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§ 1. Introduction

In [1] R. Brauer asked the following question: Let © be a finite group,

p a rational prime number, and B a ^-block of © with defect d and defect

group %. Is it true that © is abelian if and only if every irreducible character

in B has height 0 ? The present results on this problem are quite incomplete.

If d =0, 1, 2 the conjecture was proved by Brauer and Feit, [4] Theorem 2.

They also showed that if © is cyclic, then no characters of positive height

appear in B. If © is normal in (S, the conjecture was proved by W. Reynolds

and M. Suzuki, [12]. In this paper we shall show that for a solvable group

©, the conjecture is true for the largest prime divisor p of the order of ©.

Actually, one half of this has already been proved in [7]. There it was shown

that if ® is a ^-solvable group, where p is any prime, and if © is abelian, then

the condition on the irreducible characters in B is satisfied.

The proof of the converse presented here is somewhat difficult. A series

of reductions gives rise to the following situation: (§ is a finite solvable group

of order pg\ where (p, g() = 1, such that © has no proper normal subgroups

of p'-inάex. Moreover © acts faithfully and irreducibly on a vector space Ψ

over a finite field, such that each vector v in ψ is fixed by some Sylow p-

subgroup of ®. Using methods similar to those used by Huppert in [10], [11],

we shall see that g' = 1 if p is the largest prime divisor of the order of ($.
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of Groups at the University of Chicago 1960-1961. Many of the ideas in this

paper had their origin in the discussions I had with my colleagues there. In

particular, I should like to thank G. Higman and J. G. Thompson for their

helpful advice.
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§2. Proofs of the Theorems

Notation will be explained when used for the most part, it will be that

of [7]. Let ® be a finite group of order |®| -pagf, where p is a fixed prime

number, a is an integer >Q, and (p, gf) = 1. Since the only characters of ®

which will concern us are those of complex-valued representations, the word

"character" will refer only to such characters. The basic results of modular

representation theory can be found in [3]. If B is a block of © of defect d>

and X is an irreducible character in B, then the height of X is the integer e>0

such that ρa~d+e is the exact power of p dividing the degree of 1.

THEOREM 1. Let % be a Unite solvable group, p the largest prime divisor

of |(S|. Let B be a p-block of © with defect d and defect group $. If every

character in B has height 0, then $ is abelian.

Proof. The proof is by double induction on a and g- |®|. We assume

that the theorem is true for all solvable groups of order divisible by at most

pa~x and for all solvable groups of order pam, where (p, m) = 1 and pam<g.

a) The reduction in [7] § 3 permits us to assume B has defect a. The

defect group $ is hence a Sylow j£ subgroup of © and the condition on the

heights means that the characters in B all have degree prime to p.

b) Let © be a maximal normal subgroup of ©. By [7] (3 J), (1 F), there

is a block B of © such that φ Π © is a defect group of B, and such that every

character in B has height 0. The induction hypothesis implies that $ Π © is

abelian. If | © : © | *p, then $ Π © = $ and we are done. We may therefore

assume that © has no nontrivial normal subgroups of ^'-index (a number n is

p if pλ n).

c) Let £> be the maximal normal ^'-subgroup of © we may assume that

£>>1; otherwise B contains all the irreducible characters of © and the theorem

follows from [7] (3 A), (3 D). By [7] (2 D) there is then a group Wl and a

block B1 of 3K such that (i) B and Bf have isomorphic defect groups, (ii) there

is a 1-1 height preserving correspondence between the characters of B and Bf>

(iii) there is cyclic normal ^'-subgroup @ in the center of DJΐ such that

*Dΐ/®-®/&, (iv) the characters of Wl in B' are all the irreducible characters

of Til which induce a given linear character of (£.

The characters in B1 all have height 0, and we therefore need prove
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Theorem 1 only for the group 9ft. We note pa is the exact power of p dividing

19ft I moreover, p is the largest prime divisor of 19ft I by the construction of

9ft in [7]. Let 1 be a maximal normal subgroup of 9ft containing @ by b)

and the isomorphism 9ft/(£-($/<£>, |9ft:9ft| -p. Denote by $ a Sylow ^-subgroup

of 9ft (since the rest of the proof concerns 9ft, this should cause no confusion).

As in b) the subgroup © = $ Π 9ft is abelian. ®@/@ is the maximal normal

^-subgroup in 9ft/(£ by [9] Lemma 1.2.3, and since ^ = Φx@, the characteristic

subgroup © of 9ft is therefore normal in 9ft.

d) Suppose 0(©)^=1, where #(©) is the Frattini subgroup of ®. Since

the ^-blocks of 9ft/ψ(Φ) may be regarded as subsets of the ^-blocks of 9ft by

means of the lifting mapping of characters [3] (9 B), it follows by induction

that φ/0(Φ) is abelian. But 2JΪ/ΦS acts faithfully on Φ/0(Φ) by [9] Lemma

1.2.5. This is impossible, and hence $(©) = 1. We may assume then © is an

elementary abelian p-group.

e) Let D be any element in ©. The condition on the heights of the

characters in B' implies that D is centralized by a Sylow ^-subgroup of 9ft (see

[7] (1 A), (3 D)). Suppose ®x is a normal subgroup of 9ft (written ©i<l9ft)

such that K © i < ® . By d) Φ = Φ]Xφ2, where ©2 is any complement to ®i

in ©. However, ®2 can be selected so that ©2<l9ft. For represent 9ft/© on ©

by transformation. Since 9ft/© is a p1-group, this representation is completely

reducible by Maschke's Theorem. Hence there exists a complement ©2 such

that © 2 4©. Let A be a fixed element of i>-power order, A not in ©. If D is

any element in ®2 then A'XDA = X~XDX for some X in'3R, and DΛ is in ©2,

that is, ©2<[9ft. Induction applies to 9ft/©t and to 9ft/©2; therefore 9ft/©j and

9ft/©2 have abelian Sylow ^-subgroups. Since 9ft can be embedded in 9ft/©!

x9ft/©2, $β is abelian. We may therefore assume © is a minimal normal

subgroup of 9ft.

f) Let 33 be the representation of 9ft in the vector space © over GF(p).

The group 9ft/©(£ with the representation 93 satisfies the hypothesis of the

following theorem. Applying that theorem, we conclude that 9ft/©(£ is a p-

group, and hence 9ft = $ x (5. From this it follows that $ must be abelian.

THEOREM 2. Let © be a finite solvable group of order pg\ where (p, g')

= 1. Let Ψ be a vector space of dimension d over the finite field K on which

% acts irreducibly and faithfully. Suppose
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(i) © has no proper normal subgroups of p1-index.

(ii) Each vector v in Ψ is fixed by some Syϊow p-subgroup of ©.

(iii) p is the largest prime divisor of ! © | .

Then g' = 1, that is, © is a group of order p.

Proof. We proceed by double induction on g' and d. We assume that

the theorem is true for all groups of order pm with m<g', and for all groups

of order pgf acting on vector spaces of dimension less than d. Groups of order

p satisfying the conditions of Theorem 2 trivially have the required structure.

On the other hand, if d - 1, © must be a group of order py and again Theorem

2 is true.

a) Denote the representation of © on ψ by 53. Suppose 53 is not abso-

lutely irreducible. If 53 decomposes into s> 1 absolutely irreducible constituents,

then there exists an extension field L of K of degree s such that in

(1) 53-

SBi 0 0
0 2B2 0

U o ms

The 2B, are distinct absolutely irreducible representations of ©, and they are

all algebraically conjugate to a fixed one with respect to the automorphisms

ύu ft, . . . ,σsθf L/K. Let L<g>κT= # Ί Θ # ^ θ θ ^ s be the decomposi-

tion of L ® 7 ^ corresponding to (1). If £,i, e;2, . . . , £*m is a basis for ^ u

then the vectors of Ψ can be identified with the vectors in L0RT of the form

Σ Σ ( ^ ; ) \ *j in L.

It follows that each vector in ^ i is fixed by some Sylow ^-subgroup of ®.

Hence by induction on the degree of 2Bi, © has the required structure. We

may assume then 53 is absolutely irreducible.

b) Let ® be a maximal normal subgroup of © by condition (i) © must

have index p in ©, and indeed © = [©, ©], where [©, ®] is the commutator

subgroup of ©. Suppose the restriction 531 ($ of 53 to @ is reducible. If ^ is

any ©-invariant subspace of Ψ, and if to is any vector in %ft then there exists

a Sylow ^-subgroup $ of © which fixes w. But φ© = ©, and thus w<& c # \

In other words, ^ is also ©-invariant. Hence we may assume 531 © is ir-
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reducible (We shall show later that we may even assume $|@ is absolutely

irreducible.).

c) Suppose that $ is induced by some representation II over K from some

subgroup $?<©. By b) it follows that W contains a Sylow ^-subgroup of ©,

say $ = {A}. We may assume W is a maximal subgroup of © by replacing

W with a maximal subgroup containing it and by replacing II by the cor-

responding induced representation. Let @ be the maximal normal subgroup

of © contained in SJR, and let £/© be a minimal normal subgroup of ®/S.

It is well-known that © = Ίίl% and 9tt Π £ = ®. We may thus take for coset

representatives of W in ©, elements 1 = To, 7i, . . . , TV of % which are coset

representatives of © in %.

Let Xf be the subspace of ψ on which II is defined. As a ©-module ψ

is isomorphic to the ©-module

the action being defined as follows: If G is in ®, let T,G = MiT,>, where Mi

is in Wl and *->*' is a permutation of 0, 1, . . . , r. If t; = Σflί®TV is a vector

in y , where the Vi are in ^ , then

Let j be a fixed index, l<j<r, and w a fixed non-zero vector in Yέ. The

vector

}+ Σ OOT,

by hypothesis is fixed by some conjugate Aj of A. Now we may assume

i>>3; otherwise © is a cyclic group of order 2. i>>3 implies that Aj leaves

the subspaces &® Γo, ϊ/®Tj fixed, and since ΊSl is the subgroup of © leaving

Y/ O To fixed, the element A> must be in W.. On the other hand Yί % TjAj

= %?®Tj implies that TjAjTJ1 is in 9K, and hence TJAJT^AJ1 belongs to TO.

Since TjAjT^Aj1 belongs to S as well, TjAjTJιAjι is in ©. In other words,

we have shown that given any element of %/<S there exists a p-element in 9J£

centralizing it.

Let 36 be the representation of © induced on 3£/® by transformation, and

let $ be the kernel of 36. If J? contains Λ, then the permutation representation

of © on the cosets of 3W would contain A in its kernel, which is impossible.
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We may therefore assume $<©. In this case, the induction hypothesis

applies to the group ®/S> and the representation 36. $ must then be © by

the irreducibility of 3£, A can fix only the zero vector in the space £/©. This

property is shared by the conjugates of A as well. But this is impossible,

since we have just seen that given any T in %/<S, there is a conjugate of A

which transforms T onto itself. We may therefore assume 55 is not an induced

representation over K.

d) Let £> be the maximal abelian normal subgroup of ®. By c) and

Clifford's Theorem [5], the restriction 551 £> must be a direct sum of equivalent

representations

(2) 55|£> = 2BΘ2BΘ Θ2δ

where 2δ is an irreducible representation of £> over K. Since 2B(£>) is a cyclic

group and 55 represents £> faithfully by (2), it follows that ξ> is cyclic. Let

(£(©) be the centralizer of ξ> in ©. ©/&(£) is isomorphic to a subgroup of

the automorphism group of £>, and hence is abelian. By b) it follows that

&(ξ>)Ώ($> (We shall show later that © is even in the center of ®).

e) We may assume ® is non-abelian. For if not, then (§ = £> would be

cyclic, and in particular, A would act trivially on the Frattini factor group

Φ/φ(Φ\ since p is the largest prime divisor of |@|. This would contradict

condition (i) of the theorem. Let 91 be a minimal non-abelian normal subgroup

of © 9Ϊ is contained in © and in particular, 9? is centralized by £). The

results of Huppert [10] §2 therefore apply to this situation. Let r be the

characteristic of K. 91 then has the following structure: i) 9ϊ is a g-group

for some prime q*r. ii) The center 3(9?) of 9? is cyclic and 9?/3(9ί) is a

minimal normal subgroup of (S/3(9O. iπM The order of 9?/3(9O is of the

form q2n, and |9?|=<72M+1 or q2n+2, the latter possibility occurring only in the

case <7 = 2. iv) The exponent of 9? is q or q2, the latter occurring only for

q = 2. v) Transformation by elements of © on 9?/S(9f) induces sympletic

linear transformations over GF(q). (For q odd, sJί is an extra-special q-group

in the terminology of Hall-Higman [9].)

f) Suppose 551 9ί is reducible, say

ΘU;

the irreducible constituents II of 5519? are all equivalent by c). Let ϊ/ be an
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irreducible subspace of Ψ for 91. If u is any non-zero vector in ϊ/, there

exists a conjugate B of A which fixes u. Now %f B is also an irreducible

subspace of ψ for B'^B = 91, and since M is in tί Π #"β, it follows that

^ = 2̂ Z?. In other words every vector u in & is fixed by a conjugate of A

belonging to the normalizer 91l^) of ^ in ©. Let 2 be the group 91(^)/&(#0,

where S ( ^ ) is the centralizer of ^ in ®. Since 91 is faithfully represented

on Y/y 5inS(a<) = l. We may assume A is in ΊliZ?) be replacing ^ by a

suitable conjugate subspace. If A is in &(£<), then A centralizes 91, since 91

and (£(£<) are normal subgroups of 9?(^) with trivial intersection. This is

impossible, for it would imply that 6(9?) = ® or that 5ϊc3(®). We may

therefore assume A is not in 6(&0. Let Si be the normal subgroup of 2

generated by the Sylow ^-subgroups of 2. Si has i>'-index in 2, and moreover

Si contains no proper normal subgroups of ,/>'-index. Let Si be the normal p

complement of 2i. UlSi niay no longer be irreducible. Suppose that

where the SB/ are irreducible representations of Si conjugate to one another in

2. For i = 1, 2, . . . , Met ft be the kernel of SB, . No ft can contain A, for

otherwise ft would be Si, and the representations Sΰi, 2B2, . . . , $δ* would be

trivial. Let ^ be the subspace of & corresponding to 2B, . The group Si/ft

acting on the subspace J^i satisfies the conditions of Theorem 2. The induction

hypothesis therefore implies that Si = ft. In other words, Si is in the kernel

of each 2B, , and hence in the kernel of UlSi- It follows that {A}^(^) is

normal in <$(&). But {A}&{%?) Π 91 = 1, and again we conclude that A centra-

lizes 91, which we have already seen to be impossible. We may therefore

assume 55 ] 91 is irreducible.

g) Let K have rb elements, where r is the characteristic of K. Let s be

the order of rb modulo q if q is odd, modulo 4 if q - 2. In particular 5 divides

q -1 if q is odd, 5 divides 2 if q is 2. The degree of $ must be sqn by [9], 2.4.

Sincep>qyp does not divide sqn. In particular we conclude that $](S is absolutely

irreducible. Moreover, since ^ c 3(©), the matrices of 3Mφ) can be represented
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as scalar multiples of the identity matrix in some extension field of K, and

we conclude that ξ> is even in 3((S).

h) Let %f be the sympletic space 9ί/3(Ή), and let ^ o be the subspace

of all vectors in %f fixed by A. Since A acts as a sympletic transformation

on # \ there exists a complement ^ to #Ό in %f which is invariant under

A and on which A acts sympletically. A has no fixed vectors in # Ί besides

the zero vector. Let 2 m be the dimension of # Ί over GF(q). m > l , for

otherwise A would not only centralize 3?/3(Ώ), but even 9ί by [8] §1.3. Let

# Ί = 5»ί/3(5ϊ), and let the index of ^ in #- be <z2'. Choose a basis in ψ

over /£ such that the restriction of $ to {A, M} has the form

3fi 0 0 )
* 9ί2 0

Here each 9Γ; is an irreducible representation of {A, 2ft} of degree sqm.

i) We now calculate the number of vectors in ψ fixed by A. Let L be an

extension field of degree s over K such that over L, the representation 9ί;

decomposes into s absolutely irreducible representations

If the vectors in the subspace corresponding to Si which are fixed by A span

a subspace of dimension N over L, then the vectors in the space corresponding

to 91; which are fixed by A span a subspace of dimension sN over K. Since

there are qt such representations 9ί;, the vectors of ψ which are fixed by A

span at most a subspace of dimension sNq* over K.

If r = p, N can be computed by the theorems of Hall-Higman [9], 2.5.1-

2.5.3. Indeed, qm = kp + l or qm = kp+{ρ-l)) and N=k + 1. If r*pf we

must use a different method. Since r does not divide |9Jΐ|, N is precisely the

number of characteristic values of 33i(A) which are 1. Now there exist an

algebraic number field Ω, a prime ideal divisor r of r in i2, and an absolutely

irreducible representation 36 of Wl written in the ring of r-local integers of Ω,

such that the representation 36 modulo r is equivalent to 33L In particular, N

is also the number of characteristic values of 36(A) which are 1. Let 7 be

the character of 36; we then have
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Since 9ft is a group whose order contains p only to the first power, N can be

computed by the results of Brauer [2] Theorem 4. Indeed, for t $ 0 (mod p),

7U1)
± f if 7, is non-exceptional

± εf if Z is exceptional

where ε is a primitive p-t\\ root of unity and / is the degree of an irreducible

character of the i>'-part of the centralizer of A in W. The structure of 9Jί

implies that / must be 1. As for the case r=p, we find that qm=^kp+l or

qm = kp-V (p — 1), but now we have only iV<&+l. In any case, we can

conclude that the total number of vectors in ψ fixed by A is less than or

equal to rbsNQ\

j) Let $ be a Sylow ^-subgroup of ©, and let 9ί($) be the normalizer of

$ in (S. Since the total number of vectors in ψ is rbsqn, the conditions of

Theorem 2 imply that

( 3 )

Represent ® on 9ϊ/3ίϊί), and let ff be the kernel of this representation.

[10] Hilfssatz II

I® : 5

By

(2« times),

where Sp{2 n, q) is the sympletic group of dimension 2 72 over GF{q). Now

\m\<{9 if q*2

qίn if q = 2

It then follows that

iξ>ι<7 2 " ! + y i f β ^ 2

" ! + V " if 0 ^ 2 .

implies that £c9ί(φ) and thus we have finally
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bs(qn~Nqt) ̂  j ^ if q * 2

if q = 2.

The inequality (4) holds only for small values of n, r, p, and q. The proof

will then be complete once we show no groups © correspond to these exceptional

values.

k) To obtain an estimate on n} we use the inequality

Putting this in (4) we obtain the inequality

(2 w2

log q

log q

if

if q =

and this can hold only for the following values of n and q.

n q

2
2
2
2
2,3
2, 3, 5, 7

We treat the case p = 3 separately. For i> = 3, the 3-complement in ©

must be a 2-group. Hence I © : Λ | = 3, |9ί : 3(91) I = 4, and | ® | = 48 or 24. Since

the representation 35 of © is absolutely irreducible, 55 must have degree 2.

Let φ be a Sylow 3-subgroup of ® ϊί(φ) has index 1, 2, or 4 in ®. $ c a n

fix at most rδ vectors in Ψ, so that 13) for this case becomes 4 / > r 2 δ . This

is possible only for rb = 3. But then s would be 2 and the degree of 58 would

be 4, which is a contradiction. We may therefore assume that p>5.

If n = l, p\q±l implies that p<q or p = 3. Thus no groups (S can occur

for this case. The same argument allows us to assume m>2 in the remaining

cases. The following argument will be used frequently. For given n, rn, q, p

we know that |® : β | divides the order of Sp(2 n, q). The conditions (i) and

(iii) of the theorem further restrict the possible divisors of |® : β|. Using

the bounds for |® : ff| obtained in this way in (3), we can eliminate most of
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the remaining cases.

If n = 2, there are three cases,

m

2
2
2

a

2
3
5

5
5

13 I

= 5. The group S/>(4, 2) has order 24.3. 5, and hence

If 13(901=2, then (3) for this case becomes 2 \ / * > r 4 * s or r*bb<2\

The case m = 2, q =

| ® : β | = 5.

This cannot hold for any possible value of r. If 13(901 =4, then |®: 9

(3) for this case becomes r 3 6 s < 2 4 and again this is impossible.

The case m = 2y q = 3, p = 5. The group Sp(4, 3) has order 27.34.5. The

subgroups of Sp(4, 3) have been studied by Dickson in [6] ; in particular ®/ί?

must have order dividing 27.5, and thus |®:9ί($β) | divides 27.34. Since

I® : ϊ ϊ ( φ ) | = l(mod 5), we can even assert that |® : 9?(φ)| divides 24. 34 = 64.

(3) for this case becomes rΊbs<6\ If r = 2 , then bs>2 and the inequality is

false. No other values for r are possible.

The case *w = 2, # = 5, p = 13. The group S/>(4, 5) has order 27. 32. 54.13,

and hence |® : $| = 13. (3) for this case becomes r 2 3 ό i < 5 4 , which is impossible.

If n -•= 3, there are five cases,

m

2
2
3
3
3

Q

2
3
2
3
3

P

5
5
7

13
7

The case m = 2, # = 2, jf> = 5. The group Si (6, 2) has order 29.34.5. 7, and

hence |® : Λ| divides 29.34.5. The representation 36 of ®/β on 5W/3(9Ϊ) is

irreducible, and has dimension 6 over GF(2). A degree consideration shows

that #1® is still irreducible. Now if 34 does not divide |® : ί ϊ | , then |® : β | = 5,

and (3) for this case becomes r 6 f e < 2 1 2 . If r = 3, then bs>2 and the inequality

is impossible. No other values for r are possible. if 34 divides I®: β|, then

must have a normal Sylow 3-subgroup of type (3,3,3,3). But such a
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group cannot have an irreducible representation of degree 6 over GF{2).

The case m = 2, q - 3 , p = 5. The group Sp{6, 3) has order 210.39. 5 .7.13,

and hence |® : ft| divides 210.39.δ. (3) for this case becomes rΛbs < 210. 315. If

r — 2, then bs>2 and the inequality is impossible. The inequality cannot hold

for r>5. The last three cases are very similar to this one. Indeed (3) for

these cases becomes r*bs <212, r25b!i <3 6 , r23bb <2 1 0 . 315 respectively, and these are

impossible.

If n = 4, there are four cases,

m

2
3
4
4

Q

2
2
2
2

5
7
5

17

The group Sp(8y 2) has order 216. 3δ. 52. 7.17. (3) for the cases p = 7,17 becomes

fv**<!2
ι\ rubs<216, respectively, and both are impossible. Suppose then that

jf> = 5, so that I© : ff| divides 216. 3δ.δ. If ®/.<ϊ has no principal factor of type

(3, 3, 3, 3), then |® : ft I = 5 , and (3) becomes rl2bs <2ι\ which is impossible.

Let 2/ft be the maximal normal 3-subgroup of ®/ft the order of S/ft is either

34 or 3δ. If 1- is the representation of ®/ft on 5ί/3(3ϊ), then the restriction

36|2/^ must decompose into four distinct irreducible representations; otherwise

36 would not represent 2/ft faithfully. But this would imply that ® has a

subgroup of index 4, and hence a homomorphic image in the symmetric group

on 4 letters This is a contradiction, since 5 does not divide 4 !

If n ~5, there are six cases,

m

2 2 5
3 2 7
4 2 5
4 2 17
5 2 31
5 2 11

The group Sp(10, 2) has order 22δ.36.52.7.11.17.31. All six cases can be

eliminated by the same sort of argument. For p = 5, 7, (3) becomes rΛbs <
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24 5.36; for ί = 17, 31, (3) becomes r

3 0 * * < 2 2 0 ; and for p = ll, (3) becomes

r 2 9 δ s ^ 2 4 5 . 36. In all six cases, these inequalities cannot hold for the possible

values of r and bs.

Finally, for n = β; 7 the inequality (4) cannot hold for i>>5. Indeed, for

Λ = 6, we find that r ^ - ^ >/***, a n d for n = 7, /«*»-«**> >,»>*. Then (4)

becomes r 4 8 f a < 2 1 0 2 , y

δ 6 δ s < 2 1 3 3 respectively, both of which cannot hold for

the possible values of r and bs.
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