ON THE EXPONENTIAL MAPS AND THE TRIANGULAR 2-CHOMOLOGY OF GRADED LIE RINGS OF LENGTH THREE

HISASI MORIKAWA

1. Let *H* be a group. We mean by an *N*-series in *H* a decreasing series of subgroups $H_1 = H, H_2, \ldots, H_{n+1} = \{e\}$ such that the commutator $xyx^{-1}y^{-1}$ of two elements *x* and *y* respectively in *H_i* and *H_j* belongs to *H_{i+j}*, where $H_s = \{e\}$ for $s \ge n+1$. We call *n* the length of the *N*-series (*H_i*). We mean by a graded Lie ring of length *n* a Lie ring \mathfrak{Q} which is a direct sum $A_1 + \cdots$ $+ A_n$ of additive subgroups A_1, \ldots, A_n such that $[A_i, A_j] \subset A_{i+j}$, where $A_s = \{0\}$ for $s \ge n+1$. For each *N*-series (*H_i*) of length *n* the graded Lie ring $\mathfrak{Q}[(H_i)]$ is associated with (*H_i*) as follows¹¹:

1) $\mathfrak{Q}[(H_i)]$ is the direct sum of the additively written factor groups $A_i = H_i/H_{i+1}$ (i = 1, 2, ..., n), and this direct sum gives the addition in $\mathfrak{Q}[(H_i)]$.

2) The Lie product [a, b] of $a \in A_i$ and $b \in A_j$ is the group commutator $xyx^{-1}y^{-1}$ modulo H_{i+j+1} of the representatives x and y respectively of a and b in H_1 . We shall call $Q[(H_i)]$ the graded Lie ring associated with the N-series (H_i) .

In the present note we shall introduce triangular 2-cocycles of a graded Lie ring \mathfrak{Q} of length three and shall show that for each triangular 2-cocycle \mathfrak{r} of \mathfrak{Q} we can define the Exponential Map Exp_r of \mathfrak{Q} (onto a group) that is a bijective map of \mathfrak{Q} such that 1) $H_1 = \operatorname{Exp}_r(A_1 + A_2 + A_3)$, $H_2 = \operatorname{Exp}_r(A_2 + A_3)$, $H_3 = \operatorname{Exp}_r(A_3)$, $H_4 = \{e\}$ form an N-series and 2) \mathfrak{Q} is regarded as the graded Lie ring $\mathfrak{Q}[(H_i)]$ associated with (H_i) . Two triangular 2-cocycles \mathfrak{r} and \mathfrak{r}' are called to be equivalent if the corresponding N-series (H_i) and (H'_i) are isomorphic. We shall call the equivalent classes of triangular 2-cocycles the triangular cohomology classes of \mathfrak{Q} . We shall also show that for any N-series (H_i) of length three there exists a triangular 2-cocycle β of $\mathfrak{Q}[(H_i)]$ such that the N-series corresponding to the pair $(\mathfrak{Q}[H_i)], \beta$ is isomorphic to (H_i) . So

Received September 18, 1962.

¹⁾ See [1] 18. 4 p. 329.

HISASI MORIKAWA

we can conclude that the set of *N*-series of length three corresponds bijectively to the set of pairs consisting of a graded Lie ring \mathfrak{L} of length three and a triangular 2-cohomology class of \mathfrak{L} . This is a generalization of theory of central extensions of abelian groups by abelian groups.

2. Triangular 2-cocycles. Let $\mathfrak{L} = A_1 + A_2 + A_3$ be a graded Lie ring of length three. We regard A_j as an A_i -module on which A_i operates simply, and denote by $C^2(A_i, A_j)$ the additive group of 2-cochains of A_i with coefficients in A_j . We mean by a triangular 2-cochain a triangular matrix

$$\mathbf{r} = \begin{pmatrix} \mathbf{r}_{21} & \mathbf{0} \\ \mathbf{r}_{31} & \mathbf{r}_{32} \end{pmatrix}$$

with components γ_{ji} in $C^2(A_i, A_j)$, (i < j). We denote by $C^2(L)$ the set of triangular 2-cochains of L. For $a = a_1 + a_2 + a_3$, $b = b_1 + b_2 + b_3$ $(a_i, b_i \in A_i; i = 1, 2, 3)$ and $\mathbf{r} \in C^2(\mathfrak{L})$ we mean by $\mathbf{r}(a, b)$ the triangular matrix

$$\begin{pmatrix} \gamma_{21}(a_1, b_1), & 0\\ \gamma_{31}(a_1, b_1), & \gamma_{32}(a_2, b_2) \end{pmatrix}$$

We shall now define triangular 2-cocycles of \mathfrak{L} :

Definition. A triangular 2-cocycle of \mathfrak{X} is a triangular 2-cochain r of \mathfrak{X} satisfying

(1)
$$\partial \gamma_{21} = 0, \ \partial \gamma_{32} = 0^{2},$$

(2)
$$\partial \gamma_{31}(a_1, b_1, c_1) + [a_1, \gamma_{21}(b_1, c_1)] + \gamma_{32}(\gamma_{21}(b_1, c_1), \gamma_{21}(a_1, b_1+c_1)) - \gamma_{32}(\gamma_{21}(a_1, b_1), \gamma_{21}(a_1+b_1, c_1)) = 0,$$

(a₁, b₁, c₁ $\in A_1$),

(3)
$$\gamma(0, a) = \gamma(a, 0) = 0, (a \in \mathfrak{X}),$$

(4)
$$\gamma_{21}(a_1, b_1) - \gamma_{21}(b_1, a_1) = [a_1, b_1],$$

$$(a_1, b_1 \in A_1),$$

(5)
$$\gamma_{32}(a_2, b_2) = \gamma_{32}(b_2, a_2), (a_2, b_2 \in A_2).$$

LEMMA. Let r be a triangular 2-cocycle of \mathfrak{L} . Then

(6)
$$\gamma_{31}(a_1, -a_1) - \gamma_{31}(-a_1, a_1) = [a_1, \gamma_{21}(-a_1, a_1)],$$

 $(a_1 \in A_1),$

Proof. From (1), (2), (3) it follows

²⁾ We mean by ∂ the ordinary coboundary operator.

$$0 = \partial \gamma_{31}(a_1, -a_1, a_1) + [a_1, \gamma_{21}(-a_1, a_1)] + \gamma_{32}(\gamma_{21}(-a_1, a_1), \gamma_{21}(a_1, 0)) - \gamma_{32}(\gamma_{21}(a_1, -a_1), \gamma_{21}(0, a_1)) = \gamma_{31}(-a_1, a_1) - \gamma_{31}(a_1, -a_1) + [a_1, \gamma_{21}(-a_1, a_1)], (a_1 \in A_1).$$

This proves (6).

3. The Exponential Map associated to a triangular 2-cocycle. Let r be a triangular 2-cocycle of \mathfrak{X} . For $a_i, b_i \in A_i$ (i = 1, 2, 3), put

(7)
$$\eta_7(a_1 + a_2 + a_3, b_1 + b_2 + b_3) = \gamma_{21}(a_1, b_1) + \gamma_{31}(a_1, b_1) + \gamma_{32}(a_2, b_2) + [a_1, b_2] + \gamma_{32}(a_2 + b_2, \gamma_{21}(a_1, b_1))$$

and

(8)
$$\rho_{7}(a_{1}+a_{2}+a_{3}) = c_{1}+c_{2}+c_{3},$$

$$c_{1} = -a_{1}, c_{2} = -a_{2}-\gamma_{21}(a_{1}, c_{1}),$$

$$c_{3} = -a_{3}-\gamma_{31}(a_{1}, c_{1})-\gamma_{32}(a_{2}, c_{2})-[a_{1}, c_{2}]-\gamma_{32}(a_{2}+c_{2}, \gamma_{21}(a_{1}, c_{1})).$$

We shall first show the following properties of η_r and ρ_r .

PROPOSITION 1. Let r be a triangular 2-cocycle of S. Then

(9)
$$\eta_{r}(a, 0) = \eta_{r}(0, a) = 0, (a \in \mathfrak{D}),$$

(10) $\eta_{r}(b, c) - \eta_{r}(a + b + \eta_{r}(a, b), c) + \eta_{r}(a, b + c + \eta_{r}(b, c)) - \eta_{r}(a, b) = 0,$
(a, b, c $\in \mathfrak{D}$),

(11)
$$a + \rho_r(a) + \eta_r(\rho_r(a), a) = a + \rho_r(a) + \eta_r(a, \rho_r(a)) = 0, (a \in \mathfrak{Q}).$$

Proof. By virtue of (3), (7) it follows $\eta_r(0, a) = \eta_r(a, 0) = 0$, $(a \in \mathfrak{L})$. By virtue of (1), (2), (3), (6), (7) for $a = a_1 + a_2 + a_3$, $b = b_1 + b_2 + b_3$, $c = c_1 + c_2 + c_3$, $(a_i, b_i, c_i \in A_i; i = 1, 2, 3)$, we have

$$\begin{split} \eta_{T}(b, c) &- \eta_{T}(a + b + \eta_{T}(a, b), c) + \eta_{T}(a, b + c + \eta_{T}(b, c)) - \eta_{T}(a, b) \\ &= \partial \gamma_{21}(a_{1}, b_{1}, c_{1}) + \partial \gamma_{31}(a_{1}, b_{1}, c_{1}) + \gamma_{32}(b_{2}, c_{2}) - \gamma_{32}(a_{2} + b_{2} + \gamma_{21}(a_{1}, b_{1}), c_{2}) \\ &+ \gamma_{32}(a_{2}, b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1})) - \gamma_{32}(a_{2}, b_{2}) + [b_{1}, c_{2}] - [a_{1} + b_{1}, c_{2}] \\ &+ [a_{1}, b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1})] - [a_{1}, b_{2}] \\ &+ \gamma_{32}((b_{2} + c_{2}, \gamma_{21}(b_{1}, c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}), \gamma_{21}(a_{1} + b_{1}, c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2}, r_{21}(a_{1}, b_{1})) \\ &= \partial \gamma_{31}(a_{1}, b_{1}, c_{1}) + [a_{1}, \gamma_{21}(b_{1}, c_{1})] \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2}, \gamma_{21}(b_{1}, c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2}, \gamma_{21}(a_{1}, b_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}, c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}, c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1}), \gamma_{21}(a_{1}, b_{1} + c_{1})) - \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{1}, b_{1}, c_{1})) \\ &+ \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(b_{1}, c_{1})) + \gamma_{32}(a_{2} + b_{2} + c_{2} + \gamma_{21}(a_{2}, b_{2} + c_{2}) + \gamma_{21}(a_{2}, b_{2} + c_{2$$

HISASI MORIKAWA

$$= \partial \gamma_{31}(a_1, b_1, c_1) + [a_1, \gamma_{21}(b_1, c_1)] + \gamma_{32}(a_2 + b_2 + c_2, \gamma_{21}(a_1, b_1 + c_1) + \gamma_{21}(b_1 + c_1)) + \gamma_{32}(\gamma_{21}(a_1, b_1 + c_1), \gamma_{21}(b_1, c_1)) - \gamma_{32}(a_2 + b_2 + a_2, \gamma_{21}(a_1 + b_1, c_1) + \gamma_{21}(a_1, b_1)) - \gamma_{32}(\gamma_{21}(a_1 + b_1, c_1), \gamma_{21}(a_1, b_1)) - \gamma_{32}(a_1, b_1) - \gamma_{32}(\gamma_{32}(a_1 + b_1, c_1) + \gamma_{32}(a_1, b_1)) - \gamma_{33}(\gamma_{33}(a_1 + b_1, c_1), \gamma_{33}(a_1, b_1)) - \gamma_{33}(a_1, b_1) - \gamma_{33}(a_$$

$$= \partial \gamma_{31}(a_1, b_1, c_1) + [a_1, \gamma_{21}(b_1, c_1)] + \gamma_{32}(\gamma_{21}(b_1, c_1)), \gamma_{21}(a_1, b_1 + c_1)) - \gamma_{32}(\gamma_{21}(a_1, b_1)), \gamma_{21}(a_1 + b_1, c_1)) = 0.$$

This proves (10). From the definition (8) of ρ_r , putting $\rho_r(a) = c_1 + c_2 + c_3$ $(c_i \in A_i: i = 1, 2, 3)$, we have

$$\begin{aligned} a + \rho_{r}(a) + \eta_{r}(a, \rho_{r}(a)) &= (a_{1} + a_{2} + a_{3}) + (c_{1} + c_{2} + c_{3}) + \gamma_{21}(a_{1}, c_{1}) \\ + \gamma_{31}(a_{1}, c_{1}) + \gamma_{32}(a_{2}, c_{2}) + [a_{1}, c_{2}] + \gamma_{32}(a_{2} + c_{2}, \gamma_{21}(a_{1}, c_{1})) &= 0, \\ a + \rho_{r}(a) + \eta_{r}(\rho_{r}(a), a) &= a + \rho_{r}(a) + \eta_{r}(a, \rho_{r}(a)) + \eta_{r}(\rho_{r}(a), a) - \eta_{r}(a, \rho_{r}(a))) \\ &= \eta_{r}(\rho_{r}(a), a) - \eta_{r}(a, \rho_{r}(a)) = \gamma_{21}(c_{1}, a_{1}) - \gamma_{21}(a_{1}, c_{1}) + \gamma_{32}(c_{2}, a_{2}) - \gamma_{32}(a_{2}, c_{2}) \\ &+ \gamma_{31}(c_{1}, a_{1}) - \gamma_{31}(a_{1}, c_{1}) + [c_{1}, a_{1}] - [a_{1}, c_{2}] + \gamma_{32}(a_{2} + c_{2}, \gamma_{21}(c_{1}, a_{1})) \\ &- \gamma_{32}(a_{2} + c_{2}, \gamma_{21}(a_{1}, c_{1})). \end{aligned}$$

Since $c_1 = -a_1$ and $c_2 = -a_2 - \gamma_{21}(a_1, -a_1)$, by virtue of (5), (6) we have

$$\gamma_{21}(a_1, c_1) = \gamma_{21}(c_1, a_1), \ \gamma_{32}(c_2, a_2) = \gamma_{32}(a_2, c_2),$$

and

$$\begin{aligned} \gamma_{31}(c_1, a_1) &- \gamma_{31}(a_1, c_1) + [c_1, a_2] - [a_1, c_2] \\ &= \gamma_{31}(-a_1, a_1) - \gamma_{31}(a_1, -a_1) + [-a_1, a_2] - [a_1, -a_2 - \gamma_{21}(a_1, -a_1)] \\ &= \gamma_{31}(-a_1, a_1) - \gamma_{31}(a_1, -a_1) + [a_1, \gamma_{21}(a_1, -a_1)] = 0. \end{aligned}$$

Hence $a + \rho_r(a) + \eta_r(\rho_r(a), a) = 0$. This completes the proof of Proposition 1.

For each triangular 2-cocycle \mathbf{r} of \mathfrak{L} we shall define the set of symbols $\{\operatorname{Exp}_r(a) | a \in \mathfrak{L}\}$ with the following law of composition:

(12)
$$\operatorname{Exp}_{r}(a)\operatorname{Exp}_{r}(b) = \operatorname{Exp}_{r}(a+b+\eta_{r}(a, b)), \quad (a, b \in \mathfrak{Q}).$$

We call the map Exp_r the Exponential Map of \mathfrak{L} with a base \mathfrak{r} , and call \mathfrak{r} the basic triangular 2-cocycle of the Exponential Map Exp_r .

PROPOSITION 2. $\operatorname{Exp}_{r}(\mathfrak{L}) = \{ \operatorname{Exp}_{r}(a) | a \in \mathfrak{L} \}$ is a group and Exp_{r} is a bijective map of \mathfrak{L} onto $\operatorname{Exp}_{r}(\mathfrak{L})$.

Proof. By virtue of (9) we have $\operatorname{Exp}_r(a) \operatorname{Exp}_r(0) = \operatorname{Exp}_r(0) \operatorname{Exp}_r(a) = \operatorname{Exp}_r(a)$, and thus $\operatorname{Exp}_r(0)$ is the unit element. From (11) it tollows $\operatorname{Exp}_r(a)$.

 $\operatorname{Exp}_r(\rho_r(a)) = \operatorname{Exp}_r(\rho_r(a)) \operatorname{Exp}_r(a) = \operatorname{Exp}_r(0)$. This shows that $\operatorname{Exp}_r(\rho_r(a))$ is the inverse element of $\operatorname{Exp}_r(a)$. From (10) it follows

$$(\operatorname{Exp}_{r}(a)\operatorname{Exp}_{r}(b))\operatorname{Exp}_{r}(c) = \operatorname{Exp}_{r}(a+b+\eta_{r}(a, b))\operatorname{Exp}_{r}(c)$$

= $\operatorname{Exp}_{r}(a+b+c+\eta_{r}(a, b)+\eta_{r}(a+b+\eta_{r}(a, b), c)$
= $\operatorname{Exp}_{r}(a+b+c+\eta_{r}(b, c)+\eta_{r}(a, b+c+\eta_{r}(b, c))$
= $\operatorname{Exp}_{r}(a)(\operatorname{Exp}_{r}(b+c+\eta_{r}(b, c)) = \operatorname{Exp}_{r}(a)(\operatorname{Exp}_{r}(b)\operatorname{Exp}_{r}(c)).$

This shows that $\operatorname{Exp}_r(\mathfrak{A})$ satisfies the associative law. Therefore $\operatorname{Exp}_r(\mathfrak{A})$ is a group. Since $\operatorname{Exp}_r(a)$ are symbols, we have $\operatorname{Exp}_r(a) = \operatorname{Exp}_r(b)$ if and only if a = b. This completes the proof of Proposition 2.

We mean by the Logarithmic Map Log, the inverse map of the Exponential Map Exp_r. Namely Log_r is a bijective map of $Exp_r(\mathfrak{X})$ onto \mathfrak{X} such that

(13)
$$\operatorname{Log}_r(\operatorname{Exp}_r(a)) = a, \quad (a \in \mathfrak{L}).$$

PROPOSITION 3. For any a_i , $b_i \in A_i$ (i = 1, 2, 3) we have

(14)
$$\log_{\mathbf{r}}(\operatorname{Exp}_{\mathbf{r}}(a_{1}+a_{2}+a_{3})\operatorname{Exp}_{\mathbf{r}}(b_{1}+b_{2}+b_{3})) = (a_{1}+b_{1}) + (a_{2}+b_{2}+\gamma_{21}(a_{1}, b_{1})) + (a_{3}+b_{3}+\gamma_{31}(a_{1}, b_{1})+\gamma_{32}(a_{2}, b_{2}) + [a_{1}, b_{2}] + \gamma_{32}(a_{2}+b_{2}, \gamma_{21}(a_{1}, b_{1}))),$$

(15)
$$\begin{aligned} \log_{7}(\exp_{7}(a_{1}+a_{2}+a_{3})^{-1}) &= \log_{7}(\rho_{7}(a_{1}+a_{2}+a_{3})) \\ &= -a_{1}-(a_{2}+\gamma_{21}(a_{1}, -a_{1})-(a_{3}+\gamma_{31}(a_{1}, -a_{1})) \\ &+ \gamma_{32}(a_{2}, -a_{2}-\gamma_{21}(a_{1}, -a_{1})) \\ &+ [a_{1}, -a_{2}-\gamma_{21}(a_{1}, a_{1})] + \gamma_{32}(-\gamma_{21}(a_{1}, a_{1}), \gamma_{21}(a_{1}, -a_{1}))). \end{aligned}$$

Proof. Since $\exp_{t}(a_{1} + a_{2} + a_{3}) \exp_{t}(b_{1} + b_{2} + b_{3}) = \exp_{t}(a_{1} + b_{1} + a_{2} + b_{2} + a_{3} + b_{3} + \eta_{t}(a_{1} + a_{2} + a_{3}, b_{1} + b_{2} + b_{3})$, (14) follows from (7). (15) is an immediate consequence from (8).

For the sake of simplicity we denote by B_1 , B_2 , B_3 , B_3 , B_4 the ideals of $\mathfrak{L} = A_1 + A_2 + A_3$, $A_2 + A_3$, A_3 , $\{0\}$, respectively.

PROPOSITION 4. If $a \in B_i$ and $b \in B_j$, we have

(16) $\operatorname{Log}_{r}(\operatorname{Exp}_{r}(a)\operatorname{Exp}_{r}(b)) \in B_{\min(i,j)},$

(17) $\operatorname{Log}_r(\operatorname{Exp}_r(a)^{-1}) \in B_i$,

(18)
$$\operatorname{Log}_{r}(\operatorname{Exp}_{r}(a)\operatorname{Exp}_{r}(b)\operatorname{Exp}_{r}(a)^{-1}\operatorname{Exp}_{r}(b)^{-1}) \equiv [a, b] \mod B_{i+j+1},$$

where $B_s = \{0\}$ for $s \ge 4$.

Proof. (16) and (17) are immediate consequences of (14) and (15), respectively. By virtue of (14), if $a \in \mathfrak{A}$ and $b_{\mathfrak{z}} \in A_{\mathfrak{z}}$, we have $\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b_{\mathfrak{z}})$

= $\operatorname{Exp}_r(a+b_3) = \operatorname{Exp}_r(b_3) \operatorname{Exp}_r(a)$. This shows that $\operatorname{Exp}_r(A_2)$ is a subgroup contained in the center of $\operatorname{Exp}_r(\mathfrak{D})$. Using this fact and (1), (3), (4), (14), (15) we have for $a = a_1 + a_2 + a_3$, $b = b_1 + b_2 + b_3$ (a_i , $b_i \in A_i$)

 $\operatorname{Log}_{r}(\operatorname{Exp}_{r}(a)\operatorname{Exp}_{r}(b)\operatorname{Exp}_{r}(a)^{-1}\operatorname{Exp}_{r}(b)^{-1})$

 $\equiv \gamma_{21}(a_1, b_1) - \gamma_{21}(a_1, -a_1)\gamma_{21}(b_1, -b_1) + \gamma_{21}(-a_1, -b_1) + \gamma_{21}(a_1+b_1, -a_1-b_1)$ $\equiv \gamma_{21}(a_1, b_1) - \gamma_{21}(b_1, a_1) \equiv [a_1, b_1] \mod A_3.$

This proves (16) for i = j = 1. Since $\text{Exp}_r(A_3)$ is contained in the center, (16) is also true for i = 3 or j = 3. So it is sufficient to prove (16) for $a = a_2$ and $b = b_1 + b_2$ (a_2 , $b_2 \in A_2$, $b_1 \in A_1$). Using (14), (15), (6) we have

 $Log_{r}(Exp_{r}(a_{2}) Exp_{r}(b_{1}+b_{2}) Exp_{r}(a_{2})^{-1}Exp_{r}(b_{1}+b_{2})^{-1}) = Log_{r}(Exp_{r}(a_{2}) Exp_{r}(a_{2}) (b_{1}+b_{2}) (Exp_{r}(a_{2}) Exp_{r}(a_{2}))^{-1})$ $= Log_{r}(Exp_{r}(b_{1}+a_{2}+b_{2}+\gamma_{32}(a_{2}, b_{2})) Exp_{r}(b_{1}+a_{2}+b_{2}+\gamma_{32}(b_{2}, a_{2})+[b_{1}, a_{2}])^{-1})$ $= Log_{r}(Exp_{r}(b_{1}+a_{2}+b_{2}+\gamma_{32}(a_{2}, b_{2})) Exp_{r}(b_{1}+a_{2}+b_{2}+\gamma_{32}(a_{2}, b_{2}))^{-1}$ $Exp_{r}([b, a])^{-1})$

$$= -[b_1, a_2] = [a_2, b_1].$$

This completes the prove of (16).

We shall now sum up the results in this paragraph in the following theorem.

THEOREM 1. Let γ be a triangular 2-cocycle of a graded Lie ring of length three $\mathfrak{L} = A_1 + A_2 + A_3$. Then $H_1 = \operatorname{Exp}_r(A_1 + A_2 + A_3)$, $H_2 = \operatorname{Exp}_r(A_2 + A_3)$, $H_3 = \operatorname{Exp}_r(A_3)$, $H_1 = \{e\}$ form an N-series such that \mathfrak{L} is regarded as the graded Lie ring associated with (H_i) .

Proof. (16), (17) and (18) in Proposition 4 show that H_1 , H_2 , H_3 , H_4 form an N-series. Identifying $\operatorname{Exp}_r(a_i) \mod H_{i+1}$ with $a_i \mod B_{i+1}$, we get the identification of $\mathfrak{Q}[(H_i)]$ with \mathfrak{Q} .

4. In this paragraph we shall prove the following theorem:

THEOREM 2. Let $H_1 = H$, H_2 , H_3 , $H_4 = \{e\}$ be an N-series. Then there exists a triangular 2-cocycle τ of the graded Lie ring $\mathfrak{Q}[(H_i)]$ associated with (H_i) such that the N-series associated with the pair $(\mathfrak{Q}[(H_i)], \tau)$ (in the sense of Theorem 1) is isomorphic to the N-series (H_i) .

In the proof of Theorem 2, we shall also show the structural meaning of the triangular 2-cocycle r.

The proof of Theorem 2: We denote by $\mathfrak{Q}[(H_i)] = A_1 + A_2 + A_3$ the graded Lie ring associated with (H_i) . We shall identify H_i/H_{i+1} with A_i and shall use the both notations (the additive one and the multiplicative one) freely for the sake of simplicity. Let us choose a family of representatives $\{v_{ji}(\xi) \in H_i/H_{j+1} | \xi \in H_i/H_{i+1}; 1 \le i \le j \le 3\}$ such that

(19)
$$v_{i,i}(\xi) = \xi,$$

(20)
$$v_{k,j}(v_{j,i}(\xi)) = v_{k,i}(\xi), \quad (\xi \in H_1/H_{i+1}; 1 \le i \le j \le k \le 3),$$

(21)
$$v_{k,j}(\eta v_{ji}(\xi)) = v_{k,j}(\eta) v_{k,i}(\xi), \ (\xi \in H_1/H_{i+1}; \ \eta \in H_l/H_{i+1};$$

 $1 \leq i < l \leq j \leq k \leq 3$),

(22)
$$v_{j,i}(e) = \text{the unit element } e \text{ of } H_1/H_{j+1}.$$

Put

(23)
$$c_{i-1}(\xi, \xi') = v_{i,i-1}(\xi) v_{i,i-1}(\xi') v_{i,i-1}(\xi\xi')^{-1}, \quad (\xi, \xi' \in H_1/H_i; i = 2, 3),$$

(24)
$$\gamma_{21}(a_1, b_1) = c_1(a_1, b_1), \ \gamma_{32}(a_2, b_2) = c_2(a_2, b_2), \qquad (a_i, b_i \in A_i; i = 1, 2)$$

and

(25)
$$\gamma_{31}(a_1, b_1) = c_2(v_{2,1}(a_1), v_{2,1}(b_1)), \quad (a_1, b_1 \in A_1).$$

We shall prove that the triangular 2-cochain

$$\boldsymbol{\gamma} = \begin{pmatrix} \gamma_{21} & 0 \\ \gamma_{31} & \gamma_{32} \end{pmatrix}$$

is a triangular 2-cocycle of $\mathfrak{Q}[(H_i)]$. Since γ_{21} (resp. γ_{32}) are the 2-cocycles associated with the extension H_1/H_3 (resp. H_2/H_4) of A_2 (resp. A_3) by A_1 (resp. A_2), we have $\partial \gamma_{21} = 0$ (resp. $\partial \gamma_{32} = 0$). Since $v_{j,i}(e) =$ the unit element e of H_1/H_{j+1} , we have $\gamma_{ji}(0, a_j) = \gamma_{ji}(a_i, 0) = 0$ for $a_i \in A_i$. Namely $\gamma(0, a) = \gamma(a, 0)$ = 0 for $a \in \mathfrak{Q}$. Since H_3 is contained in the center of H, from the definition of γ_{31} we have for $a_1, b_1, c_1 \in A_1$

$$(v_{31}(a_1) v_{31}(b_1)) v_{31}(c_1) = v_{32}(v_{21}(a_1)) v_{32}(v_{21}(b_1)) v_{31}(c_1)$$

$$= c_3(v_{21}(a_1), v_{21}(b_1)) v_{32}(v_{21}(a_1) v_{21}(b_1)) v_{31}(c_1)$$

$$= \gamma_{31}(a_1, b_1) v_{32}(c_{21}(a_1, b_1)) v_{31}(a + b) v_{31}(c_1))$$

$$= \gamma_{31}(a_1, b_1) v_{32}(c_{21}(a_1, b_1)) \gamma_{31}(a_1 + b_1, c_1) v_{52}(c_{21}(a_1 + b_1, c_1))$$

$$v_{31}(a_1 + b_1 + c_1)$$

$$= \gamma_{31}(a_1, b_1) \gamma_{31}(a_1 + b_1, c_1) \gamma_{32}(\gamma_{21}(a_1, b_1), \gamma_{21}(a_1 + b_1, c_1))$$

$$v_{32}(\gamma_{21}(a_1, b_1) + \gamma_{21}(a_1 + b_1, c_1)) v_{31}(a_1 + b_1 + c_1)$$

and

HISASÍ MORIKÁWÁ

$$\begin{aligned} v_{31}(a_1)(v_{31}(b_1) v_{31}(c_1)) &= v_{31}(a_1) \gamma_{31}(b_1, c_1) v_{32}(c_2(b_1, c_1)) v_{31}(b_1 + c_1) \\ &= \gamma_{31}(b_1, c_1) v_{31}(a_1) v_{32}(c_2(b_1, c_1)) v_{31}(a_1)^{-1} v_{31}(c_2(b_1, c_1))^{-1} \\ &v_{32}(c_2(b_1, c_1)) v_{31}(a_1) v_{31}(b_1 + c_1) \\ &= \gamma_{31}(b_1, c_1) [a_1, \gamma_{21}(b_1, c_1)] v_{32}(c_2(b_1, c_1)) \gamma_{31}(a_1, b_1 + c_1) \\ &v_{32}(c_2(a_1, b_1 + c_1) v_{31}(a_1 + b_1 + c_1)) \\ &= \gamma_{31}(b_1, c_1) \gamma_{31}(a_1, b_1 + c_1) [a_1, \gamma_{21}(b_1, c_1)] \gamma_{32}(\gamma_{21}(b_1, c_1), \gamma_{21}(a_1, b_1 + c_1)) \\ &v_{32}(\gamma_{21}(b_1, c_1) + \gamma_{21}(a_1, b_1 + c_1)) v_{31}(a_1 + b_1 + c_1). \end{aligned}$$

Hence by the associative law and the equality $\partial \gamma_{21} = 0$ we have

$$\partial \gamma_{31}(a_1, b_1, c_1) + [a_1, \gamma_{21}(b_1, c_1)] + \gamma_{32}(\gamma_{21}(b_1, c_1), \gamma_{21}(a_1, b_1 + c_1)) - \gamma_{32}(\gamma_{21}(a_1, b_1), \gamma_{21}(a_1 + b_1, c_1)) = 0$$

in the additive notation. This shows that γ is a triangular 2-cocycle of $\mathfrak{Q}[(H_i)]$. We denote by σ the map of H_i onto $\operatorname{Exp}_{\mathfrak{T}}(\mathfrak{Q}[(H_i)])$ defined by

$$\sigma(v_{33}(a_3) v_{32}(a_2) v_{31}(a_1)) = \operatorname{Exp}_r(a_1 + a_2 + a_3), \qquad (a_i \in A_i).$$

We shall shows that σ is an isomorphism. From the definition of γ and $\{v_{ji}(\xi)\}$ it follows

$$\begin{aligned} (v_{33}(a_3) v_{32}(a_2) v_{31}(a_1))(v_{33}(b_3) v_{32}(b_2) v_{31}(b_1)) \\ &= v_{33}(a_3) v_{33}(b_3) v_{32}(a_2) v_{32}(b_2) v_{32}(b_2)^{-1} v_{31}(a_1) v_{32}(b_2) v_{31}(a_1)^{-1} v_{31}(a_1) v_{31}(b_1) \\ &= v_{33}(a_3 + b_3 + [-b_2, a_1]) c_2(a_2, b_2) v_{32}(a_2 + b_2) v_{32}(v_{21}(a_1)) v_{32}(v_{21}(b_1)) \\ &= v_{33}(a_3 + b_3 + [a_1, b_2] + \gamma_{32}(a_2, b_2)) v_{32}(a_2 + b_2) c_2(v_{21}(a_1), v_{21}(b_1)) \\ &= v_{33}(a_3 + b_3 + [a_1, b_2] + \gamma_{32}(a_2, b_2) \gamma_{31}(a_1, b_1)) v_{32}(a_2 + b_2) v_{32}(c_1(a_1, b_1)) \\ &= v_{33}(a_3 + b_3 + [a_1, b_2] + \gamma_{32}(a_2, b_2) \gamma_{31}(a_1, b_1)) v_{32}(a_2 + b_2) v_{32}(c_1(a_1, b_1)) \\ &= v_{33}(a_3 + b_3 + [a_1, b_2] + \gamma_{32}(a_2, b_2) + [a_1, b_2] + \gamma_{32}(a_2 + b_2, \gamma_{21}(a_1, b_1))) \\ &= v_{33}(a_3 + b_3 + \gamma_{31}(a_1, b_1) + \gamma_{32}(a_2, b_2) + [a_1, b_2] + \gamma_{32}(a_2 + b_2, \gamma_{21}(a_1, b_1))) \\ &= v_{32}(a_2 + b_2 + \gamma_{21}(a_1, b_1)) v_{31}(a_1 + b_1). \end{aligned}$$

Hence by virtue of (14) in Proposition 3 we have

$$(v_{33}(a_3) v_{32}(a_2) v_{31}(a_1) v_{33}(b_3) v_{32}(b_2) v_{31}(b_1))$$

= Exp₇(a₁ + b₁ + a₂ + b₂ + $\gamma_{21}(a_1, b_1)$ + a₃ + b₃ + $\gamma_{31}(a_1, b_1)$ + $\gamma_{32}(a_3, b_2)$
+ $\gamma_{32}(a_2 + b_2, \gamma_{21}(a_1, b_1)))$
= Exp₇(a₁ + a₂ + a₃) Exp₇(b₁ + b₂ + b₃) = $\sigma(v_{33}(a_3) v_{32}(a_2) v_{31}(a_1))$
 $\sigma(v_{33}(b_3) v_{32}(b_2) v_{31}(b_1)).$

This proves that σ is a homomorphism. Since obviousely σ is bijective, σ is an

isomorphism. This completes the proof of Theorem 2.

Two triangular 2-cocycles r and r' of $\mathfrak{L} = A_1 + A_2 + A_3$ are called to be equivalent if the N-series associated with the pairs (\mathfrak{L}, r) and (\mathfrak{L}, r') (in the means of Theorem 1) are isomorphic. We call the equivalent classes of triangular 2-cocycles the triangular 2-cohomology classes of \mathfrak{L} . Then by virtue of Theorems 1 and 2 we can conclude that the set of pairs consisting of a graded Lie ring \mathfrak{L} of length three and a triangular 2-cohomology class of \mathfrak{L} corresponds bijiectively to the set of N-series of length three by means of the Exponential Maps.

Reference

[1] M. Hall, The Theory of Groups (1959), New York.

Supplement: Let $\mathfrak{L} = A_1 + A_2 + A_3$ be a graded Lie ring of length three. Let γ_{21} be a 2-cocycle of A_1 with coefficients in A_2 and γ_{32} be a 2-cocycle of A_2 with coefficients in A_3 such that the extended group N_3 of by N_2 with respect to γ_{32} is abelian, i.e.

$$(*) \qquad \qquad 0 \to A_3 \to N_2 \to A_2 \to 0$$

is an exact sequence of abelian groups. We denote by $H^2_a(A_2, A_3)$ the group of all the abelian extensions of A_3 by A_2 . We denote by $\delta^{T_{32}}$ the coboundary operation of $H^2(A_1, A_2)$ into $H^3(A_1, A_3)$ with respect to the exact sequence (*), then we have the following identity

$$\delta^{\tau_{22}}(r_{21})(a_1, b_1, c_1) = \gamma_{32}(\gamma_{21}(b_1, c_1), \gamma_{21}(a_1, b_1 + c_1)) - \gamma_{32}(\gamma_{21}(a_1, b_1), \gamma_{21}(a_1 + b_1, c_1)), \qquad (a_1, b_1, c_1 \in A_1).$$

On the other hand if we put $\gamma'_{32} = \gamma_{32} + \partial \beta$ with a 1-cochain β of A_2 , we have

$$\delta^{\Upsilon_{32'}}(\gamma_{21}) = \delta^{\Upsilon_{32}}(\gamma_{21}) + \partial g, \ g(a_1, \ b_1) = \beta(\gamma_{21}(a_1, \ b_1)), \qquad (a_1, \ b_1 \in A_1).$$

These identities show that the mapping $(\gamma_{32}, \gamma_{21}) \rightarrow \delta^{\gamma_{32}}(\gamma_{21})$ induces the zero-map of $H^2_a(A_2, A_3) \times H^2(A_1, A_2)$ into $H^3(A_1, A_3)$. The map: $\gamma_{21} \rightarrow [a_1, \gamma_{21}(b_1, c_1)]$ induces a homomorphism χ of $H^2(A_1, A_2)$ into $H^3(A_1, A_3)$. We denote by K the kernel of χ , then we can parametrize by $K \times H^2_a(A_2, A_3) \times H^2(A_1, A_3)$ all N-series $\{N_1, N_2, N_3\}$ such that associated Lie ring of $\{N_i\}$ is canonically isomorphic to $\mathfrak{L} = A_1 + A_2 + A_3$.

Mathematical Institute, Nagoya University