ON CROSSED PRODUCTS OF A SFIELD

MASATOSHI IKEDA

To RICHARD BRAUER on the occasion of his 60th birthday

In the previous paper [3] the author has shown a possibility to construct a series of sfields by taking sfields of quotients of split crossed products of a sfield. In this paper the same problem is treated, and, by considering general crossed products, a generalization of the previous result is given: Let K be a sfield and G be the join of a well-ordered ascending chain of groups G_{α} of outer automorphisms of K such that a) G_1 is the identity automorphism group, b) G_{α} is a group extension of $G_{\alpha-1}$ by a torsion-free abelian group for each non-limit ordinal α , and c) $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$ for each limit ordinal α . Then an arbitrary crossed product of K with G is an integral domain with a sfield of quotients Q and the commutor ring of K in Q coincides with the centre of K.

1. Let K be a sfield and G be a group of outer automorphisms of K. A crossed product P of K with the group G is defined as follows¹:

 (C_1) P is a ring extension of K and possesses a unit element which is at the same time a unit element of K.

(C₂) P is expressible as a sum $\sum_{\sigma \in G} u_{\sigma} K$ with the regular elements u_{σ} corresponding to G-elements σ .

(C₃) $a u_{\sigma} = u_{\sigma} a^{\tau}$ for all K-elements a and G-elements σ .

Then it can be shown that

(P₁) $\{u_{\sigma}\}$ is a K-basis of P,

(P₂) if a *P*-element u satisfies the condition uK = Ku, then u is an element of a module $u_{\sigma}K$ for a suitable *G*-element σ ,

(P₃) for each pair σ , τ of *G*-elements, $u_{\sigma}u_{\tau} = u_{\sigma\tau}c_{\sigma,\tau}$ with a non-zero element $c_{\sigma,\tau}$ of the centre of *K*, and the elements $c_{\sigma,\tau}$ satisfy the relation $c_{\rho,\sigma\tau}c_{\sigma,\tau} = c_{\rho\sigma,\tau}c_{\rho,\sigma}^{\tau}$, and

Received April 25, 1962.

¹⁾ For detailed discussion see G. Azumaya and T. Nakayama [2].

 (P_4) P is a simple ring.

The set $C_G = \{c_{\sigma,z}\}$ is called a factor set of G with respect to K. Two factor sets $C_{G} = \{c_{\sigma,\tau}\}$ and $C'_{G} = \{c'_{\sigma,\tau}\}$ are said to be associated with each other, if there exists a set $\{b_{\sigma}\}$ of non-zero elements of the centre of K such that $c'_{\sigma,\tau} = c_{\sigma,\tau} b^{\tau}_{\sigma} b_{\tau} b^{-1}_{\sigma\tau}$ for every pair of elements of G. If there is an isomorphism of a crossed product of K with G onto another crossed product of K with Gand every element of K is mapped on itself, then these crossed products are said to be similar to each other. It can be then shown that there is a one-toone correspondence between the classes of associated factor sets and the classes of similar crossed products. In this sense we shall write a crossed product of K with G in the form (K, G, C_g) . Of course this expression depends on the choice of the transformers $\{u_{\sigma}\}$. Now let H be a subgroup of G, then a crossed product (K, G, C_{g}) contains isomorphically the crossed product $(K, H, C_{g}(H))$ of K with H having the factor set $C_{g}(H)$ obtained by the restriction of the In this paper the notation $C_{G}(H)$ will be used always to factor set C_G on H. be the factor set obtained by the restriction of C_G of a group G on a subgroup H, and the crossed product $(K, H, C_o(H))$ will be considered always to be imbedded in (K, G, C_G) .

LEMMA 1. Let K be a shield and G be a group of outer automorphisms of K which is a group extension of a subgroup H by an infinite cyclic group. Assume further that every crossed product P of K with H satisfies the following conditions:

i) P is an integral domain and possesses a sfield of quotients Q.

ii) An automorphism of K can be extended to an inner automorphism of Q which maps P onto itself, if and only if it belongs to an automorphism class represented by an element of H.

iii) The commutor ring $V_Q(K)$ of K in Q coincides with the centre of K.

Then an arbitrary crossed product of K with G satisfies the same conditions *i*), *ii*) and *iii*).

Proof. First we mention that G is a split group extension of H by an infinite cyclic group, i.e. G contains an infinite cyclic subgroup $\{\varphi\}$ such that $G = \{\varphi\} \cdot H, \{\varphi\} \cap H = 1$ and $\varphi^{-1}H\varphi = H$. Now let P^* be a crossed product of the form (K, G, C_G) and the set of transformers be $\{u_\sigma\}$. We choose another

set of transformers $\{v_{\sigma}\}$ connected with the set $\{u_{\sigma}\}$ by the relations: $v_{\varphi^{i}} = u_{\varphi}^{i}$, $v_{\varphi^{i_{\rho}}} = u_{\varphi}^{i} u_{\rho}$ for $-\infty < i < +\infty$ and $v_{\rho} = u_{\rho}$ for *H*-elements ρ . Then we get a new factor set C'_{g} associated with C_{g} . It can be easily seen that $c'_{g'}, \varphi = 1$ for all elements of the cyclic group $\langle \varphi \rangle$. Further we see readily that the crossed product P^* can be expressed as a direct sum $\sum v_{\varphi^i} P$, where $P = (K, H, C_G(H))$ is the crossed product of K with H obtained by the restriction of the factor set C_{g} on the subgroup H. The elements $v_{z^{i}}$ induce automorphisms φ^{i} on P, and these automorphisms can be extended on the sfield of quotients Q of Pwhose existence is assumed. The automorphisms of Q thus obtained are not inner automorphisms of Q. For otherwise an automorphism φ^i of K would be extended to an inner automorphism of Q, and the latter maps P onto itself. Hence by the assumption the automorphism φ^i of K would belong to an automorphism class represented by an element of H. But since G is a group of outer automorphisms, this would imply that the automorphism φ^i belong to H. Now we consider the split crossed product \overline{P} of Q This is a contradiction. with the cyclic group $\{\varphi\}$ of automorphisms of Q. \overline{P} is expressible in the form $\sum_{i} w_{\varphi^{i}} Q$, where $w_{\varphi^{i}} w_{\varphi^{j}} = w_{\varphi^{i+j}}$ and $A w_{\varphi^{i}} = w_{\varphi^{i}} A^{\varphi^{i}}$ for Q-elements A. It can be easily seen that P^* can be isomorphically imbedded into \overline{P} . In fact the subring $\sum_{i} w_{\varphi^{i}} P$ is isomorphic to P^{*} under the correspondence $f: f(v_{\varphi^{i}}) = w_{\varphi^{i}}$ and f(A) = A for P element A. As is easily seen, the split crossed product \overline{P} is an integral domain and possesses a sfield of quotients \overline{Q} . Since P^* is isomorphic to a subring of \overline{P} , it is an integral domain. We shall show now further that \overline{Q} is a sfield of quotients of the ring $\sum w_{\overline{\gamma}^i} P$. Since \overline{Q} is a sfield of quotients of \overline{P} , there are two elements A and B for each element X of \overline{Q} such that AX and XB belong to \overline{P} . Let the elements A, B, AX and XB be of the form $\sum_{i} w_{\varphi^{i}} a_{i}$, $\sum_{i} w_{\varphi^{i}} b_{i}$, $\sum_{i} w_{\varphi^{i}} a'_{i}$ and $\sum_{i} w_{\varphi^{i}} b'_{i}$ respectively, where only a finite number of Q-elements a_i , b_j , a'_k and b'_k is different from zero. Then, since Q is a sfield of quotients of P, we can find two P elements c and d so that $c(\sum_{i} w_{\varphi^{i}} a_{i}), c(\sum_{i} w_{\varphi^{i}} a_{i}'), (\sum_{i} w_{\varphi^{i}} b_{i})d \text{ and } (\sum_{\iota} w_{\varphi^{i}} b_{i}')d \text{ belong to the ring } \sum_{i} w_{\varphi^{i}} P.$ This tells us that \overline{Q} is a sfield of quotients of $\sum w_{\varphi^i} P$. Thus the crossed product P^* possesses a sfield of quotients which is isomorphic to \overline{Q} and will be denoted by Q^* . Suppose now that an automorphism τ of K could be extended to an inner automorphism of Q^* which maps P^* onto itself. Let the extension

of τ on Q^* be given by the transformation with a Q^* -element u. Then from the assumption $uP^* = P^*u$, and the element u induces an automorphism τ on P^* : $Cu = uC^{\tau}$ for P^* -elements C. Now let S be the set of all P^* -elements A such that Au belongs to P^* . Since Q^* is a sfield of quotients of P^* , the set S contains at least one non-zero P^* -element. Obviously S forms an additive module. Moreover, if A is an element of S, then, since $u(AC)^{\tau}$ belongs to P^* for any P^* -element C, it follows that AC belongs to S for every P^* -element C. On the other hand DA belongs to S for every P^* -element D. Thus the set S is a two-sided ideal of P^* . But P^* is a simple ring, therefore the nonzero ideal S must be equal to P^* . Consequently the element u must be a P^* -But, since the element u induces the automorphism τ on K, it element. follows, by the property (P_2) of crossed products, that the element u is an element of $u_{\sigma}K$ for a suitable G-element σ . Thus the automorphism τ belongs to an automorphism class represented by a G-element. Conversely, if an automorphism τ of K belongs to an automorphism class represented by a Gelement, then it can be obviously extended to an inner automorphism of Q^* which maps P^* onto itself. Now let A be an element of the commutor ring $V_{Q^*}(K)$ of K in Q^* . Since Q^* is isomorphic to \overline{Q} , we may consider \overline{Q} instead of Q^* . The sfield \overline{Q} is a sfield of quotients of the split crossed product of a sfield Q with an infinite cyclic group of automorphisms of Q. Hence, by Hilfssatz 1 in [3], the commutor ring $V_{\bar{Q}}(K)$ is equal to the commutor ring $V_Q(K)$ of K in Q. But Q was a sfield of quotients of a crossed product P of K with H, therefore, by the assumption, $V_{\overline{Q}}(K)$ coincides with the centre of K. Thus the proof is completed.

By induction on the rank of finitely generated free abelian groups, we get readily the following

LEMMA 2. Let K be sfield and G be a group of outer automorphisms of K which is a group extension of a subgrup H by a finitely generated free abelian group. If every crossed products of K with H satisfies the conditions i), ii) and iii) in Lemma 1, then every crossed product of K with G satisfies the same conditions i), ii) and iii).

LEMMA 3. Let K be a sfield and G be a group of outer automorphisms of K. Assume further that G is the join of subgroups G_{α} ($\alpha \in I$), and that every

crossed product of K with G_{α} satisfies the conditions i), ii) and iii) in Lemma 1. Then every crossed product of K with G satisfies the same conditions i), ii) and iii).

Proof. Let a crossed product P of K with G be of the form (K, G, C_G) and the set of transformers be $\{u_{\sigma}\}$. Then the crossed product $P_{\alpha} = (K, G_{\alpha}, G_{\alpha})$ $C_{\alpha}(G_{\alpha})$) of K with each G_{α} is contained in P, and, by the assumption, it satisfies the conditions i), ii) and iii). First it can be easily seen that P is the join of P_{α} , therefore each element of P belongs to P_{α} with a suitable index α . From this fact it follows immediately that P is an integral domain. To see the existence of a sfield of quotients of P, it is sufficient, by the Asano's criterium,²⁾ to show the existence of two pairs of non-zero P-elements A', B' and A", B" for each pair of non-zero P-elements A and B such that AA' =BB' and A''A = B''B. As was mentioned above, the elements A and B belong to P_{α} with a suitable index α , and P_{α} possesses a sfield of quotients. Therefore, again by the Asano's criterium, we can find desired pairs of elements in P_{a} . Thus P possesses a sfield of quotients, which will be denoted by Q. Now the sfield Q contains a sfield of quotients Q_{α} of each crossed product P_{α} . In fact the sfield Q_{α} can be characterized as the set of all such Q-elements X that XA Since P is the join of the belongs to P_{α} for a suitable element A of P_{α} . subrings P_{α} , the join of the sfields Q_{α} is a sfield of quotients of P, consequently it coincides with Q. Thus Q is the join of the sfields Q_{α} . Now we determine the intersection of P and Q_{α} . Let $G = \sum_{\alpha} G_{\alpha} \cdot \tau$ be the decomposition of G into left cosets with respect to the subgroup G_{α} , where $\langle \tau \rangle$ is a set of representatives Then an element A of P can be written in the form $\sum_{\rho \in G_{\alpha}} u_{\rho} a_{\rho}$ of the cosets. + $\sum_{\rho \in G_a} u_{\rho\tau} a_{\rho\tau} + \sum_{\rho \in G_a} u_{\rho\tau'} a_{\rho\tau'} + \ldots$, where 1, τ , τ' , \ldots are representatives of cosets and only a finite number of the coefficients is different from zero. Suppose now that A belongs to the intersection $P \cap Q_a$. Then, since Q_{α} is a sfield of quotients of P_{α} , there is a P_{α} -element A such that $A_{\alpha}A$ belongs to P_{α} . The expansion of the product $A_{\alpha}A$ will be of the form $\sum_{\rho \in G_{\alpha}} u_{\rho} a'_{\rho} + \sum_{\rho \in G_{\alpha}} u_{\rho\tau} a'_{\rho\tau}$ + $\sum_{\rho \in G_a} u_{\rho\tau'} a'_{\rho\tau'} + \cdots$ Since this is in P_a , the coefficients $a'_{\rho\tau}$ other than the coefficients of u_p corresponding to G_a -elements are all zero. Therefore the

²⁾ K. Asano [1].

products $A_{\alpha}(\sum_{\alpha\in G_{\tau}} u_{\rho\tau}a_{\rho\tau})$ are all zero for all representatives τ not belonging to G_{α} . But P is an integral domain, hence the element A must be of the form : $A = \sum_{\rho \in G_{\alpha}} u_{\rho} a_{\rho}$, i.e. A is an element of P_{α} . Thus we have shown that $P \cap Q_{\alpha}$ $= P_{\alpha}$. Now let τ be an automorphism of K. Suppose that τ could be extended to an inner automorphism of Q which maps P onto itself. Let the extension of τ on Q be given by the transformation with a Q-element u. Then, since Q is the join of the sfield Q_{α} , the element *u* belongs to a sfield Q_{α} with a suitable Thus the automorphism τ of K can be extended to an inner autoindex α . morphism of Q_{α} . Since the intersection $P \cap Q_{\alpha}$ is P_{α} , the automorphism τ thus extended on Q_{α} maps P_{α} onto itself. Therefore, by the assumption, the automorphism τ of K must belong to an automorphism class represented by an element of G_{α} . Conversely, if an automorphism τ of K belongs to an automorphism class represented by an element σ of G, then it can be realized by the transformation with an element of the form $u_{\tau}a$, where a is a suitable K-element. Obviously the transformation with the element $u_{\sigma a}$ induces an inner automorphism of Q which maps P onto itself. Now let A be an element of the commutor ring $V_o(K)$ of K in Q. Since Q is the join of the sfields Q_{α} , the element A belongs to a sfield Q_{α} with a suitable index α , and, by the assumption, it belongs to the centre of K. Thus the proof is completed.

As is well known, a torsion-free abelian group is the join of a ascending chain of groups of linear forms,³⁾ therefore we get the following Lemma from Lemma 2 and Lemma 3.

LEMMA 4. Let K be a sfield and G be a group of outer automorphisms of K which is a group extension of a subgroup by a torsion-free abelian group. If every crossed product of K with H satisfies the conditions i, ii) and iii) in Lemma 1, then every crossed product of K satisfies the same conditions i), ii) and iii).

Finally, applying Lemma 3 and Lemma 4, we can prove, by transfinite induction, the following

THEOREM. Let K be a stield and G be the join of a well-ordered ascending chain of groups G_{α} of outer automorphisms of K. Assume further that the

³⁾ A. G. Kurosch [4].

groups satisfy the following conditions:

a) G_1 is the identity automorphism group.

b) If α is non-limit ordinal, then G_{α} is a group extension of $G_{\alpha-1}$ by a torsion-free abelian group.

c) If α is a limit ordinal, then $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$.

Then every crossed product P of K with G satisfies the following conditions:

i) P is an integral domain and possesses a sfield of quotients Q.

ii) An automorphism of K can be extended to an inner automorphism of Q which maps P onto itself, if and only if it belongs to an automorphism class represented by an element of G.

iii) The commutor ring of K in Q coincides with the centre of K.

COROLLARY. Let K be a sfield and G be a soluble group of outer automorphisms of K. If every factor group of successive terms in the commutator series of G is a torsion-free abelian group, then every crossed product of K with G satisfies the conditions i), i) and iii).

References

- [1] K. Asano: Über die Quotientenbildung von Schiefringen, J. Math. Soc. Jap. 1 (1949).
- [2] G. Azumaya and T. Nakayama: Daisu-gaku II (Algebras II, in Japanese) Iwanamishoten (1954).
- [3] M. Ikeda: Schiefkörper unendlichen Ranges über dem Zentrum (forthcoming in Osaka Math. J).
- [4] A. G. Kurosch: Gruppentheorie, Akademie Verlag (1955).

Ege University Bornova-Izmir, Turkey