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1. Some years ago, Kuramochi gave in his paper [5] a very interesting

theorem, which can be stated as follows.

THEOREM OF KURAMOCHI. Let R be a hyperbolic Riemann surface of the

class OHB(OHΌ,resp.). Then, for any compact subset K of R such that R— K

is connected, R— K as an open Riemann surface belongs to the class OAB(OAD,

resp.).

The excellent work of Constantinescu and Cornea [2] clarified that as for

the B part of this theorem, the existence of a bounded minimal harmonic

function, that is, the existence of a Martin boundary point with positive

harmonic measure and, as for the D part, the existence of an HP-minimal

function are essential. Later Kusunoki and Mori [8] and Nakai [9] proved

the equivalence of the existence of an #^-minimal function and the existence

of a point with positive harmonic measure in Royden's harmonic boundary of

the Riemann surface R. But there remains the question as to whether there

exists a hyperbolic Riemann surface which has no Martin or Royden boundary

point with positive harmonic measure and has yet the same property as stated

in Theorem of Kuramochi.

The main purpose of this paper is to give a positive answer to the Martin

part of the above question. In the sequel, we shall give an extension of the

B part of Theorem of Kuramochi and, using this extension, construct an open

Riemann surface, as a covering surface of the complex plane, which answers

the Martin part of the question in the positive.

2. First we shall be concerned with the boundary behaviour of bounded

analytic functions on a Riemann surface of the class O°AB. The class OAB was

introduced and investigated first by Kuroda in his paper [7]. It is a class of
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open Riemann surfaces, any subregion of which belongs to the class SOΛB>

that is, admits no non-constant single-valued bounded analytic function with

real part vanishing continuously on its relative boundary. Here a subregion

of a Riemann surface R means a subdomain of R with smooth relative boundary

clustering nowhere in R. It is known that the following inclusions hold.

OHB S O°ΛB ^ OΛB

m m
OHD ^ OAD

On the other hand, no inclusion holds between OHD and OAB or OAB.

Let R be an arbitrary open Riemann surface, and let {G«}«=i,2,... denote a

sequence of non-compact subregions of R with compact relative boundary dGn

such that GnDGrt+iU9G«+i for each n and Πn=iG« = 0. We classify such

sequences with the following equivalence relation' Two sequences {G«}M=i,2,...

and {Gn}n--1,2,... are equivalent if and only if, for any m> there is an n such

that Oi^Gm, and vice versa. Each of these equivalence classes is a boundary

component of R in Kerekjartό-Stoϊlow's sense, and we consider it as an ideal

boundary point of R. A neighborhood of this ideal boundary point P means

the union of P and an open set of R containing G « G ( G « } « = I ) 2 ) . . . for some m,

where {G*}n=i,?,... is a representative member of P.

Now let P be an ideal boundary point of R and let D be a subdomain such

that P can be approached by a sequence of points in D. For a single-valued

meromorphic function w - f(p) of D, we shall consider the cluster set CD(f, P)

of f(p) at P. The cluster set CD(f, P) is the set of values a such that

there exists a sequence of points {pn) of D tending to P and satisfying that

lim fipn) = # .

Let R be an open Riemann surface of the class OO

AB and let K be a

compact subset such that R— K is connected. Let w = f(p) be a non-constant

single-valued meromorphic function on R— K. We consider a disc (c) : |w; - ŝ ol

<pVl such that, for some relatively compact subregion R^K of R with

smooth boundary 8/?0, / ( £ ) takes on 9i?0 no value in the closure of ic).

Then each connected component Δ of the inverse image fι((c)) on R-R<s, if

I n c a s e wo = co, w e c o n s i d e r a s (c) %. d o m a i n



ANALYTIC FUNCTIONS ON SOME RIEMANN SURFACES 213

exist, belongs to the class SOAB and it follows from Theorem 5 in Kuroda [7]

that the set (c) — /(J) is totally disconnected. Therefore the following theorem

is an immediate consequence of a localization of so-called Stoϊlow's principle on

Iυerseris property2).

THEOREM 1. Let R be an open Riemann surface belonging to the class OAE.

Then, for any single-valued meromorphic function iv = f(p) defined on R- K,

where K is a compact subset such that R — K is connected, the cluster set

CR-κ(f, P) is total or reduces to one point at each ideal boundary point P

of R.

As a corollary of this theorem, we have

THEOREM 23). Let R be an open Riemann surface belonging to the class

O°AB, let K be a compact subset such that R — K is connected and let

w = f(p) be a single-valued meromorphic function on R-K which is bounded

or has a Riemannian image of R- K over the w-sphere with finite spherical

area. Then fip) has a limit at each ideal boundary point of R.

Proof. If f(p) is bounded, then CR-K(f, P) is not total. Hence by

Theorem 1 CR-K(f, P) reduces to one point, so that our assertion follows.

Next suppose that the Riemannian image Φ of R-K by f(p) has a finite

spherical area. If CR-κify P) is total, then we see by Theorem 5 in [7] that

Φ covers the whole w/ plane infinitely often except for at most a union of a

countable number of closed sets of the class W in the sense of Kametani [4]

( = the class Nς& in the sense of Ahlfors and Beurling [1]). Hence the

spherical area of Φ must be infinite. Contradiction. Therefore Cs-κ(f, P) is

also one point in the second case.

3. Let R be an arbitrary open Riemann surface and {Rn)n 0,1,2, . be a

normal exhaustion of R such that R — RQ is connected. For an ideal boundary

point P of R, this exhaustion determines a representative member {Gn} of P

such that every Gn is a connected component of R-Rn. We consider the

harmonic function ωn,m(p) (0 < ωntm(p) < 1) in Rm ~ Gn — Ro (m^n) with

2) Cf. K. Noshiro [10], Chapt. IV, §2.
3J See Kuramochi [6]. There he proved the same result in the case where f(z) is

bounded.
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boundary values such that

(0 on {dRm-Gn) U BRo

<• 1 on dGn.

ωn>m(P) increases as m-* °° so that ωn,m(p) tends to a harmonic function

ωn(p). Now let n tend to infinity. Then ωn(p) decreases and tends to a non-

negative harmonic function ωP(p) defined on R — Ro. ωP(p) ~ 0 or ωP(p)>0

in R — RQ, and we say that the harmonic measure of an ideal boundary point

P is zero or positive according as the first or the second case occurs, re-

spectively. Of course this property of an ideal boundary point P does not

depend on the choice of the exhaustion {Rn} of R.

Now we prove an extension of Theorem of Kuramochi stated in § 1.

THEOREM 3. Let R be a Riemann surface of the class O°AB which has at

least one ideal boundary point with positive harmonic measure. Then, for any

compact subset K of R such that R—K is connected, R — K belongs to the

class OΔB.

Proof. We denote by P the ideal boundary point with positive harmonic

measure. Let f(p) be a single-valued bounded analytic function on R — K

and let {/&I}M=O,J,2,... be a normal exhaustion of R. Then f(p) has a limit at

P by Theorem 2. We may suppose that \f(p)\<l and this limit is equal to

0 and that RQ^>K and R-Ro is connected.

We shall use the same notations for our exhaustion {2?«}»=o,i,2,... as used

in the above to define the harmonic measure of an ideal boundary point. By

our assumption, the function - log \f(p)\ is positive and superharmonic in

R-Ro, and, for any positive number Λf, there is an integer m such that

- log I f(p) | > M o n Gn U dGn for evey n ;>no.

Therefore we have by the maximum principle that

m(p)<η^( - log 1/(^1) in Rm-Gn-Ro

for every m(^>n). We make first m and next n tend to infinity so that

O^ωp(p) < -~ ( - l o g \f(p)\) in R-RQ.
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Since we can take M arbitrarily large and since ωP(p)>0 in R-Ro, this

implies that — log \f(p)\ = + °°, that is, f(p) = 0. Hence we can conclude

that any single-valued bounded analytic function on R- K is constant. Our

theorem is thus established.

4. For the proof of Theorem 3, we do not need the existence of a

Martin boundary point with positive harmonic measure. In fact we can give

an example of a Riemann surface which has no such a point and yet satisfies

the condition of the theorem.

Construction of the example. Let E be a Cantor set on the closed interval

h : [-1/2, 1/2] with constant successive ratios ξn, 0<£« = 2/<l/3. Then E

is of logarithmic positive capacity, because E is of logarithmic capacity zero

if and only if

Defining the Cantor set E, we repeat successively to exclude an open segment

from the middle of another segment and there remain 2n segments of equal

length /" after, beginning with the interval 70, we repeat n times. We denote

these segments by In,k(n = 1, 2, . . . k = 1, 2, . . . , 2n). Now we consider the

complementary domain F of E on the real axis with respect to the extended

w -plane, and denote by An,k (n = 1, 2, . . . k = 1, 2, . . . , 2n) the following

ring domains on F.

where wn,k is the middle point of In,k These ring domains An,k have the

same harmonic modulus μ = ( l/Z- l )/2 greater than 5/2, and for each w > l ,

all of AΛU,* (fc = 1, 2, . . . , 2n+1) together separate E from all of An,k (k = 1, 2,

. . . , 2n). We suppose that each An,k (w = 1,2 . . . k = 1, 2, . . . , 2n) encloses

An+ι,2k and An+i,2k+i and denote by Δn,k the doubly-connected domain bounded

by the inner boundary of An,k and the outer boundaries of An+if2k and An+i,2k+\>

Fix a slit Sn,k arbitrarily in Δn,k

We shall construct a Riemann surface with only one ideal boundary com-

ponent as a covering surface of F in the way of Constantinescu and Cornea

[3]. Let Fo be a replica of F with slits Sn,k for all n and k (n- 1,2, . . .
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k = 1, 2, . . . , 2n) and, for each integer m^l, let Fm be a replica of F with

slits Sn,fe only for n satisfying that

m 1 ) ( ί = 0 , l , 2 f . . . ).

Then each slit Sn,k appears precisely two times, once on Fo and once on some

Fm (m^l). Connect all Fm with Fo crosswise across Sn,k (n = 2m~1 (2* '+l )

(i = 0, 1, 2, . . . ) k = 1, 2, . . . , 2n). Then it is easily seen that the resulting

surface F has only one ideal boundary component. Since F has as its projec-

tion the domain F in the w-plane whose complement E is of logarithmic

positive capacity, F is hyperbolic and hence its only one ideal boundary

component has a positive harmonic measure.

To show that F is a desired Riemann surface. It is enough to prove that

(i) F<Ξθ°AB,

(ii) F admits no bounded minimal harmonic function.

Proof of (i). Denoting by All^l the ring domain on Fm corresponding to

An,k on F, we consider on Fo all An]m (w = l. 2, . . . k = 1, 2, . . . , 2n) and

on Fm (m = 1, 2, . . . ) A{™\ only for n and k such that

and k = 1, 2,

Then these A{

n

m)

k (w = 0, 1, 2, . . . w ^ l if m = 0 and w ^ 2 m " ] + l o therwise;

# = 1,2, . . . , 2n) have the same harmonic modulus μ=(l/l-l)/2 g reater

than 5/2. and, for each w > l , all of Alί^,* (all m satisfying n + 1^2m"1-\-l;

k - 1,2, . . . , 2n+1) together separate the ideal boundary of F from all of

A{nm)k (all m satisfying n^2m-1 + l if n^2 and m = 0 if w = 1 A? = 1, 2, . . . , 2M).

Here we use the following criterion due to Kuroda [ 7 ] .

If a Riemann surface R admits a sequence of ring domains Bn,k(n = l, 2,

. . . k = l, 2, . . . , v(n)) such that, for each n, all of Bn+i,k(k = l, 2, . . . ,

v(n + D) together separate the ideal boundary of R from all of Bn,k(k = l, 2,

. . . , v(n)) and

N

lim sup { Σ log μn — log
Λ f lΛf->oo

then R belongs to the class O°AB. Here μn denotes the minimum harmonic

modulus of ring domains Bn.k(k -1, 2, . . . , p{n)).
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In our case, μn~β>S/2 and v(n)^2nn. Hence

Urn sup {Σ log ^n-log v(N))^\\m \N log -o- - log(2iVΛΠ = + °°,

so that F belongs to the class O°AB-

Proof of (ii). Constantinescu and Cornea proved in their paper [2] that

if a Riemann surface R admits a bounded minimal harmonic function, then

any non-constant single-valued analytic function on R takes every value infinitely

often with possible exception of logarithmic capacity zero. The projection of

F is non-constant, single-valued and analytic but takes no value of E of

logarithmic positive capacity. Therefore it follows from Constantinescu and

Cornea's result that F admits no bounded minimal harmonic function.
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