A CRITERION FOR A SET AND ITS IMAGE UNDER QUASICONFORMAL MAPPING TO BE OF α ($0<\alpha \leqq 2$)-DIMENSIONAL MEASURE ZERO

KAZUO IKOMA

Let $w=w(z)$ be any K-quasiconformal mapping (in the sense of PflugerAhlfors) of a domain D in the z-plane into the w-plane. Since $w=w(z)$ is a measurable mapping (vid. Bers [1]), it transforms any set of Hausdorff's 2 -dimensional measure zero in D into such another one. However, A. Mori [5] showed that for $0<\alpha \leqq 2$, any set of $\frac{\alpha}{K}$-dimensional measure zero in a Jordan domain D is transformed by $w=w(z)$ into a set of α-dimensional measure zero. Further, Beurling and Ahlfors [2] proved that even the set of 1-dimensional measure zero on a segment S in D is not always transformed into such another one under $w=w(z)$ transforming S into another segment.

In this paper motivated by the above results, by extending our argument in the previous paper [3] where the following lemma due to Teichmüller is very useful, we shall give a criterion for both some closed set E in a Jordan domain D and its image set by any K-quasiconformal mapping $w=w(z)$ of D to be of α-dimensional measure zero, where $0<\alpha \leqq 2$.

Lemma (Teichmüller [6]). If one of the complementary continua of a doubly connected domain R contains $z=0$ and $z=r e^{i \theta}$ and the other contains $z=\infty$ and $z=\rho e^{i \rho}$, then it holds

$$
\bmod R \leqq \log \Psi\left(\frac{\rho}{r}\right)
$$

where $\log \Psi(P)$ means the modulus of Teichmüller's extremal domain.

1. Let E be a compact set in the complex plane and let its complementary set be a connected domain G.

A set $\left\{R_{n}^{(j)}\right\}(j=1,2, \ldots, \nu(n)<\infty ; n=1,2, \ldots)$ of doubly connected domains $R_{n}^{(j)}$ will be simply referred a system inducing an exhaustion of G if it satisfies the following conditions:
(i) the closure $\overline{R_{n}^{(j)}}$ of $R_{n}^{(j)}$ is contained in G,
(ii) the boundary of $R_{n}^{(j)}$ consists of the interior contour $C_{n}^{(j)}$ and the exterior $\Gamma_{n}^{(j)}$, which are rectifiable closed Jordan curves,
(iii) the complementary set of $\overline{R_{n}^{(j)}}$ consists of two domains, the one $F_{n}^{(j)}$ of which contains the point at infinity and the other $H_{n}^{(j)}$ has at least one point common with E,
(iv) any point of E is contained in a certain $H_{n}^{(j)}$,
(v) $R_{n}^{(k)}$ lies in $F_{n}^{(j)}$ if $k \neq j$,
(vi) each $R_{n+1}^{(k)}$ is contained in a certain $H_{n}^{(j)}$, and
(vii) $\left\{G_{n}\right\}_{n=1}^{\infty}$ is an exhaustion of G, where $G_{n}=\bigcap_{j=1}^{\nu(n)}\left(F_{n}^{(j)} \cup R_{n}^{(j)}\right)$.

Put $\bmod R_{n}^{(j)}=\log \mu_{n}^{(j)}$ and $\min _{1 \leqq j \leqq \nu(n)} \log \mu_{n}^{(j)}=\log \mu_{n}$, then we can establish the following

Theorem 1. Let E, G and $\log \Psi(P)$ be defined as above and $w=w(z)$ be any K-quasiconformal mapping of a Jordan domain D containing E. If there exists a system $\left\{R_{n}^{(j)}\right\}$ inducing an exhaustion of G which satisfies

$$
\limsup _{n \rightarrow \infty}\left\{\alpha \sum_{l=1}^{n} \log \Psi^{-1}\left(\mu_{l}^{1 / K}\right)-\left(1-\frac{\alpha}{2}\right) \log \nu(n)\right\}=+\infty
$$

for some α such that $0<\alpha \leqq 2$, then not only E but its image set by $w=w(z)$ is of α-dimensional measure zero, where $\Psi^{-1}(Q)$ is the inverse function of $Q=$ $\Psi(P)$.

Proof. First, take a point $z_{n}^{(j)}$ inside $C_{n}^{(j)}$ and put

$$
r_{n}^{(j)}=\max _{z \in C_{n}^{(j)}}\left|z-z_{n}^{(j)}\right|, \rho_{n}^{(j)}=\min _{z \in \Gamma_{n}^{(j)}}\left|z-z_{n}^{(j)}\right|
$$

Since there exists a number N_{n} such that the sub-system of $\left\{R_{n}^{(j)}\right\}$ for $n \geqq$ N_{D} is contained in D, for all such n we have $\widetilde{R_{n}^{(i)}}, \widetilde{C_{n}^{(j)}}$ and $\widetilde{\Gamma_{n}^{(j)}}$ denoting images of $R_{n}^{(j)}, C_{n}^{(j)}$ and $\Gamma_{n}^{(j)}$ under $w=w(z)$ and we can define $\widetilde{\mu_{n}^{(j)}} \widetilde{r_{n}^{(j)}}$ and $\widetilde{\rho_{n}^{(j)}}$ similarly just as $\mu_{n}^{(j)}, r_{n}^{(j)}$ and $\rho_{n}^{(j)}$.

Then, from a fundamental property of a K-quasiconformal mapping and the above Teichmüller's lemma, it follows for $n \geqq N_{n}$

$$
\frac{1}{K} \log \mu_{n} \leqq \log \widetilde{\mu_{n}^{(j)}} \leqq \log \Psi\left(\widetilde{\rho_{n}^{(j)}} / \widetilde{\boldsymbol{r}_{n}^{(j)}}\right)
$$

so that

$$
\begin{equation*}
\widetilde{r_{n}^{(j)}} \leqq \frac{1}{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)} \widetilde{\rho_{n}^{(j)}} \tag{1.1}
\end{equation*}
$$

Starting from this and applying Hölder's inequality, we have for $n \geqq N_{D}$ and $0<\alpha \leqq 2$

$$
\begin{align*}
\sum_{j=1}^{\nu(n)}\left(\widetilde{r_{n}^{(j)}}\right)^{\alpha} & \left.\leqq \frac{1}{\left\{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)\right\}^{\alpha}} \sum_{j=1}^{\nu(n)} \widetilde{\rho_{n}^{(j)}}\right)^{\alpha} \tag{1.2}\\
& \leqq \frac{\{\nu(n)\}^{1-(\alpha / 2)}}{\left\{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{j=1}^{\nu(n)}\left(\widetilde{\rho_{n}^{(j)}}\right)^{2}\right\}^{\alpha / 2} .
\end{align*}
$$

Now, it is obvious that $\pi \sum_{j=1}^{\nu(n)}\left(\widetilde{\rho_{n}^{(j)}}\right)^{2}$ is not greater than the sum of areas
 bounded by $\bigcup_{k=1}^{\nu(n-1)} \widetilde{(k)}$, and so that

$$
\sum_{j=1}^{\nu(n)}\left(\widetilde{\rho_{n}^{(j)}}\right)^{2} \leqq \sum_{k=1}^{\nu(n-1)}\left(\widetilde{\boldsymbol{r}_{n-1}^{(k)}}\right)^{2} .
$$

Further, from (1.1), it holds for $n-1 \geqq N_{D}$

$$
\sum_{k=1}^{\nu(n-1)}\left(\widetilde{r_{n-1}^{(k)}}\right)^{2} \leqq \frac{1}{\left\{\Psi^{-1}\left(\mu_{n-1}^{1 / K}\right)\right\}^{2}} \sum_{k=1}^{\nu(n-1)}\left(\widetilde{\rho_{n-1}^{(k)}}\right)^{2} .
$$

Substituting these in (1.2), we have for $n-1 \geqq N_{D}$

$$
\begin{equation*}
\left.\sum_{j=1}^{\nu(n)} \widetilde{\boldsymbol{r}_{n}^{(j)}}\right)^{\alpha} \leqq \frac{\{\nu(n)\}^{1-(\alpha / 2)}}{\left\{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)\right\}^{\alpha}\left\{\Psi^{-1}\left(\mu_{n-1}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{k=1}^{\nu(n-1)}\left(\widetilde{\rho_{n-1}^{(k)}}\right)^{2}\right\}^{\alpha / 2} . \tag{1.3}
\end{equation*}
$$

This process can be continued up to $R_{N_{D}}^{(m)}$ and finally we obtain

$$
\begin{equation*}
\sum_{j=1}^{\nu(n)}\left(\widetilde{\boldsymbol{r}_{n}^{(j)}}\right)^{\alpha} \leqq \frac{\{\boldsymbol{r}(n)\}^{1-(\alpha / 2)}}{\prod_{l=N D}^{n}\left\{\Psi^{-1}\left(\mu_{l}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{m=1}^{\nu(N n)}\left(\widetilde{\rho_{N D}^{(m)}}\right)^{2}\right\}^{\alpha / 2} \tag{1.4}
\end{equation*}
$$

From our assumption,

$$
\lim _{n \rightarrow \infty} \frac{\prod_{l=1}^{n}\left\{\Psi^{-1}\left(\mu_{l}^{1 / K}\right)\right\}^{\alpha}}{\{\nu(\boldsymbol{n})\}^{1-(\alpha / 2)}}=+\infty
$$

and hence it follows that

$$
\lim _{n \rightarrow \infty} \inf \sum_{j=1}^{\nu(n)}\left(\widetilde{r_{n}^{(j)}}\right)^{\alpha}=0
$$

which shows that α-dimensional measure of E is equal to zero.

Corresponding to (1.1), evidently it holds that

$$
r_{n}^{(j)} \leqq \frac{1}{\Psi^{-1}\left(\mu_{n}\right)} \rho_{n}^{(j)} .
$$

Since $\Psi^{-1}\left(\mu_{n}\right) \geqq \Psi^{-1}\left(\mu_{n}^{1 / K}\right)$ because of $\mu_{n}>1$, we have

$$
\boldsymbol{r}_{n}^{(j)} \leqq \frac{1}{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)} \rho_{n}^{(j)}
$$

Starting from this instead of (1.1) and proceeding similarly just as stated above, we arrive at the corresponding relation (1.4') to (1.4):

$$
\begin{equation*}
\sum_{j=1}^{\nu(n)}\left(\boldsymbol{r}_{n}^{(j)}\right)^{\alpha} \leqq \frac{\{\nu(n)\}^{1-(\alpha / 2)}}{\prod_{l=1}^{n}\left\{\Psi^{-1}\left(\mu_{l}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{m=1}^{\nu(1)}\left(\rho_{1}^{(m)}\right)^{2}\right\}^{\alpha / 2}, \tag{1.4'}
\end{equation*}
$$

from which our assertion is completed.
Corollary 1. Let $E,\left\{R_{n}^{(j)}\right\}, \Psi(P)$ and $w=w(z)$ be same ones as in Theorem 1. If there exist a positive number δ and a system $\left\{R_{n}^{(j)}\right\}$ which satisfy

$$
\liminf _{n \rightarrow \infty} \mu_{n}>\{\Psi(1+\delta)\}^{K} \quad \text { and } \quad \liminf _{n \rightarrow \infty} \frac{\{\nu(n)\}^{2-\alpha}}{(1+\delta)^{n \alpha}}=0
$$

for some α such that $0<\alpha \leqq 2$, then not only E but its image set by $w=w(z)$ is of α-dimensional measure zero.
2. Next, we consider the particular case where the set E lies on a segment S and $w=w(z)$ transforms S into a segment. Obviously the above relations (1.1) and (1.1') hold also in such a case.

Starting from (1.1) and applying Hölder's inequality, we have for $n \geqq N_{D}$ and $0<\alpha \leqq 1$

$$
\begin{equation*}
\left.\sum_{j=1}^{\nu(n)} \widetilde{r_{n}^{(j)}}\right)^{\alpha} \leqq \frac{\{\nu(n)\}^{1-\alpha}}{\left\{T^{-1}\left(\mu_{n}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{j=1}^{\nu(n)} \widetilde{\rho_{n}^{(j)}}\right\}^{\alpha} . \tag{2.2}
\end{equation*}
$$

Now, take a point $w_{n}^{(j)}$ on a part, included in $C_{n}^{(j)}$, of the image segment of S by $w=w(z)$, and define $\widetilde{\boldsymbol{r}_{n}^{(j)}}, \widetilde{\rho_{n}^{(j)}}$ as before, then it is evident that $2 \sum_{j=1}^{\nu(n)} \rho_{n}^{(j)}$ is not greater than the sum of lengths of parts, included in $\bigcup_{j=1}^{\nu(n)} \widetilde{\Gamma_{n}^{(j)}}$, of S or its stretching line and that $2 \sum_{k=1}^{\nu(n-1)} \widetilde{r_{n-1}^{(k)}}$ is not less than the sum of lengths of parts, included in $\bigcup_{k=1}^{\nu(n-1)} \widetilde{C_{n-1}^{(k)}}$, of S or its stretching line, and so it holds

$$
\left\{\sum_{j=1}^{\nu(n)} \rho_{n}^{(J)}\right\}^{\alpha} \leqq\left\{\sum_{k=1}^{\nu(n-1)} \widetilde{r_{n-1}^{(k)}}\right\}^{\alpha} .
$$

Further, from (1.1) follows

$$
\left\{\sum_{k=1}^{\nu(n-1)} \boldsymbol{r}_{n-1}^{(k)}\right\}^{\alpha} \leqq \frac{1}{\left\{\Psi^{-1}\left(\mu_{n-1}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{k=1}^{\nu(n-1)} \rho_{n-1}^{(k)}\right\}^{\alpha} .
$$

Substitute these in (2.2), then we have for $n-1 \geqq N_{D}$

$$
\begin{equation*}
\sum_{j=1}^{\nu(n)} \widetilde{\left(\boldsymbol{r}_{n}^{(j)}\right)^{\alpha} \leqq \frac{\{\boldsymbol{\nu}(\boldsymbol{n})\}^{1-\alpha}}{\left\{\Psi^{-1}\left(\mu_{n}^{1 / K}\right)\right\}^{\alpha}\left\{\Psi^{-1}\left(\mu_{n-1}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{k=1}^{\nu(n-1)} \widetilde{\rho_{n-1}^{(k)}}\right\}^{\alpha} .} . \tag{2.3}
\end{equation*}
$$

This procedure can be continued up to $R_{N D}^{(m)}$, and finally we obtain

$$
\begin{equation*}
\sum_{\nu=1}^{\nu(n)}\left(\widetilde{r_{n}^{(j)}}\right)^{\alpha} \leqq \frac{\{\nu(n)\}^{1-\alpha}}{\prod_{l=N_{D}}^{n}\left\{\Psi^{-1}\left(\mu_{l}^{1 / K}\right)\right\}^{\alpha}}\left\{\sum_{m=1}^{\nu\left(N_{D}\right)} \widetilde{\rho_{N_{D}^{(m)}}^{(m)}}\right\}^{\alpha} . \tag{2.4}
\end{equation*}
$$

Starting from (1.1') instead of (1.1) and proceeding as stated above, we arrive at the relation resulting except the wave mark \sim from both sides of (2.4). Hence we have

Theorem 2. Let E be a closed set on a segment S in the z-plane and $w=$ $w(z)$ be any K-quasiconformal mapping, transforming S into a segment, of a Jordan domain D containing S. If there exists a system $\left\{R_{n}^{(j)}\right\}$ inducing an exhaustion of the complementary domain of E which satisfies

$$
\lim _{n \rightarrow \infty} \sup \left\{\alpha \sum_{l=1}^{n} \log \Psi^{-1}\left(\mu l^{1 / K}\right)-(1-\alpha) \log \nu(n)\right\}=+\infty
$$

for some α such that $0<\alpha \leqq 1$, then not only E but its image set by $w=w(z)$ is of α-dimensional measure zero.

Corollary 2. Let $E,\left\{R_{n}^{(j)}\right\}$ and $w=w(z)$ be same ones as in Theorem 2. If there exist a positive number δ and a system $\left\{R_{n}^{(j)}\right\}$ which satisfy

$$
\liminf _{n \rightarrow \infty} \mu_{n}>\{\Psi(1+\delta)\}^{K} \quad \text { and } \quad \liminf _{n \rightarrow \infty} \frac{\{\nu(n)\}^{1-\alpha}}{(1+\delta)^{n \alpha}}=0
$$

for some α such that $0<\alpha \leqq 1$, then not only E but its image set by $w=w(z)$ is of α-dimensional measure zero.

Considering that $\Psi(P)$ is a strictly increasing and continuous function of P and $\log \Psi(1)=\pi$, we have

Corollary 3. Let $E,\left\{R_{n}^{(j)}\right\}$ and $w=w(z)$ be same ones as in Theorem 2.

If there exists a system $\left\{R_{n}^{(j)}\right\}$ satisfying

$$
\liminf _{n \rightarrow \infty} \mu_{n}>e^{K \pi}
$$

then not only E but its image set of E by $w=w(z)$ is of 1-dimensional measure zero.
3. Finally, we shall give examples of two sets, of positive logarithmic capacity, to each of which a system satisfying the condition at Theorem 1 or 2 corresponds.

Take a closed segment S with length l_{1} on the real axis and delete from S_{1} an open segment T_{1} with length $\frac{l_{1}}{p_{1}}\left(p_{1}>1\right)$ such that the set $S_{2}=S_{1}-T_{1}$ consists of two closed segments $S_{2}^{(j)}(j=1,2)$ with equal length l_{2}. In general, we delete from the set S_{m-1} open segments $T_{m-1}^{(j)}\left(j=1,2, \ldots, 2_{2 m-2}^{m-2}\right)$ such that each $T_{m-1}^{(j)}$ has length $\frac{l_{m-1}}{p_{m-1}}\left(p_{m-1}>1\right)$ and the set $S_{m}=S_{m-1}-\bigcup_{j=1}^{2^{m-2}} T_{m-1}^{(j)}$ consists of closed segments $S_{m}^{(j)}\left(j=1,2, \ldots, 2^{m-1}\right)$ with equal length l_{m}. Then $\bigcap_{m=1}^{\infty} S_{m}$ is a non-empty perfect closed set which is called the ordinary Cantor set and is denoted by $E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$.

If we take $p_{n}=3\left\{\Psi\left(2^{1 / \alpha}\right)\right\}^{K} /\left[3\left\{\Psi\left(2^{1 / \alpha}\right)\right\}^{K}-1\right](n=1,2, \ldots)$, then we can construct, as was showed in Kuroda [4], a system $\left\{R_{n}^{(j)}\right\}\left(j=1,2, \ldots, 2^{n}\right.$; $n=1,2, \ldots$) inducing an exhaustion of the complementary domain of $E\left(p_{1}\right.$, $p_{2}, \ldots, p_{n}, \ldots$, where $R_{n}^{(j)}$ is bounded by concentric circles $C_{n}^{(j)}, \Gamma_{n}^{(j)}$ having the center at the middle point of $S_{n+1}^{(j)}$ and having respectively the radius $r_{n}=$ $\frac{l_{n}}{4}\left(1+\frac{1}{p_{n+1}}\right)\left(1-\frac{1}{p_{n}}\right) \cdot \rho_{n}=\frac{l_{n}}{4}\left(1+\frac{1}{p_{n}}\right) . \quad$ Then, we can see easily $\mu_{n} \geqq \frac{1}{2\left(1-\frac{1}{p_{n}}\right)}$. and hence, taking $\delta=2^{1 / \alpha}-1(0<\alpha \leqq 1)$ we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \mu_{n} & \geqq 2^{-1}\left\{1-\frac{1}{\lim _{n \rightarrow \infty} \frac{1}{\sup p_{n}}}\right\}^{-1} \\
& =\frac{3}{2}\left\{\Psi\left(2^{1 / \alpha}\right)\right\}^{K}>\{\Psi(1+\delta)\}^{K}
\end{aligned}
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{\{\nu(n)\}^{1-\alpha}}{(1+\delta)^{n \alpha}}=\liminf _{n \rightarrow \infty} \frac{\left(2^{n}\right)^{1-\alpha}}{\left(2^{1 / \alpha}\right)^{n \alpha}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n \alpha}}=0
$$

which shows that the condition in Corollary 2 or Theorem 2 is satisfied Furthermore, it is seen that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\log \frac{1}{1-\frac{1}{p_{n}}}}{2^{n}} & =\sum_{n=1}^{\infty} \frac{\log 3\left\{\Psi\left(2^{1 / \alpha}\right)\right\}^{K}}{2^{n}} \\
& =\left\{\log 3+K \log \Psi\left(2^{1 / \alpha}\right)\right\} \sum_{n=1}^{\infty} \frac{1}{2^{\bar{n}}}<\infty,
\end{aligned}
$$

which implies that $E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$ is of positive logarithmic capacity.
On the other hand, take the ordinary Cantor set $E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$, where $p_{n}=3\left\{\Psi\left(16^{1 / \alpha}\right)\right\}^{K} /\left[3\left\{\Psi\left(16^{1 / \alpha}\right)\right\}^{K}-1\right](n=1,2, \ldots)$, and consider the Cartesian product $E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right) \times E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$ which is referred the symmetric Cantor set. Then, we can construct a system $\left\{R_{n}^{(j k)}\right\}$ ($j=1,2, \ldots, 2^{n} ; k=1,2, \ldots, 2^{n} ; n=1,2, \ldots$) inducing an exhaustion of the complementary domain of $E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right) \times E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$, where $R_{n}^{(j k)}$ denotes the circular annulus translating $R_{n}^{(j)}$ and having its center at the center of the square $S_{n+1}^{(j)} \times S_{n+1}^{(k)}$. Since moduli of $R_{n}^{(j k)}$ for all $j, k(j, k$ $=1,2, \ldots, 2^{n}$) are equal one another, we can put $\bmod R_{n}^{(j k)}=\log \mu_{n}$. Then it is easily seen similarly as showed above that for $\delta=16^{1 / \alpha}-1$, this system $\left\{R_{n}^{(j k)}\right\}$ satisfies the condition in Corollary 1 or Theorem 1 and the set $E\left(p_{1}, p_{2}, \ldots\right.$, $\left.p_{n}, \ldots\right) \times E\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$ has the positive logarithmic capacity.

References

[1] Bers, L.: On a theorem of Mori and the definition of quasiconformality, Trans. Amer. Math. Soc., 84, 78-84 (1957).
[2] Beurling, A. and Ahlfors, L.: The boundary correspondence under quasiconformal mapping, Acta Math., 96, 125-142 (1956).
[3] Ikoma, K.: On a property of the boundary correspondence under quasiconformal mappings, Nagoya Math. Journ., 16, 185-188 (1960).
[4] Kuroda. T.: A criterion for a set to be of 1 -dimensional measure zero, Jap. Journ. Math., 29, 48-51 (1959).
[5] Mori, A.: On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc., 84, 56-77, (1957).
[6] Teichmüller, O.: Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math., 3, 621-678 (1938).

Yamagata University

