ON THE EXPONENTIAL MAPS AND THE TRIANGULAR 2-CHOMOLOGY OF GRADED LIE RINGS OF LENGTH THREE

HISASI MORIKAWA

1. Let H be a group. We mean by an N-series in H a decreasing series of subgroups $H_{1}=H, H_{2}, \ldots, H_{n+1}=\{e\}$ such that the commutator $x y x^{-1} y^{-1}$ of two elements x and y respectively in H_{i} and H_{j} belongs to H_{i+j}, where $H_{s}=\{e\}$ for $s \geq n+1$. We call n the length of the N-series $\left(H_{i}\right)$. We mean by a graded Lie ring of length n a Lie ring \mathbb{Z} which is a direct sum $A_{1}+\cdots$ $+A_{n}$ of additive subgroups A_{1}, \ldots, A_{n} such that $\left[A_{i}, A_{j}\right] \subset A_{i+j}$, where $A_{s}=\{0\}$ for $s \geq n+1$. For each N-series (H_{i}) of length n the graded Lie ring $\mathfrak{R}\left[\left(H_{i}\right)\right]$ is associated with $\left(H_{i}\right)$ as follows ${ }^{11}$:
1) $\mathfrak{R}\left[\left(H_{i}\right)\right]$ is the direct sum of the additively written factor groups A_{i} $=H_{i} / H_{i+1}(i=1,2, \ldots, n)$, and this direct sum gives the addition in $\mathbb{Q}\left[\left(H_{i}\right)\right]$.
2) The Lie product $[a, b]$ of $a \in A_{i}$ and $b \in A_{j}$ is the group commutator $x y x^{-1} y^{-1}$ modulo H_{i+j+1} of the representatives x and y respectively of a and b in H_{1}. We shall call $\mathbb{Q}\left[\left(H_{i}\right)\right]$ the graded Lie ring associated with the N series $\left(H_{i}\right)$.

In the present note we shall introduce triangular 2 -cocycles of a graded Lie ring \mathfrak{Z} of length three and shall show that for each triangular 2 -cocycle γ of \mathfrak{Z} we can define the Exponential Map Exp_{r} of \mathfrak{Z} (onto a group) that is a bijective map of \mathfrak{Z} such that 1) $H_{1}=\operatorname{Exp}_{r}\left(A_{1}+A_{2}+A_{3}\right), H_{2}=\operatorname{Exp}_{r}\left(A_{2}+A_{3}\right)$, $H_{3}=\operatorname{Exp}_{\boldsymbol{r}}\left(A_{3}\right), H_{4}=\{e\}$ form an N-series and 2) \mathbb{L} is regarded as the graded Lie ring $\Omega\left[\left(H_{i}\right)\right]$ associated with ($\left.H_{i}\right)$. Two triangular 2 -cocycles γ and γ^{\prime} are called to be equivalent if the corresponding N-series (H_{i}) and (H_{i}^{\prime}) are isomorphic. We shall call the equivalent classes of triangular 2 -cocycles the triangular cohomology classes of \mathcal{L}. We shall also show that for any N-series (H_{i}) of length three there exists a triangular 2 -cocycle β of $\mathbb{R}\left[\left(H_{i}\right)\right]$ such that the N-series corresponding to the pair $\left(\mathbb{Q}\left[H_{i}\right)\right], \beta$) is isomorphic to $\left(H_{i}\right)$. So

[^0]we can conclude that the set of N-series of length three corresponds bijectively to the set of pairs consisting of a graded Lie ring \mathbb{Z} of length three and a triangular 2 -cohomology class of \mathfrak{R}. This is a generalization of theory of central extensions of abelian groups by abelian groups.
2. Triangular 2 -cocycles. Let $\mathfrak{Z}=A_{1}+A_{2}+A_{3}$ be a graded Lie ring of length three. We regard A_{j} as an A_{i}-module on which A_{i} operates simply, and denote by $C^{2}\left(A_{i}, A_{j}\right)$ the additive group of 2 -cochains of A_{i} with coefficients in A_{j}. We mean by a triangular 2 -cochain a triangular matrix
\[

\gamma=\left($$
\begin{array}{ll}
\gamma_{21} & 0 \\
\gamma_{31} & \gamma_{32}
\end{array}
$$\right)
\]

with components $\gamma_{j i}$ in $C^{2}\left(A_{i}, A_{j}\right),(i<j)$. We denote by $C^{2}(L)$ the set of triangular 2 -cochains of L. For $a=a_{1}+a_{2}+a_{3}, b=b_{1}+b_{2}+b_{3} \quad\left(a_{i}, b_{i} \in A_{i} ; i=\right.$ $1,2,3)$ and $\gamma \in C^{2}(\mathfrak{Q})$ we mean by $\gamma(a, b)$ the triangular matrix

$$
\left(\begin{array}{cc}
\gamma_{21}\left(a_{1}, b_{1}\right), & 0 \\
\gamma_{31}\left(a_{1}, b_{1}\right), & \gamma_{32}\left(a_{2}, b_{2}\right)
\end{array}\right)
$$

We shall now define triangular 2 -cocycles of Ω :
Definition. A triangular 2 -cocycle of \mathfrak{Z} is a triangular 2 -cochain γ of \mathfrak{Z} satisfying

$$
\begin{align*}
& \partial \gamma_{21}=0, \partial \gamma_{32}=0^{2)}, \tag{1}\\
& \partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] \tag{2}\\
& +\gamma_{32}\left(\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right)-\gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right)=0, \\
& \quad\left(a_{1}, b_{1}, c_{1} \in A_{1}\right), \\
& \gamma(0, a)=\gamma(a, 0)=0,(a \in \Omega), \tag{3}\\
& \gamma_{21}\left(a_{1}, b_{1}\right)-\gamma_{21}\left(b_{1}, a_{1}\right)=\left[a_{1}, b_{1}\right], \tag{4}\\
& \quad\left(a_{1}, b_{1} \in A_{1}\right), \\
& \gamma_{32}\left(a_{2}, b_{2}\right)=\gamma_{32}\left(b_{2}, a_{2}\right),\left(a_{2}, b_{2} \in A_{2}\right) . \tag{5}
\end{align*}
$$

Lemma. Let γ be a triangular 2 -cocycle of \mathfrak{Q}. Then

$$
\begin{array}{r}
\gamma_{31}\left(a_{1},-a_{1}\right)-\gamma_{31}\left(-a_{1}, a_{1}\right)=\left[a_{1}, \gamma_{21}\left(-a_{1}, a_{1}\right)\right], \tag{6}\\
\\
\left(a_{1} \in A_{1}\right),
\end{array}
$$

Proof. From (1), (2), (3) it follows

[^1]\[

$$
\begin{aligned}
0= & \partial \gamma_{31}\left(a_{1},-a_{1}, a_{1}\right)+\left[a_{1}, \gamma_{21}\left(-a_{1}, a_{1}\right)\right] \\
& +\gamma_{32}\left(\gamma_{21}\left(-a_{1}, a_{1}\right), \gamma_{21}\left(a_{1}, 0\right)\right)-\gamma_{32}\left(\gamma_{21}\left(a_{1},-a_{1}\right), \gamma_{21}\left(0, a_{1}\right)\right) \\
= & \gamma_{31}\left(-a_{1}, a_{1}\right)--\gamma_{31}\left(a_{1},-a_{1}\right) \\
& +\left[a_{1}, \gamma_{21}\left(-a_{1}, a_{1}\right)\right],\left(a_{1} \in A_{1}\right) .
\end{aligned}
$$
\]

This proves (6).
3. The Exponential Map associated to a triangular 2 -cocycle. Let γ be a triangular 2 -cocycle of \mathfrak{Q}. For $a_{i}, b_{i} \in A_{i}(i=1,2,3)$, put

$$
\begin{align*}
& \eta_{r}\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}\right)=\gamma_{21}\left(a_{1}, b_{1}\right)+\gamma_{31}\left(a_{1}, b_{1}\right)+\gamma_{32}\left(a_{2}, b_{2}\right) \tag{7}\\
& \quad+\left[a_{1}, b_{2}\right]+\gamma_{32}\left(a_{2}+b_{2}, \gamma_{21}\left(a_{1}, b_{1}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
& \rho_{7}\left(a_{1}+a_{2}+a_{3}\right)=c_{1}+c_{2}+c_{3}, \tag{8}\\
& c_{1}=-a_{1}, c_{2}=-a_{2}-\gamma_{21}\left(a_{1}, c_{1}\right), \\
& c_{3}=-a_{3}-\gamma_{31}\left(a_{1}, c_{1}\right)-\gamma_{32}\left(a_{2}, c_{2}\right)-\left[a_{1}, c_{2}\right]-\gamma_{32}\left(a_{2}+c_{2}, \gamma_{21}\left(a_{1}, c_{1}\right)\right) .
\end{align*}
$$

We shall first show the following properties of η_{γ} and ρ_{r}.
Proposition 1. Let γ be a triangular 2-cocycle of $\mathfrak{1}$. Then

$$
\begin{align*}
& \eta_{\gamma}(a, 0)=\eta_{\gamma}(0, a)=0, \quad(a \in \mathfrak{R}), \tag{9}\\
& \eta_{\gamma}(b, c)-\eta_{\gamma}\left(a+b+\eta_{\gamma}(a, b), c\right)+\eta_{\gamma}\left(a, b+c+\eta_{\gamma}(b, c)\right)-\eta_{\gamma}(a, b)=0, \tag{10}\\
& \quad(a, b, c \in \mathfrak{Z}), \\
& a+\rho_{\gamma}(a)+\eta_{\gamma}\left(\rho_{\gamma}(a), a\right)=a+\rho_{\gamma}(a)+\eta_{\gamma}\left(a, \rho_{\gamma}(a)\right)=0,(a \in \mathfrak{Z}) . \tag{11}
\end{align*}
$$

Proof. By virtue of (3), (7) it follows $\eta_{\gamma}(0, a)=\eta_{\gamma}(a, 0)=0,(a \in \mathbb{Z}) . \quad$ By virtue of (1), (2), (3), (6), (7) for $a=a_{1}+a_{2}+a_{3}, b=b_{1}+b_{2}+b_{3}, c=c_{1}+c_{2}+c_{3}$, ($a_{i}, b_{i}, c_{i} \in A_{i} ; i=1,2,3$), we have

$$
\begin{aligned}
& \eta_{r}(b, c)-\eta_{\gamma}\left(a+b+\eta_{\gamma}(a, b), c\right)+\eta_{\gamma}\left(a, b+c+\eta_{\gamma}(b, c)\right)-\gamma_{\gamma}(a, b) \\
& =\partial \gamma_{21}\left(a_{1}, b_{1}, c_{1}\right)+\partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\gamma_{32}\left(b_{2}, c_{2}\right)-\gamma_{32}\left(a_{2}+b_{2}+\gamma_{21}\left(a_{1}, b_{1}\right), c_{2}\right) \\
& +\gamma_{32}\left(a_{2}, b_{2}+c_{2}+\gamma_{21}\left(b_{1}, c_{1}\right)\right)-\gamma_{32}\left(a_{2}, b_{2}\right)+\left[b_{1}, c_{2}\right]-\left[a_{1}+b_{1}, c_{2}\right] \\
& \quad+\left[a_{1}, b_{2}+c_{2}+\gamma_{21}\left(b_{1}, c_{1}\right)\right]-\left[a_{1}, b_{2}\right] \\
& +\gamma_{32}\left(\left(b_{2}+c_{2}, \gamma_{21}\left(b_{1}, c_{1}\right)\right)-\gamma_{32}\left(a_{2}+b_{2}+c_{2}+\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right)\right. \\
& +\gamma_{32}\left(a_{2}+b_{2}+c_{2}+\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right)-\gamma_{32}\left(a_{2}+b_{2}, r_{21}\left(a_{1}, b_{1}\right)\right) \\
& =\partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] \\
& +\gamma_{32}\left(a_{2}+b_{2}+c_{2}, \gamma_{21}\left(b_{1}, c_{1}\right)\right)-\gamma_{32}\left(a_{2}+b_{2}+c_{2}, \gamma_{21}\left(a_{1}, b_{1}\right)\right) \\
& +\gamma_{32}\left(a_{2}+b_{2}+c_{2}+\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right)-\gamma_{32}+a_{2}+\gamma_{21}\left(a_{1}, b_{1}\right), \\
& \left.\gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] \\
& +\gamma_{32}\left(a_{2}+b_{2}+c_{2}, \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)+\gamma_{21}\left(b_{1}+c_{1}\right)\right)+\gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}+c_{1}\right),\right. \\
& -\gamma_{32}\left(a_{21}+b_{2}+a_{21}, \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)+\gamma_{21}\left(a_{1}, b_{1}\right)\right)-\gamma_{32}\left(\gamma_{21}\left(a_{1}+b_{1}, c_{1}\right),\right. \\
= & \partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] \\
& \left.+\gamma_{32}\left(\gamma_{21}\left(b_{1}, b_{1}\right), c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right)-\gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right)=0 .
\end{aligned}
$$

This proves (10). From the definition (8) of ρ_{r}, putting $\rho_{r}(a)=c_{1}+c_{2}+c_{3}$ ($c_{i} \in A_{i}: i=1,2,3$), we have

$$
\begin{aligned}
& a+\rho_{\gamma}(a)+\eta_{\gamma}\left(a, \rho_{\gamma}(a)\right)=\left(a_{1}+a_{2}+a_{3}\right)+\left(c_{1}+c_{2}+c_{3}\right)+\gamma_{21}\left(a_{1}, c_{1}\right) \\
& \quad+\gamma_{31}\left(a_{1}, c_{1}\right)+\gamma_{32}\left(a_{2}, c_{2}\right)+\left[a_{1}, c_{2}\right]+\gamma_{32}\left(a_{2}+c_{2}, \gamma_{21}\left(a_{1}, c_{1}\right)\right)=0, \\
& a+\rho_{\gamma}(a)+\eta_{\gamma}\left(\rho_{r}(a), a\right)=a+\rho_{\gamma}(a)+\eta_{\gamma}\left(a, \rho_{\gamma}(a)\right)+\eta_{\gamma}\left(\rho_{\gamma}(a), a\right)-\eta_{\gamma}\left(a, \rho_{r}(a)\right) \\
& \quad=\eta_{\gamma}\left(\rho_{\gamma}(a), a\right)-\eta_{\gamma}\left(a, \rho_{\gamma}(a)\right)=\gamma_{21}\left(c_{1}, a_{1}\right)-\gamma_{21}\left(a_{1}, c_{1}\right)+\gamma_{32}\left(c_{2}, a_{2}\right)-\gamma_{32}\left(a_{2}, c_{2}\right) \\
& \quad+\gamma_{31}\left(c_{1}, a_{1}\right)-\gamma_{31}\left(a_{1}, c_{1}\right)+\left[c_{1}, a_{1}\right]-\left[a_{1}, c_{2}\right]+\gamma_{32}\left(a_{2}+c_{2}, \gamma_{21}\left(c_{1}, a_{1}\right)\right) \\
& \\
& -\gamma_{32}\left(a_{2}+c_{2}, \gamma_{21}\left(a_{1}, c_{1}\right)\right) .
\end{aligned}
$$

Since $c_{1}=-a_{1}$ and $c_{2}=-a_{2}-\gamma_{21}\left(a_{1},-a_{1}\right)$, by virtue of (5), (6) we have

$$
\gamma_{21}\left(a_{1}, c_{1}\right)=\gamma_{21}\left(c_{1}, a_{1}\right), \gamma_{32}\left(c_{2}, a_{2}\right)=\gamma_{32}\left(a_{2}, c_{2}\right)
$$

and

$$
\begin{aligned}
& \gamma_{31}\left(c_{1}, a_{1}\right)-\gamma_{31}\left(a_{1}, c_{1}\right)+\left[c_{1}, a_{2}\right]-\left[a_{1}, c_{2}\right] \\
& \quad=\gamma_{31}\left(-a_{1}, a_{1}\right)-\gamma_{31}\left(a_{1},-a_{1}\right)+\left[-a_{1}, a_{2}\right]-\left[a_{1},-a_{2}-\gamma_{21}\left(a_{1},-a_{1}\right)\right] \\
& \quad=\gamma_{31}\left(-a_{1}, a_{1}\right)-\gamma_{31}\left(a_{1},-a_{1}\right)+\left[a_{1}, \gamma_{21}\left(a_{1},-a_{1}\right)\right]=0 .
\end{aligned}
$$

Hence $a+\rho_{\gamma}(a)+\eta_{r}\left(\rho_{r}(a), a\right)=0$. This completes the proof of Proposition 1.
For each triangular 2 -cocycle γ of \mathbb{Z} we shall define the set of symbols $\left\{\operatorname{Exp}_{r}(a) \mid a \in \mathbb{B}\right\}$ with the following law of composition:

$$
\begin{equation*}
\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b)=\operatorname{Exp}_{r}\left(a+b+\eta_{r}(a, b)\right), \quad(a, b \in \mathbb{Z}) \tag{12}
\end{equation*}
$$

We call the map Expr the Exponential Map of \mathcal{E} with a base γ, and call γ the basic triangular 2-cocycle of the Exponential Map Expr.

Proposition 2. $\operatorname{Exp}(\mathbb{Z})=\left\{\operatorname{Exp}_{\boldsymbol{r}}(a) \mid a \in \mathfrak{Z}\right\}$ is a group and $\operatorname{Exp}_{\mathrm{r}}$ is a bijective map of \mathbb{Z} onto $\operatorname{Exp}_{r}(\mathbb{R})$.

Proof. By virtue of (9) we have $\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(0)=\operatorname{Exp}_{r}(0) \operatorname{Exp}_{r}(a)=$ $\operatorname{Exp}_{r}(a)$, and thus $\operatorname{Exp}_{r}(0)$ is the unit element. From (11) it tollows $\operatorname{Exp}_{r}(a)$.
$\operatorname{Exp}_{r}\left(\rho_{r}(a)\right)=\operatorname{Exp}_{r}\left(\rho_{r}(a)\right) \operatorname{Exp}_{r}(a)=\operatorname{Exp}_{r}(0)$. This shows that $\operatorname{Exp}_{r}\left(\rho_{r}(a)\right)$ is the inverse element of $\operatorname{Exp}_{r}(a)$. From (10) it follows

$$
\begin{aligned}
& \left(\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b)\right) \operatorname{Exp}_{\gamma}(c)=\operatorname{Exp}_{r}\left(a+b+\eta_{\gamma}(a, b)\right) \operatorname{Exp}_{r}(c) \\
& \quad=\operatorname{Exp}_{r}\left(a+b+c+\eta_{r}(a, b)+\eta_{\gamma}\left(a+b+\eta_{\gamma}(a, b), c\right)\right. \\
& \quad=\operatorname{Exp}_{r}\left(a+b+c+\eta_{\gamma}(b, c)+\eta_{\gamma}\left(a, b+c+\eta_{\gamma}(b, c)\right)\right. \\
& \quad \operatorname{Exp}(a)\left(\operatorname{Exp}_{r}\left(b+c+\eta_{r}(b, c)\right)=\operatorname{Exp}_{r}(a)\left(\operatorname{Exp}_{r}(b) \operatorname{Exp}_{r}(c)\right)\right.
\end{aligned}
$$

This shows that $\operatorname{Exp}_{\mathrm{r}}(\mathfrak{R})$ satisfies the associative law. Therefore $\operatorname{Exp}_{r}(\mathfrak{R})$ is a group. Since $\operatorname{Exp}_{r}(a)$ are symbols, we have $\operatorname{Exp}_{r}(a)=\operatorname{Exp}_{r}(b)$ if and only if $a=b . \quad$ This completes the proof of Proposition 2.

We mean by the Logarithmic Map Log the inverse map of the Exponential Map Exp_{r}. Namely $\log _{r}$ is a bijective map of $\operatorname{Expr}(\mathbb{Z})$ onto \mathbb{Z} such that

$$
\begin{equation*}
\log _{\gamma}\left(\operatorname{Exp}_{\gamma}(a)\right)=a, \quad(a \in \mathfrak{R}) \tag{13}
\end{equation*}
$$

Proposition 3. For any $a_{i}, b_{i} \in A_{i}(i=1,2,3)$ we have

$$
\begin{align*}
& \log _{\gamma}\left(\operatorname{Exp}_{r}\left(a_{1}+a_{2}+a_{3}\right) \operatorname{Exp}_{r}\left(b_{1}+b_{2}+b_{3}\right)\right)=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}+\gamma_{21}\left(a_{1}, b_{1}\right)\right) \tag{14}\\
& \quad+\left(a_{3}+b_{3}+\gamma_{31}\left(a_{1}, b_{1}\right)+\gamma_{32}\left(a_{2}, b_{2}\right)+\left[a_{1}, b_{2}\right]+\gamma_{32}\left(a_{2}+b_{2}, \gamma_{21}\left(a_{1}, b_{1}\right)\right)\right), \\
& \log _{\gamma}\left(\operatorname{Exp}_{r}\left(a_{1}+a_{2}+a_{3}\right)^{-1}\right)=\log _{\gamma}\left(\rho_{r}\left(a_{1}+a_{2}+a_{3}\right)\right) \tag{15}\\
& =-a_{1}-\left(a_{2}+\gamma_{21}\left(a_{1},-a_{1}\right)-\left(a_{3}+\gamma_{31}\left(a_{1},-a_{1}\right)\right.\right. \\
& +
\end{align*}
$$

Proof. Since $\operatorname{Exp}_{r}\left(a_{1}+a_{2}+a_{3}\right) \operatorname{Exp}_{r}\left(b_{1}+b_{2}+b_{3}\right)=\operatorname{Exp}_{r}\left(a_{1}+b_{1}+a_{2}+b_{2}+a_{3}\right.$ $+b_{3}+\eta_{\gamma}\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}\right)$, (14) follows from (7). (15) is an immediate consequence from (8).

For the sake of simplicity we denote by $B_{1}, B_{2}, B_{3}, B_{3}, B_{4}$ the ideals of $\mathfrak{Z}=A_{1}+A_{2}+A_{2}, A_{2}+A_{3}, A_{3},\{0\}$, respectively.

Proposition 4. If $a \in B_{i}$ and $b \in B_{j}$, we have

$$
\begin{align*}
& \log _{r}\left(\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b)\right) \in B_{\min (i, j}, \tag{16}\\
& \log _{r}\left(\operatorname{Exp}_{r}(a)^{-1}\right) \in B_{i}, \tag{17}\\
& \log _{\gamma}\left(\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b) \operatorname{Exp}_{r}(a)^{-1} \operatorname{Exp}_{r}(b)^{-1}\right) \equiv[a, b] \bmod B_{i+j+1}, \tag{18}
\end{align*}
$$

where $B_{s}=\{0\}$ for $s \geq 4$.
Proof. (16) and (17) are immediate consequences of (14) and (15), respectively. By virtue of (14), if $a \in \mathbb{Z}$ and $b_{3} \in A_{3}$, we have $\operatorname{Exp}_{\gamma}(a) \operatorname{Exp}_{r}\left(b_{3}\right)$
$=\operatorname{Exp}_{r}\left(a+b_{3}\right)=\operatorname{Exp}_{r}\left(b_{3}\right) \operatorname{Exp}_{r}(a)$. This shows that $\operatorname{Exp}_{r}\left(A_{3}\right)$ is a subgroup contained in the center of $\operatorname{Expr}(\mathfrak{L})$. Using this fact and (1), (3), (4), (14), (15) we have for $a=a_{1}+a_{2}+a_{3}, b=b_{1}+b_{2}+b_{3}\left(a_{i}, b_{i} \in A_{i}\right)$

$$
\begin{aligned}
& \quad \log _{\gamma}\left(\operatorname{Exp}_{r}(a) \operatorname{Exp}_{r}(b) \operatorname{Exp}_{r}(a)^{-1} \operatorname{Exp}_{r}(b)^{-1}\right) \\
& \equiv \gamma_{21}\left(a_{1}, b_{1}\right)-\gamma_{21}\left(a_{1},-a_{1}\right) \gamma_{21}\left(b_{1},-b_{1}\right)+\gamma_{21}\left(-a_{1},-b_{1}\right)+\gamma_{21}\left(a_{1}+b_{1},-a_{1}-b_{1}\right) \\
& \equiv \gamma_{21}\left(a_{1}, b_{1}\right)-\gamma_{21}\left(b_{1}, a_{1}\right) \equiv\left[a_{1}, b_{1}\right] \bmod A_{3} .
\end{aligned}
$$

This proves (16) for $i=j=1$. Since $\operatorname{Exp}_{\gamma}\left(A_{3}\right)$ is contained in the center, (16) is also true for $i=3$ or $j=3$. So it is sufficient to prove (16) for $a=a_{2}$ and $b=b_{1}+b_{2}\left(a_{2}, b_{2} \in A_{2}, b_{1} \in A_{1}\right)$. Using (14), (15), (6) we have

$$
\begin{aligned}
& \log _{r}\left(\operatorname{Exp}_{r}\left(a_{2}\right) \operatorname{Exp}_{r}\left(b_{1}+b_{2}\right) \operatorname{Exp}_{r}\left(a_{2}\right)^{-1} \operatorname{Exp}_{r}\left(b_{1}+b_{2}\right)^{-1}\right)=\log _{\gamma}\left(\operatorname{Exp}_{r}\left(a_{2}\right) \operatorname{Exp}_{r}\right. \\
& \left.\quad\left(b_{1}+b_{2}\right)\left(\operatorname{Exp}_{r}\left(b_{1}+b_{2}\right) \operatorname{Exp}_{r}\left(a_{2}\right)\right)^{-1}\right) \\
& =\log _{r}\left(\operatorname{Exp}_{r}\left(b_{1}+a_{2}+b_{2}+\gamma_{32}\left(a_{2}, b_{2}\right)\right) \operatorname{Exp}_{r}\left(b_{1}+a_{2}+b_{2}+\gamma_{32}\left(b_{2}, a_{2}\right)+\left[b_{1}, a_{2}\right]\right)^{-1}\right) \\
& = \\
& =\log _{r}\left(\operatorname{Exp}_{r}\left(b_{1}+a_{2}+b_{2}+\gamma_{32}\left(a_{2}, b_{2}\right)\right) \operatorname{Exp}_{r}\left(b_{1}+a_{2}+b_{2}+\gamma_{32}\left(a_{2}, b_{2}\right)\right)^{-1}\right. \\
& = \\
& \quad-\left[b_{1}, a_{2}\right]=\left[a_{2}, b_{1}\right] .
\end{aligned}
$$

This completes the prove of (16).
We shall now sum up the results in this paragraph in the following theorem.
Theorem 1. Let γ be a triangular 2 -cocycle of a graded Lie ring of length three $\mathfrak{R}=A_{1}+A_{2}+A_{3}$. Then $H_{1}=\operatorname{Exp}_{y}\left(A_{1}+A_{2}+A_{3}\right), H_{2}=\operatorname{Exp}_{r}\left(A_{2}+A_{3}\right), H_{3}$ $=\operatorname{Exp}_{\boldsymbol{r}}\left(A_{3}\right), H_{4}=\{e\}$ form an N-series such that \mathbb{Q} is regarded as the graded Lie ring associated with $\left(H_{i}\right)$.

Proof. (16), (17) and (18) in Proposition 4 show that $H_{1}, H_{2}, H_{3}, H_{4}$ form an N-series. Identifying $\operatorname{Exp}\left(a_{i}\right) \bmod H_{i+1}$ with $a_{i} \bmod B_{i+1}$, we get the identification of $\mathfrak{Q}\left[\left(H_{i}\right)\right]$ with Ω.
4. In this paragraph we shall prove the following theorem:

Theorem 2. Let $H_{1}=H, H_{2}, H_{3}, H_{4}=\{e\}$ be an N-series. Then there exists a triangular 2-cocycle γ of the graded Lie ring $\mathfrak{Q}\left[\left(H_{i}\right)\right]$ associated with (H_{i}) such that the N-series associated with the pair ($\left\{\left[\left(H_{i}\right)\right], \gamma\right)$ (in the sense of Theorem 1) is isomorphic to the N-series (H_{i}).

In the proof of Theorem 2, we shall also show the structural meaning of the triangular 2 -cocycle γ.

The proof of Theorem 2: We denote by $\mathbb{R}\left[\left(H_{i}\right)\right]=A_{1}+A_{2}+A_{3}$ the graded Lie ring associated with $\left(H_{i}\right)$. We shall identify H_{i} / H_{i+1} with A_{i} and shall use the both notations (the additive one and the multiplicative one) freely for the sake of simplicity. Let us choose a family of representatives $\left\{v_{j i}(\xi) \in H_{1} / H_{j+1} \mid\right.$ $\left.\xi \in H_{1} / H_{i+1} ; 1 \leq i \leq j \leq 3\right\}$ such that

$$
\begin{align*}
& v_{i, i}(\xi)=\xi, \tag{19}\\
& v_{k, j}\left(v_{j, i}(\xi)\right)=v_{k, i}(\xi), \quad\left(\xi \in H_{1} / H_{i+1} ; \quad 1 \leq i \leq j \leq k \leq 3\right\}, \tag{20}\\
& v_{k, j}\left(\eta v_{j i}(\xi)\right)=v_{k, j}(\eta) v_{k, i}(\xi), \quad\left(\xi \in H_{1} / H_{i+1} ; \eta \in H_{l} / H_{i+1} ;\right. \tag{21}
\end{align*}
$$

$$
\begin{equation*}
1 \leq i<l \leq j \leq k \leq 3), \tag{22}
\end{equation*}
$$

$v_{j, i}(e)=$ the unit element e of H_{1} / H_{j+1}.
Put

$$
\begin{array}{lr}
c_{i-1}\left(\xi, \xi^{\prime}\right)=v_{i, i-1}(\xi) v_{i, i-1}\left(\xi^{\prime}\right) v_{i, i-1}\left(\xi \xi^{\prime}\right)^{-1}, & \left(\xi, \xi^{\prime} \in H_{1} / H_{i} ; i=2,3\right), \\
\gamma_{21}\left(a_{1}, b_{1}\right)=c_{1}\left(a_{1}, b_{1}\right), \gamma_{32}\left(a_{2}, b_{2}\right)=c_{2}\left(a_{2}, b_{2}\right), & \left(a_{i}, b_{i} \in A_{i} ; i=1,2\right) \tag{24}
\end{array}
$$

and

$$
\begin{equation*}
\gamma_{31}\left(a_{1}, b_{1}\right)=c_{2}\left(v_{2,1}\left(a_{1}\right), v_{2,1}\left(b_{1}\right)\right), \quad\left(a_{1}, b_{1} \in A_{1}\right) \tag{25}
\end{equation*}
$$

We shall prove that the triangular 2 -cochain

$$
\gamma=\left(\begin{array}{cc}
\gamma_{21} & 0 \\
\gamma_{31} & \gamma_{32}
\end{array}\right)
$$

is a triangular 2 -cocycle of $\mathbb{Q}\left[\left(H_{i}\right)\right]$. Since γ_{21} (resp. γ_{32}) are the 2 -cocycles associated with the extension H_{1} / H_{3} (resp. H_{2} / H_{4}) of A_{2} (resp. A_{3}) by A_{1} (resp. A_{2}), we have $\partial \gamma_{21}=0$ (resp. $\partial \gamma_{32}=0$). Since $v_{j, i}(e)=$ the unit element e of H_{1} / H_{j+1}, we have $\gamma_{j i}\left(0, a_{j}\right)=\gamma_{j i}\left(a_{i}, 0\right)=0$ for $\boldsymbol{a}_{i} \in A_{i}$. Namely $\gamma(0, a)=\gamma(a, 0)$ $=0$ for $a \in \mathfrak{\&}$. Since H_{3} is contained in the center of H, from the definition of γ_{31} we have for $a_{1}, b_{1}, c_{1} \in A_{1}$

$$
\begin{aligned}
& \left(v_{31}\left(a_{1}\right) v_{31}\left(b_{1}\right)\right) v_{31}\left(c_{1}\right)=v_{32}\left(v_{21}\left(a_{1}\right)\right) v_{32}\left(v_{21}\left(b_{1}\right)\right) v_{31}\left(c_{1}\right) \\
& \quad=c_{3}\left(v_{21}\left(a_{1}\right), v_{21}\left(b_{1}\right)\right) v_{32}\left(v_{21}\left(a_{1}\right) v_{21}\left(b_{1}\right)\right) v_{31}\left(c_{1}\right) \\
& =\gamma_{31}\left(a_{1}, b_{1}\right) v_{32}\left(c_{21}\left(a_{1}, b_{1}\right) v_{31}(a+b) v_{31}\left(c_{1}\right)\right) \\
& =\gamma_{31}\left(a_{1}, b_{1}\right) v_{32}\left(c_{21}\left(a_{1}, b_{1}\right)\right) \gamma_{31}\left(a_{1}+b_{1}, c_{1}\right) v_{32}\left(c_{21}\left(a_{1}+b_{1}, c_{1}\right)\right) \\
& \quad v_{31}\left(a_{1}+b_{1}+c_{1}\right) \\
& =\gamma_{31}\left(a_{1}, b_{1}\right) \gamma_{31}\left(a_{1}+b_{1}, c_{1}\right) \gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right) \\
& \quad v_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right)+\gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right) v_{31}\left(a_{1}+b_{1}+c_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
v_{31} & \left(a_{1}\right)\left(v_{31}\left(b_{1}\right) v_{31}\left(c_{1}\right)\right)=v_{31}\left(a_{1}\right) \gamma_{31}\left(b_{1}, c_{1}\right) v_{32}\left(c_{2}\left(b_{1}, c_{1}\right)\right) v_{31}\left(b_{1}+c_{1}\right) \\
= & \gamma_{31}\left(b_{1}, c_{1}\right) v_{31}\left(a_{1}\right) v_{32}\left(c_{2}\left(b_{1}, c_{1}\right)\right) v_{31}\left(a_{1}\right)^{-1} v_{31}\left(c_{2}\left(b_{1}, c_{1}\right)\right)^{-1} \\
& v_{32}\left(c_{2}\left(b_{1}, c_{1}\right)\right) v_{31}\left(a_{1}\right) v_{31}\left(b_{1}+c_{1}\right) \\
= & \gamma_{31}\left(b_{1}, c_{1}\right)\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] v_{32}\left(c_{2}\left(b_{1}, c_{1}\right)\right) \gamma_{31}\left(a_{1}, b_{1}+c_{1}\right) \\
& v_{32}\left(c_{2}\left(a_{1}, b_{1}+c_{1}\right) v_{31}\left(a_{1}+b_{1}+c_{1}\right)\right. \\
= & \gamma_{31}\left(b_{1}, c_{1}\right) \gamma_{31}\left(a_{1}, b_{1}+c_{1}\right)\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right] \gamma_{32}\left(\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right) \\
& v_{32}\left(\gamma_{21}\left(b_{1}, c_{1}\right)+\gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right) v_{31}\left(a_{1}+b_{1}+c_{1}\right) .
\end{aligned}
$$

Hence by the associative law and the equality $\partial \gamma_{21}=0$ we have

$$
\begin{aligned}
& \partial \gamma_{31}\left(a_{1}, b_{1}, c_{1}\right)+\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right]+\gamma_{32}\left(\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right) \\
&-\gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right)=0
\end{aligned}
$$

in the additive notation. This shows that γ is a triangular 2-cocycle of $\mathbb{R}\left[\left(H_{i}\right)\right]$. We denote by σ the map of H_{1} onto $\operatorname{Exp}_{r}\left(\mathfrak{R}\left[\left(H_{i}\right)\right]\right.$ defined by

$$
\sigma\left(v_{33}\left(a_{3}\right) v_{32}\left(a_{2}\right) v_{31}\left(a_{1}\right)\right)=\operatorname{Exp}_{\gamma}\left(a_{1}+a_{2}+a_{3}\right), \quad\left(a_{i} \in A_{i}\right)
$$

We shall shows that σ is an isomorphism. From the definition of γ and $\left\{v_{j i}(\xi)\right\}$ it follows

$$
\begin{aligned}
& \left(v_{33}\left(a_{3}\right) v_{32}\left(a_{2}\right) v_{31}\left(a_{1}\right)\right)\left(v_{33}\left(b_{3}\right) v_{32}\left(b_{2}\right) v_{31}\left(b_{1}\right)\right) \\
& \quad=v_{33}\left(a_{3}\right) v_{33}\left(b_{3}\right) v_{32}\left(a_{2}\right) v_{32}\left(b_{2}\right) v_{32}\left(b_{2}\right)^{-1} v_{31}\left(a_{1}\right) v_{32}\left(b_{2}\right) v_{31}\left(a_{1}\right)^{-1} v_{31}\left(a_{1}\right) v_{31}\left(b_{1}\right) \\
& \quad=v_{33}\left(a_{3}+b_{3}+\left[-b_{2}, a_{1}\right]\right) c_{2}\left(a_{2}, b_{2}\right) v_{32}\left(a_{2}+b_{2}\right) v_{32}\left(v_{21}\left(a_{1}\right)\right) v_{32}\left(v_{21}\left(b_{1}\right)\right) \\
& \quad=v_{33}\left(a_{3}+b_{3}+\left[a_{1}, b_{2}\right]+\gamma_{32}\left(a_{2}, b_{2}\right)\right) v_{32}\left(a_{2}+b_{2}\right) c_{2}\left(v_{21}\left(a_{1}\right), v_{21}\left(b_{1}\right)\right) \\
& \quad v_{32}\left(v_{21}\left(a_{1}\right) v_{21}\left(b_{1}\right)\right) \\
& =v_{33}\left(a_{3}+b_{3}+\left[a_{1}, b_{2}\right]+\gamma_{32}\left(a_{2}, b_{2}\right) \gamma_{31}\left(a_{1}, b_{1}\right)\right) v_{32}\left(a_{2}+b_{2}\right) v_{32}\left(c_{1}\left(a_{1}, b_{1}\right)\right) \\
& \left.v_{21}\left(a_{1}+b_{1}\right)\right) \\
& =v_{33}\left(a_{3}+b_{3}+\gamma_{31}\left(a_{1}, b_{1}\right)+\gamma_{32}\left(a_{2}, b_{2}\right)+\left[a_{1}, b_{2}\right]+\gamma_{32}\left(a_{2}+b_{2}, \gamma_{21}\left(a_{1}, b_{1}\right)\right)\right) \\
& v_{32}\left(a_{2}+b_{2}+\gamma_{21}\left(a_{1}, b_{1}\right)\right) v_{31}\left(a_{1}+b_{1}\right) .
\end{aligned}
$$

Hence by virtue of (14) in Proposition 3 we have

$$
\begin{aligned}
&\left(v_{33}\left(a_{3}\right) v_{32}\left(a_{2}\right) v_{31}\left(a_{1}\right) v_{33}\left(b_{3}\right) v_{32}\left(b_{2}\right) v_{31}\left(b_{1}\right)\right) \\
&=\operatorname{Exp}_{r}\left(a_{1}+b_{1}+a_{2}+b_{2}+\gamma_{21}\left(a_{1}, b_{1}\right)+a_{3}+b_{3}+\gamma_{31}\left(a_{1}, b_{1}\right)+\gamma_{32}\left(a_{3}, b_{2}\right)\right. \\
&\left.+\gamma_{32}\left(a_{2}+b_{2}, \gamma_{21}\left(a_{1}, b_{1}\right)\right)\right)
\end{aligned} \quad \begin{aligned}
& \operatorname{Exp}_{r}\left(a_{1}+a_{2}+a_{3}\right) \operatorname{Exp}_{r}\left(b_{1}+b_{2}+b_{3}\right)=\sigma\left(v_{33}\left(a_{3}\right) v_{32}\left(a_{2}\right) v_{31}\left(a_{1}\right)\right) \\
& \sigma\left(v_{33}\left(b_{3}\right) v_{32}\left(b_{2}\right) v_{31}\left(b_{1}\right)\right) .
\end{aligned}
$$

This proves that σ is a homomorphism. Since obviousely σ is bijective, σ is an
isomorphism. This completes the proof of Theorem 2.
Two triangular 2 -cocycles γ and γ^{\prime} of $\mathfrak{Z}=A_{1}+A_{2}+A_{3}$ are called to be equivalent if the N-series associated with the pairs (\mathcal{Q}, γ) and ($\mathcal{Z}, \gamma^{\prime}$) (in the means of Theorem 1) are isomorphic. We call the equivalent classes of triangular 2 -cocycles the triangular 2 -cohomology classes of \mathfrak{R}. Then by virtue of Theorems 1 and 2 we can conclude that the set of pairs consisting of a graded Lie ring \mathfrak{Z} of length three and a triangular 2 -cohomology class of \mathcal{Z} corresponds bijiectively to the set of N-series of length three by means of the Exponential Maps.

Reference

[1] M. Hall, The Theory of Groups (1959), New York.

Supplement: Let $\mathcal{R}=A_{1}+A_{2}+A_{3}$ be a graded Lie ring of length three. Let γ_{21} be a 2 -cocycle of A_{1} with coefficients in A_{2} and γ_{32} be a 2 -cocycle of A_{2} with coefficients in A_{3} such that the extended group N_{3} of by N_{2} with respect to γ_{32} is abelian, i.e.
(*)

$$
0 \rightarrow A_{3} \rightarrow N_{2} \rightarrow A_{2} \rightarrow 0
$$

is an exact sequence of abelian groups. We denote by $H_{a}^{2}\left(A_{2}, A_{3}\right)$ the group of all the abelian extensions of A_{3} by A_{2}. We denote by $\delta^{\tau_{32}}$ the coboundary operation of $H^{2}\left(A_{1}, A_{2}\right)$ into $H^{3}\left(A_{1}, A_{3}\right)$ with respect to the exact sequence (*), then we have the following identity

$$
\begin{aligned}
\delta^{\gamma_{22}}\left(r_{21}\right)\left(a_{1}, b_{1}, c_{1}\right)= & \gamma_{32}\left(\gamma_{21}\left(b_{1}, c_{1}\right), \gamma_{21}\left(a_{1}, b_{1}+c_{1}\right)\right) \\
& -\gamma_{32}\left(\gamma_{21}\left(a_{1}, b_{1}\right), \gamma_{21}\left(a_{1}+b_{1}, c_{1}\right)\right), \quad\left(a_{1}, b_{1}, c_{1} \in A_{1}\right) .
\end{aligned}
$$

On the other hand if we put $\gamma_{32}^{\prime}=\gamma_{32}+\partial \beta$ with a 1 -cochain β of A_{2}, we have

$$
\delta^{\tau_{22}{ }^{\prime}}\left(\gamma_{21}\right)=\delta^{\tau_{32}}\left(\gamma_{21}\right)+\partial g, g\left(a_{1}, b_{1}\right)=\beta\left(\gamma_{21}\left(a_{1}, b_{1}\right)\right), \quad\left(a_{1}, b_{1} \in A_{1}\right) .
$$

These identities show that the mapping $\left(\gamma_{32}, \gamma_{21}\right) \rightarrow \delta^{\gamma_{32}}\left(\gamma_{21}\right)$ induces the zero-map of $H_{a}^{2}\left(A_{2}, A_{3}\right) \times H^{2}\left(A_{1}, A_{2}\right)$ into $H^{3}\left(A_{1}, A_{3}\right)$. The map: $\gamma_{21} \rightarrow\left[a_{1}, \gamma_{21}\left(b_{1}, c_{1}\right)\right]$ induces a homomorphism χ of $H^{2}\left(A_{1}, A_{2}\right)$ into $H^{3}\left(A_{1}, A_{3}\right)$. We denote by K the kernel of χ, then we can parametrize by $K \times H_{a}^{2}\left(A_{2}, A_{3}\right) \times H^{2}\left(A_{1}, A_{3}\right)$ all N-series $\left\{N_{1}, N_{2}, N_{3}\right\}$ such that associated Lie ring of $\left\{N_{i}\right\}$ is canonically isomorphic to $\mathfrak{R}=A_{1}+A_{2}+A_{3}$.

Mathematical Institute,
Nagoya University

[^0]: Received September 18, 1962.
 ${ }^{1)}$ See [1] 18. 4 p. 329.

[^1]: 2) We mean by ∂ the ordinary coboundary operator.
