HOMOLOGICAL INVARIANTS OF LOCAL RINGS

HIROSHI UEHARA

Introduction

In this paper R is a commutative noetherian local ring with unit element 1 and M is its maximal ideal. Let K be the residue field R/M and let $\{t_1, t_2, \ldots, t_n\}$ be a minimal system of generators for M. By a complex $R < T_1, \ldots, T_p > 0$ we mean an R-algebra* obtained by the adjunction of the variables T_1, \ldots, T_p of degree 1 which kill t_1, \ldots, t_p . The main purpose of this paper is, among other things, to construct an R-algebra resolution of the field K, so that we can investigate the relationship between the homology algebra H ($R < T_1, \ldots, T_n > 0$) and the homological invariants of R such as the algebra R. The relationship was initially studied by Serre [5]. Then Tate [6] gave the correct lower bound for the Betti numbers of a nonregular local ring. In his M. I. T. lecture (See a footnote of [6]) Eilenberg proves that

$$B_2 = \binom{n}{2} + \binom{n}{0}b_1$$
 and $B_3 \ge \binom{n}{3} + \binom{n}{1}b_1$,

where $b_1 = \dim_K H_1$ ($R < T_1, \ldots, T_n >$). In this paper these results of Eilenberg are generalized as follows:

$$B_{3} = {n \choose 3} + {n \choose 1}b_{1} + \epsilon_{2},$$

$$B_{4} = {n \choose 4} + {n \choose 2}b_{1} + {n \choose 0}b_{1}^{2} - {b_{1} \choose 2} + \epsilon_{2}{n \choose 1} + \epsilon_{3}{n \choose 0}.$$

and so forth, where $\epsilon_2 = \dim_K H_2(\Lambda)/H_1(\Lambda)^2$, $\epsilon_3 = \dim_K H_3(\Lambda)/H_1(\Lambda) \cdot H_2(\Lambda)$, and $\Lambda = R < T_1, \ldots, T_n > \infty$. As corollaries of the above computation we obtain part of the results by Tate [6],

$$B_{\rho} \ge {n \choose \rho} + {n \choose \rho - 2} + {n \choose \rho - 4} + \cdots$$
, for $\rho \le 4$,

Received May 14, 1962.

^{*} For definition, see a paper of Tate [6]. Throughout the paper the numbers in square brackets refer to the papers of the bibliography at the end of the paper.

if R is not regular.

If R is a complete intersection, we have

$$B_3 = \binom{n}{3} + \binom{n}{1}b_1,$$

$$B_4 = \binom{n}{4} + \binom{n}{2}b_1 + \binom{n}{0}b_1^2 - \binom{b_1}{2}.$$

§ 1. The complex $R < T_1, \cdots, T_p >$

Let us consider a filtered complex $\Lambda = R < T_1, \ldots, T_n >$ with an increasing sequence of subcomplexes $R \subseteq R < T_1 > \subseteq R < T_1, T_2 > \subseteq \cdots \subseteq R < T_1, \ldots, T_p > \subseteq \cdots \subseteq \Lambda$.

Then the graded differential algebra Λ over R (in the sequel we shall call it simply "R-algebra" in the sense of Tate) has the increasing filtration $\{R < T_1, \ldots, T_p > \}$ such that $R < T_1, \ldots, T_p >$ is an R-subalgebra. Defining R-modules

$$D_{p,q} = H_{p+q}(R < T_1, \ldots, T_p >)$$

$$E_{b,q} = H_{p+q}(R < T_1, \ldots, T_p > /R < T_1, \ldots, T_{p-1} >),$$

we have the usual exact sequence

$$\cdots \xrightarrow{k} D_{p-1, q+1} \xrightarrow{i} D_{p, q} \xrightarrow{j} E_{p, q} \xrightarrow{k} D_{p-1, q} \xrightarrow{i} \cdots$$

for each pair $(R < T_1, \ldots, T_p >, R < T_1, \ldots, T_{p-1} >)$.

Thus the exact couple $C(\Lambda) = \langle D, E; i, j, k \rangle$ is associated with R-algebra Λ , where

$$D = \sum_{p,q} D_{p,q}$$
 and $E = \sum_{p,q} E_{p,q}$.

LEMMA 1.1.

$$E_{b,q} \simeq D_{b-1,q}$$

Proof. It is sufficient to show chain equivalences λ and μ

$$R < T_1, \ldots, T_p > /R < T_1, \ldots, T_{p-1} > \stackrel{\lambda}{\underset{\mu}{\longleftrightarrow}} R < T_1, \ldots, T_{p-1} >$$

such that $\lambda \mu = 1$ and $\mu \lambda = 1$. Let x be a homogeneous element of degree p + q in $R < T_1, \ldots, T_p > 1$. Then $x = x_1 + x_2 \cdot T_p$, where x_1 and x_2 are homogeneous elements of $R < T_1, \ldots, T_{p-1} > 1$ with degrees p + q and p + q - 1 respectively.

Obviously the residue class \overline{x} is represented by $x_2 \cdot T_p$. Define $\lambda(\overline{x}) = x_2$. It is immediate to verify that λ is well defined and is a chain mapping. Defining μ by

$$\mu(y) = \overline{y \cdot T_p},$$

we see by straightforword computation that λ and μ are chain equivalences. This completes the proof.

By replacing the *E*-terms by the corresponding isomorphic *D*-terms, the exact couple $C(\Lambda)$ can be developed into a "lattice-like" diagram

$$D_{n, 0} \xrightarrow{j} \cdots \longrightarrow D_{2, 0} \xrightarrow{j} D_{1, 0} \xrightarrow{k} D_{1, 0} \xrightarrow{j} D_{0, 0} \xrightarrow{k} D_{0, 0} = R$$

$$\downarrow i \qquad \downarrow i \qquad$$

The steps from upper left to lower right are exact sequences. It is easy to see that $k_{p,q}$; $D_{p,q} \longrightarrow D_{p,q}$ is the multiplication by $(-1)^{p+q}t_{p+1}$. This diagram provides us with the whole story about the following known results which have been proved by several authors [2], [6].

Proposition 1.2. The following statements are equivalent.

- i) $H_1(\Lambda) = 0$
- ii) $H_{\rho}(R < T_1, \ldots, T_p >) = 0$ for any $\rho \ge 1$ and for any $p(n \ge p \ge 0)$.

- iii) $\{t_1, t_2, \ldots, t_n\}$ is an R-sequence.
- iv) R is regular.

Proofs. i) \rightarrow ii) Since $H_1(\Lambda) = 0$, $k_{n-1, -n+2}$ which is the multiplication by $-t_n$, is onto. It follows that any element $x \in D_{n-1, -n+2}$ belongs to $\bigcap_{\rho=0}^{\infty} M^{\rho} \cdot D_{n-1, -n+2}$. By virtue of Krull (for example see [7]) x vanishes, because $D_{n-1, -n+2} = H_1$ ($R < T_1, \ldots, T_{n-1} > D_{n-1, -n+2} = H_1$ ($R < T_1, \ldots, T_{n-1} > D_{n-1, -n+2} = H_1$ vanishes for all $p(n \ge p \ge 1)$. Then $p(n \ge p \ge 1)$. Then $p(n \ge p \ge 1)$. Then $p(n \ge p \ge 1)$ is an example of the exactenss of the diagram $p(n \ge p \ge 1)$. Since $p(n \ge p \ge 1)$ is established. ii) $p(n \ge p \ge 1)$ iii) It is immediate by definition that $p(n \ge p \ge 1)$ is established. ii) $p(n \ge 1)$ iii) It is immediate by definition that $p(n \ge 1)$ is a non zero divisor for $p(n \ge 1)$. Since $p(n \ge 1)$ is isomorphic, $p(n \ge 1)$ is a non zero divisor for $p(n \ge 1)$. This completes the proof.

- $iii) \rightarrow iv)$ It is immediate by definition.
- iv) \rightarrow i) Without loss of generality we may assume that $\{t_1, \ldots, t_n\}$ is an R-sequence. Then all $k_{p,-p}$ are isomorphic so that all $i_{p,-p+1}$ are onto. Since $D_{1,0}=0$ in this case, we have $H_1(\Lambda)=0$.

§ 2. Construction of a minimal algebra resolution

Let us denote by b_{ρ} dim_K $H_{\rho}(\Lambda)$ and let 1-cycles $\mathfrak{J}_{1}^{1}, \ldots, \mathfrak{J}_{b_{1}}^{1}$ represent the homology classes $Z_{1}^{1}, \ldots, Z_{b_{1}}^{1} \in H_{1}(\Lambda)$ respectively. Then by adjoining $S_{1}, \ldots, S_{b_{1}}$ of degree 2 which kill the cycles $\mathfrak{J}_{1}^{1}, \ldots, \mathfrak{J}_{b_{1}}^{1}$ we obtain an R-algebra

$$\Lambda^{(2)} = \Lambda < S_1, \ldots, S_{b_1} > ; \partial_2^{(2)} S_i = \beta_i^1,$$

satisfying the following conditions:

a)
$$\Lambda^{(2)} \supset \Lambda = \Lambda^{(1)}$$
, and $\Lambda^{(2)}_{\lambda} = \Lambda_{\lambda}$ for $\lambda < 2$,

b)
$$H_1(\Lambda^{(2)}) = 0$$
.

Let

$$V_{p} = H_{p}(\Lambda)/(H_{p-1}(\Lambda) \cdot H_{1}(\Lambda) + H_{p-2}(\Lambda) \cdot H_{2}(\Lambda) + \cdots + H_{p-\lambda}(\Lambda) \cdot H_{\lambda}(\Lambda))$$

for $\rho \geq 2$, where $\lambda = \frac{\rho}{2}$ if ρ is even and $\lambda = \frac{\rho-1}{2}$ if ρ is odd, and let $\varepsilon_{\rho} = \dim_{K} V_{\rho}$. Selecting ρ -cycles $\mathfrak{Z}_{1}^{\rho}, \ldots, \mathfrak{Z}_{\varepsilon_{\rho}}^{\rho}$ representing the homology classes $Z_{1}^{\rho}, \ldots, Z_{\varepsilon_{\rho}}^{\rho} \in V_{\rho}$ and adjoining $U_{1}^{\rho+1}, \ldots, U_{\varepsilon_{\rho}}^{\rho+1}$ of degree $\rho+1$, we have an R-algebra

^{*} For t_1 is a non-zero divisor for R.

$$A^{(p+1)} = A^{(p)} < U_1^{p+1}, \ldots, U_{\epsilon p}^{p+1} > ; \partial_{p+1}^{(p+1)} U_i^{p+1} = \beta_i^p$$

satisfying

a)
$$A^{(\rho+1)} \supset A^{(\rho)}$$
, $A^{(\rho+1)}_{\lambda} = A^{(\rho)}_{\lambda}$ for $\lambda < \rho + 1$
and $A^{(\rho+1)}_{\rho+1} = A^{(\rho)}_{\rho+1} \oplus RU^{\rho+1}_1 \oplus \cdots \oplus RU^{\rho+1}_{\xi\rho}$
b) $H_{\rho}(A^{(\rho+1)}) = H_{\rho}(A^{(\rho)})/RZ^{\rho}_1 + \cdots + RZ^{\rho}_{\xi\rho}$
 $= H_{\rho}(A^{(\rho)})/V_{\rho}$

Letting $X_{p} = A_{p}^{(p)}$ and defining $\partial_{p+1} : X_{p+1} \to X_{p}$ by $\partial_{p+1} = \partial_{p+1}^{(p+1)}$, we obtain an R-algebra $X = \bigcup_{p} X_{p}$

$$X: \longrightarrow X_{\rho+1} \xrightarrow{\partial_{\rho+1}} X_{\rho} \longrightarrow \cdots \longrightarrow X_1 \xrightarrow{\partial_1} X_0 \xrightarrow{\varepsilon} K \longrightarrow 0$$

where $X_0 = R$ and the mapping ε is the augmentation homomorphism.

Defining vector spaces over K, $D_{p,q} = H_{p+q}(\Lambda^{(p)})$ and $E_{p,q} = H_{p+q}(\Lambda^{(p)}/\Lambda^{(p-1)})$, we obtain a spectral sequence

$$\begin{array}{c} \cdots \longrightarrow D_{1,3} = H_4(\Lambda) \\ \downarrow i_{13} \\ \cdots \longrightarrow D_{2,2} \longrightarrow E_{2,2} \xrightarrow{k_{22}} D_{1,2} = H_3(\Lambda) \\ \downarrow i_{22} & \downarrow i_{12} \\ \cdots \longrightarrow D_{3,1} \longrightarrow E_{3,1} \xrightarrow{k_{3,1}} D_{2,1} \longrightarrow E_{2,1} \xrightarrow{k_{21}} D_{1,1} = H_2(\Lambda) \\ \downarrow i_{21} & \downarrow i_{21} & \downarrow i_{11} \\ \cdots \longrightarrow D_{4,0} \longrightarrow E_{4,0} \longrightarrow D_{3,0} \longrightarrow E_{3,0} \longrightarrow D_{2,0} \longrightarrow E_{2,0} \longrightarrow D_{1,0} = H_1(\Lambda) \\ \downarrow i_{40} & \downarrow i_{30} & \downarrow i_{20} \\ \cdots \longrightarrow D_{5,-1} \longrightarrow 0 \longrightarrow D_{4,-1} \longrightarrow 0 \longrightarrow D_{3,-1} \longrightarrow 0 \longrightarrow D_{2,-1} \longrightarrow 0 \\ \parallel & \parallel & \parallel \\ H_4(X) & H_3(X) & H_2(X) & H_1(X) \end{array}$$

By virtue of the construction of X it is seen that $D_{\rho+1,-1}=H_{\rho}(\Lambda^{(\rho+1)})=H_{\rho}(X)$ for $\rho\geq 1$, $H_1(X)=H_1(\Lambda^{(2)})=0$, and $H_{\rho}(X)=D_{\rho,0}/V_{\rho}$. If we can prove $D_{\rho,0}\simeq V_{\rho}$, X is aspherical so that we have a desired R-algebra minimal resolution of K. In this paper we contend

Proposition 2.1.

i)
$$D_2 \cap \cong H_2(\Lambda)/H_1(\Lambda)^2 = V_2$$
.

ii)
$$D_{3,0} \cong H_3(\Lambda)/H_2(\Lambda) \cdot H_1(\Lambda) = V_3$$
.

For the proposition we need the following two lemmas.

LEMMA 2.2.

 i_{11} , i_{21} and i_{12} are onto.

LEMMA 2.3.

- a) $k_{21}(E_{2,1}) \cong H_1(\Lambda)^2$,
- b) $k_{22}(E_{2,2}) + i_{12}^{-1}k_{31}(E_{3,1}) \cong H_2(\Lambda) \cdot H_1(\Lambda)$.

Proof of Proposition 2.1.

It is immediate from the exactness of the spectral sequence and the above two lemmas.

Proof of Lemma 2.2.

Let $Z \in D_{2,0}$, then Z is represented by a cycle

$$3 = c + \sum_{i=1}^{b_1} \lambda^i S_i,$$

where $c \in A_2$ and $\lambda^i \in R$. Since $0 = \partial_2 \mathcal{J} = \partial_2 c + \sum_{i=1}^{b_1} \lambda^i \mathcal{J}_i^1$, we have $\sum_{i=1}^{b_1} \overline{\lambda}^i Z_i^1 = 0$ where $\overline{\lambda}^i \in K$. Therefore $\lambda^i \in M$ for all i. Let $\lambda^i = \sum_{j=1}^{n} r^{ij} \cdot t_j$, then

$$\begin{split} \mathfrak{Z} &= c + \sum_{i,j} r^{ij} t_j S_i \\ &= (c + \sum_{i,j} r^{ij} T_j \mathfrak{Z}_i^1) + \partial_{\mathfrak{F}} (\sum_{i,j} r^{ij} T_j S_i). \end{split}$$

The cycle $\mathfrak{Z}' = (c + \sum_{i,j} r^{ij} T_j \mathfrak{Z}_i^1)$ represents an element $Z' \in D_{1,1}$ whose image under i_{11} is Z. Therefore i_{11} is onto.

Secondly we wish to show that i_{21} and i_{12} are onto. Let $y \in X_3$ represent an element $Y \in D_{3,0}$. Then

$$y = d + \sum_{j=1}^{b_1} \sum_{i=1}^{n} \mu^{ij} (T_i \cdot S_j) + \sum_{k=1}^{\varepsilon_2} \nu^k U_k^3,$$

where $d \in \Lambda_3$.

$$0 = \partial_3 y = \sum_{j=1}^{b_1} \left(\sum_{i=1}^n \mu^{ij} t_i \right) S_j + \left(\partial_3 d - \sum_{i,j} \mu^{ij} T_i \beta_j^1 + \sum_k \nu^k \beta_k^2 \right).$$

Thus we have

$$\sum_{i=1}^{n} \mu^{ij} t_i = 0 \quad \text{for all } j,$$

so that $\sum_i \mu^{ij} T_i$ is 1-cycle of \varLambda and $\sum_j (\sum_i \mu^{ij} T_i) \mathcal{J}_j^1$ represents an element $Z'' \in$

 $H_1(\Lambda)^2$. From this $Z'' = \sum_{k=1}^{\epsilon_2} \overline{\nu}^k Z_k^2$, and hence $\nu^k \in M$. Letting $\nu^k = \sum_{l=1}^n \nu^{kl} t_l$ and considering $\partial_4 (\sum_{k,l} \nu^{kl} T_l U_k^3) = \sum_k \nu^k U_k^3 - \sum_{k,l} \nu^{kl} T_l \mathcal{J}_k^2$, we find 2-cycle of $\Lambda^{(2)}$,

$$d + \sum_{i,l} \mu^{ij} (T_i \cdot S_j) + \sum_{k,l} \nu^{kl} T_l \mathcal{Z}_k^2,$$

whose homology class Y' is mapped onto Y under i_{21} . From the analogous argument it is easy to see that i_{12} is onto. Thus the proof is omitted. This completes the proof of the Lemma.

Proof of Lemma 2.3.

Select 3-relative cycle \Im of $\Lambda^{(2)}/\Lambda$ representing an element $Z \in E_{2,1}$. Then $\Im = x + \sum_{i,j} \lambda^{ij} T_i \cdot S_j$, where $x \in \Lambda_2$ and $\sum_{i=1}^n \lambda^{ij} T_i$ is 1-cycle of Λ . Since $k_{21}(Z)$ is represented by 2-cycle of $\sum_{j=1}^{b_1} \left(\sum_{i=1}^n \lambda^{ij} T_i\right) \Im_j^1$, we have $k_{21}(Z) \in H_1(\Lambda)^2$. Conversely it is obvious that $H_1(\Lambda)^2 \subset k_{21}(E_{2,1})$, beause $\Im_i^1 \Im_j^1 = \partial_i(-\Im_i^1 S_j)$ for any pair (i, j). This completes the proof of Lemma 2.3.a).

Let $Y \in E_{3,1}$ and y be 4-relative cycle of $\Lambda^{(3)}/\Lambda^{(2)}$ representing Y. Then we have

$$y = c + \sum_{i,j} \lambda^{ij} T_i U_j^3,$$

where $c \in \Lambda_3^{(2)}$ and $\sum_i \lambda^{ij} T_i$ is 1-cycle of Λ . By considering k_{31} and i_{12} , $i_{12}^{-1} k_{31}(Y)$ is represented by 3-cycle of Λ , $\sum_{j=1}^{\epsilon_2} (\sum_{i=1}^n \lambda^{ij} T_i) \Im_j^2$, whose homology class is in $H_1(\Lambda) \cdot V_2 \subset H_1(\Lambda) \cdot H_2(\Lambda)$.

Let 3 be a relative 4-cycle representing an element $Z \in E_{2,2}$, and let

$$\mathfrak{Z} = a + \sum_{b_1 \geq k > i \geq 1} \lambda^{ik} S_i \cdot S_k + \sum_{b_1 \geq k \geq 1} \lambda^{kk} S_k^{(2)} + \sum_{\substack{n \geq j > i \geq 1 \\ b_n \geq k \geq 1}} \mu^{ijk} (T_i T_j S_k),$$

where $a \in A_4$ and $1 \cdot S_k^{(2)}$ is a generator of $A_4^{(2)}$, whose boundary is defined by $\Im_k^1 S_k$ (refer to [6]). Considering the boundary of \Im , we have

 $\Lambda_3 \ni \partial_4 \mathcal{J} = (\partial_4 a + \sum_{i,j,k} \mu^{ijk} (T_i \cdot T_j) \mathcal{J}_k^1) + \sum_{k=1}^{b_1} \{ \sum_{i=1}^k \lambda^{ik} \mathcal{J}_i^1 + \sum_{i=k+1}^{b_1} \lambda^{ki} \mathcal{J}_i^1 + \partial_2 (\sum_{i,j} \mu^{ijk} T_i \cdot T_j) \} S_k,$ so that

$$\sum_{j=1}^{k} \lambda^{ik} \, \mathcal{J}_i^1 + \sum_{i=k+1}^{b_1} \lambda^{ki} \, \mathcal{J}_i^1 + \partial_2 (\sum \mu^{ijk} T_i \cdot T_j) = 0 \text{ for each } k.$$

Therefore all $\lambda^{ik} \in M$ for any pair (i, k) satisfing $b_1 \ge k \ge i \ge 1$. Letting $\lambda^{ik} = \sum_{j=1}^{n} \lambda^{ijk} t_j$, considering $\xi_k = \sum_{i=1}^{k} \sum_{j=1}^{n} \lambda^{ijk} T_j \Im_i^1 + \sum_{i=k+1}^{b_1} \sum_{j=1}^{n} \lambda^{kji} T_j \Im_i^1$, we obtain a 2-cycle η_k

of A by

$$\eta_k - \xi_k = \sum_{i,j} \mu^{ijk} (T_i \cdot T_j),$$

because $\partial_2(\xi_k) = \sum_{i=1}^k \lambda^{ik} \beta_i^1 + \sum_{i=k+1}^{b_1} \lambda^{ki} \beta_i^1$. The straightforward computation shows $\sum_{k=1}^{b_1} \xi_k \beta_k^1 = 0$, so that we have

$$\sum_{i,j,k} \mu^{ijk} (T_i \cdot T_j) \mathcal{J}_k^1 = \sum_{k=1}^{b_1} \eta_k \mathcal{J}_k^1.$$

Since $k_{22}(Z)$ is represented by $\sum_{k=1}^{l_1} \eta_k \Im_k^1$, $k_{22}(E_{2,2}) \subset H_2(\Lambda) \cdot H_1(\Lambda)$. It is immediate to show that $H_2(\Lambda) \cdot H_1(\Lambda) \subset k_{22}(E_{2,2})$, because $\partial_4(\eta \cdot S_k) = \eta \cdot \Im_k^1$ for any 2-cycle η of Λ . This completes the proof of Lemma 2.3.

§ 3. Computation of B_{ρ} $(\rho \le 4)$

Proposition 3.1.

i)
$$B_1 = \binom{n}{1}$$
. $B_2 = \binom{n}{2} + b_1$,

ii)
$$B_3 = \binom{n}{3} + \binom{n}{1} \cdot b_1 + \varepsilon_2$$

iii)
$$B_4 = \binom{n}{4} + \binom{n}{2} \cdot b_1 + \binom{n}{0} b_1^2 - \binom{b_1}{2} + \binom{n}{1} \varepsilon_2 + \binom{n}{0} \varepsilon_3.$$

Proof.

In the previous section we have proved that the sequence

$$X_4 \xrightarrow{\partial_4} X_2 \xrightarrow{\partial_3} X_2 \xrightarrow{\partial_2} X_1 \xrightarrow{\partial_1} X_0 \xrightarrow{\varepsilon} K \longrightarrow 0$$

is exact. By definition $\operatorname{Tor}_{\rho}^R(K,K)$ is computed by $X_{\rho} \otimes_R K$ for all $\rho \leq 3$. Therefore we get i) and ii). From a general theory (for example, see [5] or [4]) we know that there exists \widetilde{X}_5 such that $\widetilde{X}_5 \xrightarrow{\widetilde{\partial}^5} X_4 \xrightarrow{\partial_4} X_3$ is exact and $\widetilde{\partial}_5(\widetilde{X}_5) \subset MX_4$. Therefore B_4 can be computed as stated in 3.1. iii) without knowing explicitly a system of generators for \widetilde{X}_5 .

Note that \widetilde{X}_5 may be considered as X_5 which we constructed in §2.

§ 4. Corollaries and a conjecture

COROLLARY 4.1.

If R is a complete intersection, we have

$$B_3 = \binom{n}{2} + \binom{n}{1}b_1$$

$$B_4 = {n \choose 4} + {n \choose 2} b_1 + {n \choose 0} b_1^2 - {b_1 \choose 2}$$

COROLLARY 4.2.

$$B_{\rho} \geq \binom{n}{\rho} + \binom{n}{\rho-2} + \binom{n}{\rho-4} + \cdots$$

for $\rho \leq 4$, if R is not regular.

Proofs

By a Theorem of Assmus [1] R is a local complete intersection if and only if $H(\Lambda)$ is the exterior algebra on $H_1(\Lambda)$. Therefore we have $\varepsilon_2 = \varepsilon_3 = 0$ in this case. The corollary 4.1. coincides with a result of Tate [6]. The special case when $b_1 = 1$. $b_2 = b_3 = 0$, provides us with the proof of Corollary 4.2., which is the estimation of Tate [6].

Tate said in [6] that it is doubtful whether minimal R-algebra resolutions exist in all cases. It seems to the author that such resolution may be probable in view of the construction we consider in this paper.

BIBLIOGRAPHY

- [1] E. F. Assmus, Jr., On the homology of local rings, Illinois Journal of Math., 3 (1959), 187-199.
- [2] M. Auslander and D. A. Buchbaum, Codimension and multiplicity, Annals of Math., (3) 68 (1958), 625-657.
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [4] D. G. Northcott, An introduction to homological Algebra, Cambridge University Press, 1960.
- [5] J. P. Serre, Sur la dimension homologique des anneaux et des modules noethériens, Tokyo Symposium, 1955.
- [6] J. Tate, Homology of noetherian rings and local rings, Illinois Journal of Math., 1 (1957), 14-27.
- [7] O. Zariski and P. Samuel, Commutative Algebra, Vol. 1 and 2, 1958.

State University of Iowa Iowa-City, Iowa