SOME NOTES ON EXCEPTIONAL VALUES OF MEROMORPHIC FUNCTIONS

KIKUJI MATSUMOTO

1. Let E be a totally-disconnected compact set in the z-plane and let Ω be its complement with respect to the extended z-plane. Then Ω is a domain and we can consider a single-valued meromorphic function w = f(z) on Ω which has a transcendental singularity at each point of E. Suppose that E is a null-set of the class W in the sense of Kametani [4] (= the class $N_{\mathfrak{B}}$ in the sense of Ahlfors and Beurling [1]). Then the cluster set of f(z) at each transcendental singularity is the whole w-plane, and hence f(z) has an essential singularity at each point of E. We shall say that a value E is exceptional for E0 at an essential singularity E1 at an essential singularity E2 at an essential singularity E3 at an essential singularity E4.

In our previous paper [6], we showed that, even if E is of capacity¹⁾ zero, the set of all exceptional values of f(z) at a point ζ of E may be non-countable. From this fact, there arises the following problem: Is there a perfect set E such that each f(z) has at most a countable number of exceptional values at each essential singularity $\zeta \in E$?

Recently, Carleson [3] and the author [7] have given positive answers to this problem, that is, they have given sufficient conditions for sets E to satisfy that every f(z) has at most a finite number of exceptional values. Particularly, Carleson's paper is very interesting. Carleson has shown that there exist sets E of positive capacity for which every f(z) has at most three exceptional values. His arguments are based on the fact that a set of linear measure zero is a null-set of the class W.

In this note, we shall give a sufficient condition, much better than Carleson's and the author's, using Carleson's arguments essentially.

2. Let $\{\Omega_n\}_{n=0,1,2,...}$ be an exhaustion of Ω with the following conditions:

Received March 26, 1962.

¹⁾ In this note, capacity is always logarithmic.

- 1) $\Omega_{n+1} \supset \overline{\Omega}_n$ for every n,
- 2) for each n, the boundary $\partial \Omega_n$ of Ω_n consists of a finite number of closed analytic curves,
 - 3) each component of the open set $\mathcal{E}_{\overline{\Omega}_n}^{(2)}$ contains points of E,
- 4) the open set $\Omega_n \overline{\Omega}_{n-1}$ $(n \ge 1)$ consists of a finite number of doubly-connected domains $R_{n,k}$ $(k = 1, 2, \ldots, N(n))$.

We shall use in the sequel the graph associated with $\{\Omega_n\}$ in the sense of Noshiro [9]. Let u(z) + iv(z) be the mapping function of $\Omega - \Omega_0$ onto it and let R be its length.³⁾

Let γ_r be the niveau curve $u(z) = r \ (0 < r < R)$ on Ω . The niveau curve γ_r consists of a finite number of simple closed curves $\gamma_{r,k} \ (k=1,2,\ldots,n(r))$. We shall call each component of the open set $\Omega_n - \overline{\Omega}_m \ (n > m \ge 0)$ an R-chain, consider for every $\gamma_{r,k} \ (0 < r < R, \ 1 \le k \le n(r))$ the longest doubly-connected R-chain $R(\gamma_{r,k})$ such that $\gamma_{r,k}$ is contained in $R(\gamma_{r,k})$ or is the one of the two boundary components of $R(\gamma_{r,k})$, and denote by $\mu(\gamma_{r,k})$ the harmonic modulus of this R-chain. We set

$$\mu(\mathbf{r}) = \min_{1 \leq k \leq n(\mathbf{r})} \mu(\gamma_{\mathbf{r},k}).$$

Generally $R_{n,k}$ may branch off into a finite number of $R_{n+1,m}$. If every $R_{n,k}$ $(n=1,2,\ldots; k=1,2,\ldots,N(n))$ branches off into at most ρ domains $R_{n+1,m}$, we say that the exhaustion $\{Q_n\}$ branches off at most ρ -times everywhere.

Now we state our theorem.

Theorem 1. Let E be a totally-disconnected compact set in the z-plane and let Ω be its complementary domain. If there exists an exhaustion $\{\Omega_n\}$ of Ω which satisfies the conditions 1), 2), 3) and 4) stated above, branches off at most ρ -times everywhere and has the graph satisfying the condition that

$$\lim_{r\to R}\,\mu(r)=+\infty,$$

then every function which is single-valued and meromorphic in Ω and has an

²⁾ We denote the complement of a set A with respect to the extended complex plane by $\mathscr{C}A$.

³⁾ Cf. K. Matsumoto [7], § 2.

essential singularity at each point of $E^{(4)}$ has at most $\rho + 1$ exceptional values at each singularity.

This is an amelioration of the theorem given in [7]. In fact, we proved the same assertion under the additional conditions that the length R is infinite and further

$$\overline{\lim_{r\to\infty}} \ \frac{n(r)}{r} < + \infty.$$

3. We shall prove a little stronger theorem than Theorem 1. Let f(z) be a single-valued meromorphic function in $\mathcal Q$ possessing at least one essential singularity in E, not necessarily at each point of E. We shall say that f(z) omits a value w in $\mathcal Q$ at an essential singularity $\zeta \in E$ if there is a neighborhood $U(\zeta)$ of ζ such that f(z) does not take this value w in $\mathcal Q \cap U(\zeta)$. Such a value may be taken by f(z) only at points of E near ζ .

We shall prove the following

Theorem 2. Under the same conditions as Theorem 1, every function, which is single-valued and meromorphic in Ω and has at least one essential singularity in E, omits at most $\rho+1$ values in Ω at each singularity.

In the case where $\rho = 1$, E consists of just one point and hence our assertion is true from Picard's theorem. We shall give a proof only in the case where $\rho = 2$. In the same way, we can prove in general cases.

4. Before proving the theorem, we give two lemmas. We shall consider the Riemann sphere Σ with radius 1/2 touching the w-plane at the origin. For w and w' in the w-plane we denote by [w, w'] the chordal distance between them, that is,

$$[w, w'] = \frac{|w - w'|}{\sqrt{(1+|w|^2)(1+|w'|^2)}}.$$

Further we denote by $C(w; \delta)$ ($\delta > 0$) the spherical open disc with center at w and with chordal radius δ .

Let w = f(z) be a single-valued meromorphic function in an annulus

⁴⁾ We shall see in the proof of the theorem that E is a null set of the class W and hence every transcendental singularity of single-valued meromorphic functions in Ω is always an essential singularity.

 $1 < |z| < e^{\gamma}$ ($\sigma > 0$) omitting four values w_1 , w_2 , w_3 and w_4 , and let $\delta > 0$ be so small that spherical discs $C(w_i; \delta)$ (i = 1, 2, 3, 4) are mutually disjoint. Now we prove the following lemma which is a consequence of Bohr-Landau's theorem [2]:

If g(z) is regular in |z| < 1 and $g(z) \neq 0$, 1 there, then

$$\max_{|z| = r} |g(z)| \le \exp\left(\frac{K \log(|g(0)| + 2)}{1 - r}\right) \quad \text{for all } r < 1,$$

where K is a positive constant (a precise form of Schottky's theorem).

Lemma 1. There is a positive constant δ' such that, if f(z) takes a value outside $C(w_i; \delta)$ for some i $(1 \le i \le 4)$ at a point on $|z| = e^{\sigma/2}$, then the image of $|z| = e^{\sigma/2}$ by f(z) lies completely outside the concentric spherical disc $C(w_i; \delta')$. Here δ' depends only on σ , w_i $(1 \le i \le 4)$ and δ , and does not depend on f(z).

Proof. From Bohr-Landau's theorem, we can see easily that if w = g(z) is a regular function in $1 < |z| < e^{\sigma}$ such that

$$g(z) \neq 0$$
, 1 and $\min_{|z|=e^{\sigma/2}} |g(z)| < M$ for a positive M ,

then there is a positive constant M' depending only on M and σ and satisfying

$$\max_{|z|=e^{\sigma/2}}|g(z)|\leq M'.$$

We denote by $\zeta = T^i_{j,\,m}(w)$ $(1 \leq i,\,j,\,m \leq 4,\,i \neq j,\,m$ and $j \neq m)$ the linear transformation which transforms $w_i,\,w_j$ and w_m to the point at infinity, the origin and the point $\zeta = 1$ respectively. Since the number of such $T^i_{j,\,m}$ is finite, we can find a positive M so large that, for each $T^i_{j,\,m}$, its image of the outside of $C(w_i;\delta)$ is contained completely in $|\zeta| < M$. For this $M,\,\zeta = T^i_{j,\,m}(f(z))$ has the same properties as g(z) stated above, and hence it holds that

$$|T_{j,m}^i(f(z))| \leq M'$$
 on $|z| = e^{\sigma/2}$,

where M' > 0 depends only on M and σ . The image of the outside V of $|\zeta| \le M'$ by $(T^i_{j,m})^{-1}$ is an open disc containing w_i . If we denote by $d^i_{j,m}$ the chordal distance between w_i and the boundary of $(T^i_{j,m})^{-1}(V)$ and set

$$\delta' = \min_{\substack{1 \leq i, j, m \leq 4 \\ i \neq j, m \\ i \neq m}} d^i_{j, m},$$

then $\delta' > 0$ and obviously satisfies all conditions of the lemma.

Next lemma is a revised form of Carleson's [3].

Lemma 2. Let w = f(z) be a single-valued meromorphic function on an annulus $1 \le |z| \le e^{\mu}$ ($\mu > 0$). If f(z) takes there no value in a spherical disc $C(w_0; \delta)$, then there exists a positive constant A depending only on δ such that the diameter of the image of $|z| = e^{\mu/2}$ by f(z) with respect to the chordal distance is dominated by $Ae^{-\mu/2}$ for sufficiently large μ .

In particular, if δ is sufficiently close to 1, that is, the complementary sherical disc $C(-1/\overline{w}_0;d)$ of $C(w_0;\delta)$ has a radius d sufficiently small, we have

$$A < Bd$$
.

where B is a positive constant.

Proof. We may assume without loss of generality that the center w_0 of $C(w_0; \delta)$ is the point at infinity, for otherwise we can transform w_0 to the point at infinity by the linear transformation $(1+\overline{w}_0w)/(w-w_0)$, under which the chordal distance remains invariant. Let |w| > M be the domain in the w-plane corresponding to $C(w_0; \delta)$. Then

$$|f(z)| \le M$$
 on $1 \le |z| \le e^{\mu}$.

By Cauchy's integral theorem, we have

$$f'(z) = \frac{1}{2\pi i} \left\{ \int_{|\zeta| = e^{\mu}} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta - \int_{|\zeta| = 1} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \right\}$$

for every z on $|z| = e^{\mu/2}$ and hence, if $\mu \ge 2$,

$$|f'(z)| \le \frac{M}{2\pi} \left\{ \frac{2\pi e^{\mu}}{(e^{\mu} - e^{\mu/2})^2} + \frac{2\pi}{(e^{\mu/2} - 1)^2} \right\} \le \frac{2e^2}{(e-1)^2} Me^{-\mu}.$$

Therefore we have

$$\int_{|z|=e^{u/2}} |f'(z)| |dz| \leq \frac{2e^2}{(e-1)^2} M e^{-\mu \cdot 2} \pi e^{\mu/2} = \frac{4\pi e^2}{(e-1)^2} M \cdot e^{-\mu/2}.$$

The left side shows the length of the image curve $f(|z|=e^{\mu/2})$, and hence the diameter of the image of $|z|=e^{\mu/2}$ by f(z) with respect to the metric |dw|, consequently with respect to the chordal distance, is dominated by $(2\pi e^2/(e-1)^2)Me^{-\mu/2}$. We can take $(2\pi e^2/(e-1)^2)M$ as A, for M depends only on δ .

If d < 1/2, then M < 2 d. Hence

$$B = 4 \pi e^2/(e-1)^2$$

is one of the wanted. Thus our lemma is established.

5. Proof of the theorem. Contrary to our assertion, let us suppose that there exists a function f(z) which is single-valued and meromorphic in Ω , has at least one essential singularity in E and omits more than three values in Ω at an essential singularity $\zeta_0 \in E$. Then there is a neighborhood $U(\zeta_0)$ of ζ_0 such that f(z) omits four values w_i , w_i , w_i , w_i and w_i in $U(\zeta_0) \cap \Omega$. We take a positive δ so small that spherical discs $C(w_i; \delta)$ $(1 \le i \le 4)$ are mutually disjoint. For this δ and a $\sigma > 0$, Lemma 1 determines $\delta' > 0$.

Next we consider this δ' as δ in Lemma 2 and take μ_0 so large that

$$Ae^{-\mu_0/2} < \min \{1/24, \delta'/3\}$$
 and $Be^{-\mu_0/2} < 1/12$,

where A and B are constants in Lemma 2. From the assumption

$$\lim_{r\to R}\mu(r)=+\infty,$$

there is an $r_0 > 0$ such that

$$\mu(r) > \mu_0 + 2 \sigma$$
 for all $r : r_0 < r < R$.

The niveau curve $\gamma_r: u(z) = r \ (r_0 < r < R)$ consists of a finite number of simple closed curves $\gamma_{r,k}$ $(k=1,2,\ldots,n(r))$, and one of them, say $\gamma_{r,1}$, encloses ζ_0 . For r sufficiently near R, the longest doubly-connected R-chain $R(\gamma_{r,1}) = S_{1,1}$ for $\gamma_{r,1}$, which we defined in § 2, is contained in $U(\zeta_0)$. The harmonic modulus of $S_{1,1}$ is of course greater than $\mu_0 + 2\sigma$ but is not infinite, for, if so, ζ_0 must be isolated and f(z) cannot omit four values at ζ_0 . Therefore $S_{1,1}$ must branch off. Now suppose that $S_{1,1}$ is a component of the open set $\Omega_n - \bar{\Omega}_{n'}$ (n > n'), and branches off into two domains $R_{n+1,k}$ and $R_{n+1,k'}$, and consider the longest doubly-connected R-chains $S_{2,1}$ and $S_{2,2}$ containing $R_{n+1,k}$ and $R_{n+1,k'}$ respectively. Then they have harmonic moduli greater than $\mu_0 + 2\sigma$, one of them, say $S_{2,1}$, separates ζ_0 from $S_{1,1}$ and its harmonic modulus is finite by the same reason as above. Hence $S_{2,1}$ is a component of the open set $\Omega_m - \Omega_n$ for some m and branches off into two domains $R_{m+1,k}$ and $R_{n+1,k'}$. We shall denote by $S_{3,1}$ and $S_{3,2}$ the longest doubly-connected R-chains containing them. On the other hand, the harmonic modulus of $S_{2,2}$ may be infinite. If it is infinite, one of the boundary components

of $S_{2,2}$ is a point $\eta \in E$ and f(z) is meromorphic at η . If it is finite, we obtain two R-chains $S_{3,3}$ and $S_{3,4}$ in the same manner as above. Thus we have at most 2^2 R-chains $S_{3,q}$ such that their harmonic moduli are greater than $\mu_0 + 2 \sigma$, one of them encloses ζ_0 and each of them branches off into two domains, if its harmonic modulus is finite, or has a point $\eta \in E$ as one of its boundary components at which f(z) is meromorphic, if its harmonic modulus is infinite. Continuing inductively, we obtain a set of R-chains $S_{p,q}$ $(p=1, 2, 3, \ldots; q=1, 2, \ldots, Q(p) \leq 2^{p-1})$ with the following properties:

- 1) $\bigcup_{p=1}^{\infty} \bigcup_{q=1}^{Q(p)} \overline{S}_{p,q} \supset \Delta$, where Δ denotes the intersection of the inside of the simple closed curve $\gamma_{r,1}$ and Ω ,
 - 2) their harmonic moduli are greater than $\mu_0 + 2 \sigma$,
- 3) each $S_{p,q}$ branches off into two $S_{p+1,q}$ if its harmonic modulus is finite, or
- 4) it has a point $\eta \in E$ as one of its boundary components and f(z) is meromorphic at η if its harmonic modulus is infinite. In this case we shall denote the point η and the value $f(\eta)$ by $\eta_{p,q}$ and $w_{p,q}$ respectively.

Each $S_{p,\,q}$ is conformally equivalent to the annulus $1<|\zeta|< e^{\mu}$, where μ is the harmonic modulus of $S_{p,\,q}$. In the case where $\mu<+\infty$, we denote by $S_{p,\,q}^1$, $S_{p,\,q}^2$ and $S_{p,\,q}^3$ subdomains of $S_{p,\,q}$ corresponding to the annuli $1<|\zeta|< e^{\gamma}$, $e^{\sigma}<|\zeta|< e^{\mu-\sigma}$ and $e^{\mu-\sigma}<|\zeta|< e^{\mu}$ respectively and by $\Gamma_{p,\,q}^1$, $\Gamma_{p,\,q}^2$ and $\Gamma_{p,\,q}^3$ closed curves corresponding to $|\zeta|=e^{\sigma/2}$, $|\zeta|=e^{\mu/2}$ and $|\zeta|=e^{\mu-\sigma/2}$ respectively. We observe that for each $\Gamma_{p,\,q}^2$ the diameter of its image by f(z) with respect to the chordal distance is dominated by $K=\min\{1/24,\,\delta'/3\}$. In fact, for $z'\in\Gamma_{p,\,q}^1$ and $z''\in\Gamma_{p,\,q}^3$, the images f(z') and f(z'') lie in the outside of at least one $C(w_i;\delta)$, say $C(w_1;\delta)$, and hence, applying Lemma 1 in $S_{p,\,q}^1$ and $S_{p,\,q}^3$, we see that the images of $\Gamma_{p,\,q}^1$ and $\Gamma_{p,\,q}^2$, consequently the image of the ring domain bounded by them by the maximum principle, lie completely outside $C(w_1;\delta')$. Thus our assertion follows from Lemma 2, because the harmonic modulus of $S_{p,\,q}^2$ is greater than μ_0 .

Every $S_{p+1,q'}$ $(p \ge 1)$ has in common with another $S_{p+1,q''}$ an $S_{p,q}$ branching off into them, and we shall denote by $A_{p,q}$ the triply-connected domain bounded by $\Gamma^2_{p,q}$, $\Gamma^2_{p+1,q'}$ and $\Gamma^2_{p+1,q''}$, where we consider $\Gamma^2_{p+1,q'} = \eta_{p+1,q'}$ or $\Gamma^2_{p+1,q'} = \eta_{p+1,q''}$ if $S_{p+1,q'}$ or $S_{p+1,q''}$ has infinite harmonic modulus. For $w \in f(\Gamma^2_{p,q})$, $w' \in f(\Gamma^2_{p+1,q'})$ and $w'' \in f(\Gamma^2_{p+1,q'})$ we consider spherical discs C(w; K), C(w'; K) and

C(w''; K), which of course contain $f(\Gamma_{p,q}^2)$, $f(\Gamma_{p+1,q'}^2)$ and $f(\Gamma_{p+1,q''}^2)$ respectively. Since $K < \delta'/3$, they cannot contain at least one of w_i $(1 \le i \le 4)$, say w_1 , and hence each one of them cannot be disjoint from the union of the others, for, if so for some one, there is $z_0 \in \mathcal{A}_{p,q}$ such that $f(z_0)$ is contained and can be joined to w_1 with a curve Λ in the outside of the union of these three discs, and we are led to a contradiction that the element of the inverse function f^{-1} corresponding to z_0 can be continued analytically along Λ up to a point arbitrarily near w_1 so that f(z) takes the value w_1 in $\mathcal{A}_{p,q}$. Therefore we can conclude that

(1°) for every $\Delta_{p,q}$, there is a spherical disc with the chordal radius 3 K containing its image $f(\Delta_{p,q})$.

Next we shall consider $\Gamma_{p,q}^2$ for $p \ge 2$. Then $\Delta_{p,q}$ and some $\Delta_{p-1,q'}$ have $\Gamma_{p,q}^2$ as the common boundary and $\Delta_{p,q} \cup \Gamma_{p,q}^2 \cup \Delta_{p-1,q'} \supset S_{p,q}$. From (1°) the images of $\Delta_{p,q} \cup \Gamma_{p,q}^2 \cup \Delta_{p-1,q'}$, consequently of $S_{p,q}^2 \subset S_{p,q}$, are contained in a spherical disc with the chordal radius 6 K < 1/2, so that, applying Lemma 2 in $S_{p,q}^2$ for d=6 K, we see that the diameter of $f(\Gamma_{p,q}^2) < 6 KBe^{-\mu_0/2} < K/2$. For $p \ge 2$, each boundary component of $\Delta_{p,q}$ thus has the image with diameter less than K/2. By the same reasoning as above we now conclude that

(2°) for $p \ge 2$, the image of any $\Delta_{p,q}$ is contained in a spherical disc with chordal radius 3 K/2.

By induction we also see for every n that

 (n°) for $p \ge n$, the image of any $\Delta_{p,q}$ is contained in a spherical disc with chordal radius $3K/2^{n-1}$.

Let Δ' be the intersection of the inside of the simple closed curve $\Gamma_{1,1}^2$ and Ω and let z_0 be a point of $\Gamma_{1,1}^2$. Then it follows from the property 1) of $\{S_{p,q}\}$ that

$$\bigcup_{p=1}^{\infty}\bigcup_{q=1}^{Q(p)}\overline{\Delta}_{p,q}\supset\Delta',$$

and hence, for any $z' \in \Delta'$, there is $\Delta_{p',q'}$ whose closure contains z'. From (n°) obtained above, we have for a chain of $\Delta_{p,q}$ joining $\Delta_{1,1}$ and $\Delta_{p',q'}$

$$[f(z'), f(z_0)] \le \sum_{p=1}^{p'} \text{diam. of } f(\Delta_{p,q}) \text{ w.r.t. the chordal distance}$$

 $< 2 \sum_{p=1}^{\infty} 3 K/2^{p-1} = 12 K < 1/2.$

By means of a linear transformation we can consider from the above that

f(z) is bounded in Δ' . On the other hand, only applying Pfluger-Mori's criterion ([10], [8]) to the ring domains $\{S_{p,q}\}$, we can see easily that the part E' of E contained in the inside of $\Gamma^2_{1,1}$ is a null-set of the class W. Hence each point of E' must be a removable singularity of a bounded function f(z). This contradicts our assumption that $\zeta_0 \in E'$ is an essential singularity of f(z), and hence f(z) cannot omit four values in Ω at ζ_0 . Thus our theorem is proved completely.

6. For Cantor sets, we have the following which is an immediate consequence of our theorem.

THEOREM 3. Let E be a Cantor set on the closed interval [0, 1] with the successive ratios ξ_n satisfying the condition

$$\lim_{n\to\infty}\,\xi_n=0.$$

Then every function, which is single-valued and meromorphic in $\Omega = \mathcal{C}E$ and has at least one essential singularity in E, omits at most three values in Ω at each essential singularity.

Carleson proved in his paper [3] the same assertion under a stronger condition

$$\lim_{n\to\infty}\frac{\log\,\xi_n^{-1}}{\log\,n}=+\,\infty.$$

As he remarked there, there is a set E of positive capacity because E is of capacity zero if and only if

$$\sum_{n=1}^{\infty} \frac{\log \xi_n^{-1}}{2^n} = + \infty.$$

7. In our paper [7], we showed, by using its Theorem 1, that there is a set E such that all f(z) possessing E as the set of essential singularities have at most three exceptional values and some one of them indeed has just three exceptional values at each point of E. But the condition

$$\overline{\lim}_{r\to\infty}\frac{n(r)}{r}<+\infty,$$

which gave at that time some difficulties in constructing E, is unnecessary as we saw above and so for each $\rho \ge 2$ we can give easily in the similar manner

a set E such that all f(z) have at most ρ exceptional values and some one of them indeed has just ρ exceptional values.

8. In the last section we shall be concerned with single-valued meromorphic functions which have as the set of essential singularities a set E satisfying the conditions of Theorem 1 for $\rho=2$ and have three exceptional values at a point $\zeta \in E$. We begin with

Lemma 3. Let f(z) be a single-valued meromorphic function on the closure of a triply-connected domain Δ omitting three values w_1 , w_2 and w_3 there, let Γ_1 , Γ_2 and Γ_3 be the boundary components of Δ and let $\delta > 0$ be so small that the discs $C(w_i; \delta)$ $(1 \le i \le 3)$ are mutually disjoint. If $f(\Gamma_i) \subset C(w_i; \delta)$ for all i, f(z) takes in Δ each value outside $\bigcup_{i=1}^3 C(w_i; \delta)$ once and only once.

Proof. Contrary, suppose that f(z) takes a value w_0 outside $\bigcup_{i=1}^3 C(w_i; \delta)$ at two points $z' \in \Delta$ and $z'' \in \Delta$. We can join w_0 to $C(w_1; \delta)$ and $C(w_2; \delta)$ with curves Λ_1 and Λ_2 , respectively, which lie outside $\bigcup_{i=1}^3 C(w_i; \delta)$, do not intersect each other except at w_0 and do not pass through any projection of branch points of the Riemannian image of Δ by f(z). The elements of the inverse function f^{-1} corresponding to z' and z'' can be continued analytically along these curves to their end points and further from them along radii of $C(w_1; \delta)$ and $C(w_2; \delta)$ so that the curves in Δ corresponding to these continuations join each of z' and z'' to Γ_1 and Γ_2 and with parts of Γ_1 and Γ_2 bound a domain not containing Γ_3 . Since Δ has no boundary other than Γ_1 , Γ_2 and Γ_3 , this domain must be a subdomain of Δ and f(z) must take the value w_3 in it; this contradiction proves the lemma.

Let E be a compact set in the z-plane satisfying the conditions of Theorem 1 for $\rho=2$ and let f(z) be a single-valued meromorphic function which has E as the set of essential singularities. Of course, f(z) has at most three exceptional values at any point of E. From Kuroda's theorem [5] we can easily see that the complementary domain $\mathcal Q$ of E belongs to the class O_{AB}° as a Riemann surface and hence the covering surface, which is the Riemannian image of $\mathcal Q$ by w=f(z), has Inversen's property. Consequently, any exceptional value α of f(z) at an essential singularity $\zeta \in E$ is an asymptotic value at ζ or there is a sequence $\{\zeta_n\}$ of points of E such that $\lim_{n \to \infty} \zeta_n = \zeta$ and α is an asymptotic

value at every ζ_n . Now, suppose that f(z) has indeed three exceptional values w_1 , w_2 and w_3 at $\zeta \in E$. We prove

THEOREM 4. There exists a sequence $\{\zeta_n\}$ of points of E such that $\lim_{n\to\infty} \zeta_n = \zeta$ and for any curve terminating at ζ_n the cluster set of f(z) along it contains always all exceptional values w_1 , w_2 and w_3 at ζ .

Proof. It is sufficient to prove that in any neighborhood $U(\zeta)$ of ζ there is a $\zeta' \in E$, different from ζ , having the property stated in the theorem. shall take $\delta > 0$ so small that discs $C(w_i; 2\delta)$ $(1 \le i \le 3)$ are mutually disjoint, use the notations in § 5 considering 2 δ as δ there and note that in the present case all $S_{p,q}$ branch off into two $S_{p+1,q}$, because every point of E is an essential singularity of f(z). Further, we can prove by the same reasoning as used in §5 that if $f(\Delta_{p,q})$ lies completely outside some $C(w_i; \delta)$, then there is a spherical disc $C_{p,q}$ with the chordal radius 3 K containing $f(\Delta_{p,q})$. fact, if one of the spherical discs C(w; K), C(w'; K) and C(w''; K) $(w \in f(\Gamma_{p,q}^2), w' \in f(\Gamma_{p+1,q'}^2)$ and $w'' \in f(\Gamma_{p+1,q''}^2)$ is disjoint from the union of the others, there is a point $z_0 \in \Delta_{p,q}$ with the image $f(z_0)$ outside these three discs, $f(z_0)$ can be joined to the center w_i of $C(w_i; \delta)$ with a curve Λ outside them and hence f(z) takes the value w_i in $\Delta_{b,q}$; this is a contradiction. Thus if, for every $\Delta_{p,q}$ there is one in $C(w_i; \delta)$ $(1 \le i \le 3)$ which is disjoint from $f(\Delta_{p,q})$, then the assertion (1°) in §5 holds and we can repeat the arguments there to reach the contradiction that all points of E near ζ are removable singularities of f(z). Thus we can conclude that there is an infinite number of $\Delta_{p,q}$ such that three discs $C(w_i; 2\delta)(1 \le i \le 3)$ contain the images of its three boundary components one by one.

Let δ_{ν} be a sequence of positive numbers decreasing to zero. Then from the above there is a $\mathcal{L}_{p,q}$ such that three discs $C(w_i; 2\delta_1)$ contain the images of its three boundary components one by one. We denote by Γ_0 the boundary component of $\mathcal{L}_{p,q}$ with the image $f(\Gamma_0)$ contained in $C(w_1; 2\delta_1)$ and consider all $\mathcal{L}_{p,q}$ contained in the inside of Γ_0 . Among these $\mathcal{L}_{p,q}$ there is one such that three discs $C(w_i; 2\delta_2)$ contain the images of its three boundary components one by one and we denote by Γ_1 its boundary component with the image $f(\Gamma_1)$ contained in $C(w_2; 2\delta_2)$. Next we consider all $\mathcal{L}_{p,q}$ contained in the inside of Γ_1 and obtain Γ_2 with the image $f(\Gamma_2)$ contained in $C(w_3; 2\delta_3)$. We

proceed inductively and obtain a sequence of closed curves $\{\Gamma_{\nu}\}$ with the following conditions: 1) the inside of Γ_{ν} contains $\Gamma_{\nu+1}$, 2) the image of $\Gamma_{3\kappa+\tau}$ ($\kappa=0,1,2,\ldots$; $\tau=0,1,2$) is contained in $C(w_{\tau+1};2\delta_{3\kappa+\tau})$. We set

$$\zeta' = \bigcap_{\nu} \overline{(\varGamma_{\nu})},$$

where we denote by (Γ_{ν}) the inside of Γ_{ν} and by $\overline{(\Gamma_{\nu})}$ the closure of (Γ_{ν}) . Obviously $\zeta' \in E$ and has the property stated in the theorem. Our proof is now complete.

The fact in the above proof that for any $\delta > 0$, there is $\Delta_{p,q}$ such that three discs $C(w_i; \delta)$ contain the images of its three boundary components one by one implies by Lemma 3 the following theorem under the same conditions as Theorem 4.

Theorem 5. Let \emptyset be the covering surface of the w-plane which is the Riemannian image of Ω by w = f(z). Then, for arbitrary four discs C_i $(1 \le i \le 4)$ in the w-plane with the closures being mutually disjoint, there is at least one over which \emptyset has an infinite number of univalent discs $\{\tilde{C}_k\}$ such that $f^{-1}(\tilde{C}_k)$ are compact relative to Ω and are contained in any neighborhood of ζ except for a finite number of them.

REFERENCES

- [1] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic nullsets, Acta Math., 83 (1950), pp. 101-129.
- [2] H. Bohr and E. Landau: Über das Verhalten von $\zeta(s)$ und $\zeta_k(s)$ in der Nähe der Geraden $\sigma=1$, Göttinger Nachr., (1910).
- [3] L. Carleson: A remark on Picard's theorem, Bull. Amer. Math. Soc., 67 (1961), pp. 142-144.
- [4] S. Kametani: On Hausdorff's measures and generalized capacities with some of their applications to the theory of functions, Jap. Journ. Math., 19 (1944-48), pp. 217-257.
- [5] T. Kuroda: On analytic functions on some Riemann surfaces, Nagoya Math. Journ., 10 (1956), pp. 27-50.
- [6] K. Matsumoto: Exceptional values of meromorphic functions in a neighborhood of the set of singularities, Journ. Sci. Hiroshima Univ, A 24 (1960), pp. 143-153.
- [7] K. Matsumoto: On exceptional values of meromorphic functions with the set of singularities of capacity zero, Nagoya Math. Journ., 18 (1961), pp. 171-191.
- [8] A. Mori: A note on unramified abelian covering surfaces of a closed Riemann surface, Journ. Math. Soc. Japan, 6 (1954), pp. 162-176.
- [9] K. Noshiro: Open Riemann surface with null boundary, Nagoya Math. Journ., 3 (1951), pp. 73-79.

[10] A. Pfluger: Sur l'existence de fonctions non constantes, analytiques, conformes et bornées sur une surface de Riemann ouverte, C. R. Paris, 230 (1950), pp. 166-168.

Mathematical Institute, Nagoya University