.

Let ε be a positive number. For any y(=BU— An we take a regular

neighbourhood Fy of y and a hyperharmonic (resp. hypoharmonic) function sy

on UΓiVy which satisfy the following conditions •* a) Vy Π U° = <f>; b) for any

z e ^ n a ί / w e have \f(z) -f(y)\<ef(z) c) 1 - e<s y < 1 + e. There exists a

compact set ufy on UΓidVy and an open set Wy on VyΓϊdU containing y such

that

/O0+ sup (Hf(zf))ωζy{imdVy-Ky)<εf(z)
z'&UnVy

for any z e Wy. Since 9C/-AM is c -compact there exists a sequence {̂ , } in

dU- An such that

For any i there exists a potential pi on t/, finite at x and positive on iζy,

because Kyi 0 U° =<ρ. Let piX denote the hyperharmonic function associated to

pi and x by Lemma 1, with

pixix) <~2J*

and let us denote

Px = Σ ί i λ .
ι = l

Let )? > 0, y G aZ7 and U be an ultrafilter on U converging to y such that

limu(ϊ7/~ -?f- - ^ ) =lim sup (sf{z) - ^ ^ - ypx(z))
^ 71 / O3z~>y \ 71 f

(resp. limu (Hf + ^ + , j , ) = lim inf

If jμ e A» then
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(resp. limu [Hf + -J- + vpx) >/O0 ) •

lί y& A* — An (resp. ^ G ^ - An) then there exists an i such that ^ G PF .̂ If

then

(resp. limu (#/+ ̂  + #*) = +«>).

If

limu^i = 0

then it can be proved like in Lemma 2 that

limu Hf<θ(e)f(y), 0(ε) =

(resp. l imuίΓ/>^(-

For any y e 9Z7 we have therefore

lim sup (H/(Z) - Sχ^ - ypχ(z))<θ(ε)f(y)

(resp. lim inf

If {U° Π dU) U OZ7- A¥) is negligible then Hf+ ~ +7}px^^/ιl{^)f and we get,

for a sufficiently small ε,

sx

px and sΛ being finite at x we get

making successively η I 0, e i 0, n t °°. / i s therefore resolutive.

Let now (Z7° Πdϋ) U OZ7- A*) be negligible and G be an open relatively

compact set for which X0Γ\dG = φ. We denote by fG the function on d(UΠG)

equal to 0 on GΠdU and equal to H/ on U ΠdG and by 5c? the function on U

equal to H/ on £7- G equal to Ή%u on GΠU and equal to
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lim inf Ή%υ(z)
GnU&z->z'

for any zf <=UΓ\ dG. It has been shown in the proof of Lemma 3 that sG is a

hyperharmonic function. Let n be a natural number, if be a positive number,

y e G Π 9Z7, and U be an ultrafilter on G Π Z7 converging to j> such that

lim sup(sβU) - ~ 4 ~ -

If ^ G An then

If jy G af/~ An then there exists an i such that jy e Wyr If

then

lim^x (so ~ ^ ^ ) = — 00.

If

limui>ι = 0

then it can be proved like in Lemma 2 that

limu SG< εf(y).

For any case we get

lim sup (sG(z) - ^ 4 ^ - v'px(z)

Let us denote by ® the set of relatively compact open sets G for which XoPιdG = φ

and by u the greatest lower bound of the family {5σ}Ge@. u is harmonic. Let

s eJ7/ . Then s > u and for any jy e 9C7

lim inf (s(z) - 2/(2) + ^^- + 7 ^ ( 2 ) ) > (1 - e)f(y).

It follows

s - f< + - ^

^ and sx being finite at x we get w(#)=0 making succesively γf I 0, εl 0,

w t 00, sU) 4 Hf(x). Let {Gί} be a sequence in (S such that
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CO

So = Σ Sβi

is finite at x. Then /// - yso is non-positive outside a compact set of X. It

follows

Since s*, ί*, So are finite at # we get

H/(x) < Hf(χ)

making succesively -η I 0, e I 0, n t °o. / i s therefore resolutive.

If J& satisfies the axioms of Brelot's or Bauer's theory then Xo = U° = φ

and A* = A* = dU. Therefore Theorem 7 contains Herve's [5] and Bauer's [1]

(Satz 24) results about the resolutivity of continuous functions on relatively

compact open sets. On the other hand, in Brelot's axiomatic there exists always

a positive potential on U and the same is true in Bauer's axiomatic if U is a-

compact. Hence Theorem 6 proves the resolutivity of bounded Borel-measurable

functions in these cases. This gives the possibility to prove, without the condi-

tion that X has a countable basis, that if J& satisfies Brelot's axioms and the

axiom D L3] the limit of a decreasing sequence of non-negative hyperharmonic

functions differs from a hyperharmonic function on a polar set.

The condition A* = A* - dU and the fact that the constants are harmonic

is not sufficient in order that any continuous function on dU is resolutive, even

if U is relatively compact. An example is given by a region on a compact

Riemann surface, whose boundary consists of more than one point and is of

capacity zero.

3. Relation between the normed and the usual Dirichlet problem. The

study of the Dirichlet problem on X is interesting only in the case when X is

a non-compact M.P.-set. We shall suppose from now on that X satisfies this

condition. Let Y be a compactification of X, i.e., a compact HausdorM space

which contains X as a dense subspace and Δ = Y— X. Since Xis locally compact,

Δ is compact. Let/ be a numerical function on Δ. We denote byέ/ψ γ =J7/

(resp. ^y7/'γ = Ĵ f/) the set of lower bounded hyperharmonic (resp. upper bounded
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hypoharmonic) functions s, such that

lim inf s(x) >f(y) (resp. lim sup s{x) <f(y))
X X3

for any j>e Δ. The greatest lower bound of J7/ (resp. the least upper bound

of <¥}) is denoted by Ήfγ = Hf = Bf (resp. Hfγ = H} = Hf)\ since X is an

M.P.-set Hf < Ήf. If the functions H/ and Hf are finite and equal, the function

/ is called resolutive and

is called the solution of the Dirichlet problem with / as the boundary function.

If any bounded continuous (resp. lower semi-continous) function on A is

resolutive then Y is called a Baire (resp. Borel) resolutive compactification

of X.

In the rest of this paper Y will be a fixed compactification of X.

The normed Dirichlet problem and the Dirichlet problem formulated above

are closely related. Indeed let U be an open set for which BU is not empty

and / be a numerical function defined on dU. Let Uγ (resp. dyU) denote the

closure (resp. the boundary) of U in Y. Taking U instead of X and Uγ instead

of Y in the preceding considerations, and defining f0 equal to / on BxU and

equal to zero on dyU-dχU it is clear that

Therefore we have

If any bounded Borel function on BXU is resolutive then U is called a Borel-

resolutive set.

LEMMA 5. Let Y be a compactification of X, U be a Borel resolutive set,

and f be a non-negative resolutive function on Δ. Then the function g on dyU,

equal to f on ΔΓidyU and equal to zero on XOdyU^dxU, is resolutive.

We set u^Hfγ. Let s (resp. l>0) belong t o i / / ' 7 (resp. ^}fY) and

5'>0 (resp. s') belong to ^υ-'x (resp. ^7Ϊ'X). Then s - s' (resp. £ - s() belongs

^ (resp. ^L

g'
m) and therefore H% ur is finite and
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Since a', s1 are arbitrary we get

U being a Borel resolutive set and £ a bounded upper semi-continuous function

on 3γ£7 we have

s, £ being arbitrary it follows that g is resolutive.

THEOREM 8. If Y is a Baire (resp. Borel) resolutive compactification of X

and U is a Borel resolutive open subset of X, then Uγ is a Baire (resp. Borel)

resolutive compactiήcation of U.

Since the resolutive functions form a real vector space it is sufficient to

prove that any continuous (resp. lower semi-continuous) bounded non-negative

function / ' on ByU is resolutive. Let / be a continuous (resp. lower semi-

continuous) bounded non-negative function on Δ equal to / ' on JΓ\UY and g

be equal to / = / ' on A Π ϋY and equal to zero on dxlf. From the preceding

lemma it follows that g is resolutive. Since U is Borel resolutive the function

ff—g is also resolutive, hence / ' is resolutive.
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