A NOTE ON A CONJECTURE OF BRAUER

PAUL FONG

To Richard Brauer on the occasion of his 60th Birthday

§ 1. Introduction

In [1] R. Brauer asked the following question: Let \mathbb{B} be a finite group, p a rational prime number, and B a p-block of \mathbb{B} with defect d and defect group \mathfrak{D}. Is it true that \mathfrak{D} is abelian if and only if every irreducible character in B has height 0 ? The present results on this problem are quite incomplete. If $d=0,1,2$ the conjecture was proved by Brauer and Feit, [4] Theorem 2. They also showed that if \mathfrak{D} is cyclic, then no characters of positive height appear in B. If \mathscr{D} is normal in \mathfrak{A}, the conjecture was proved by W. Reynolds and M. Suzuki, [12]. In this paper we shall show that for a solvable group \mathfrak{G}, the conjecture is true for the largest prime divisor p of the order of \mathfrak{G}. Actually, one half of this has already been proved in [7]. There it was shown that if \mathscr{B} is a p-solvable group, where p is any prime, and if \mathscr{D} is abelian, then the condition on the irreducible characters in B is satisfied.

The proof of the converse presented here is somewhat difficult. A series of reductions gives rise to the following situation: \mathbb{B} is a finite solvable group of order $p g^{\prime}$, where $\left(p, g^{\prime}\right)=1$, such that $(\mathbb{S}$ has no proper normal subgroups of p^{\prime}-index. Moreover \mathbb{C} acts faithfully and irreducibly on a vector space \mathscr{V} over a finite field, such that each vector v in \mathscr{V} is fixed by some Sylow p subgroup of (G. Using methods similar to those used by Huppert in [10], [11], we shall see that $g^{\prime}=1$ if p is the largest prime divisor of the order of \mathfrak{G}.

The author was a participant in the Special Year Program in the Theory of Groups at the University of Chicago 1960-1961. Many of the ideas in this paper had their origin in the discussions I had with my colleagues there. In particular, I should like to thank G. Higman and J. G. Thompson for their helpful advice.

[^0]
§ 2. Proofs of the Theorems

Notation will be explained when used; for the most part, it will be that of [7]. Let ($\$ 3$ be a finite group of order $|\mathcal{S}|=p^{a} g^{\prime}$, where p is a fixed prime number, a is an integer ≥ 0, and $\left(p, g^{\prime}\right)=1$. Since the only characters of $(\mathbb{S}$ which will concern us are those of complex-valued representations, the word "character" will refer only to such characters. The basic results of modular representation theory can be found in [3]. If B is a block of (3) of defect d, and χ is an irreducible character in B, then the height of χ is the integer $e \geq 0$ such that p^{a-d+e} is the exact power of p dividing the degree of χ.

Theorem 1. Let (SS be a finite solvable group, p the largest prime divisor of $|\mathfrak{B}|$. Let B be a p-block of $(\mathfrak{S}$ with defect d and defect group \mathfrak{B}. If every character in B has height 0, then \mathfrak{F} is abelian.

Proof. The proof is by double induction on a and $g=|\mathbb{S}|$. We assume that the theorem is true for all solvable groups of order divisible by at most p^{a-1} and for all solvable groups of order $p^{a} m$, where $(p, m)=1$ and $p^{a} m<g$.
a) The reduction in [7] §3 permits us to assume B has defect a. The defect group \mathfrak{P} is hence a Sylow p-subgroup of \mathscr{G} and the condition on the heights means that the characters in B all have degree prime to p.
b) Let $\widetilde{\mathfrak{S}}$ be a maximal normal subgroup of \mathfrak{G}. By [7] (3 J), (1 F), there is a block \widetilde{B} of $\widetilde{\mathscr{S}}$ such that $\mathfrak{W} \cap \widetilde{\mathscr{S}}$ is a defect group of \tilde{B}, and such that every character in \widetilde{B} has height 0 . The induction hypothesis implies that $\mathfrak{B} \cap \widetilde{\mathscr{B}}$ is abelian. If $|\mathfrak{G}: \widetilde{\mathscr{S}}| \neq p$, then $\mathfrak{B} \cap \widetilde{\mathscr{G}}=\mathfrak{P}$ and we are done. We may therefore assume that $\left(\mathbb{S}\right.$ has no nontrivial normal subgroups of p^{\prime}-index (a number n is p^{\prime} if $p+n$).
c) Let $\mathscr{5}$ be the maximal normal p^{\prime}-subgroup of \mathbb{S}; we may assume that $\mathscr{F}>1$; otherwise B contains all the irreducible characters of $(\mathbb{S}$ and the theorem follows from [7] (3 A), (3 D). By [7] (2 D) there is then a group \mathfrak{M} and a block B^{\prime} of \mathfrak{M} such that (i) B and B^{\prime} have isomorphic defect groups, (ii) there is a $1-1$ height preserving correspondence between the characters of B and B^{\prime}, (iii) there is cyclic normal p^{\prime}-subgroup \mathbb{F}^{F} in the center of $\exists \Omega$ such that $\mathfrak{M} /\left(\mathscr{C} \simeq \mathscr{A} / \mathfrak{F}\right.$, (iv) the characters of \mathfrak{M} in B^{\prime} are all the irreducible characters of \mathfrak{M} which induce a given linear character of \mathfrak{F}.

The characters in B^{\prime} all have height 0 , and we therefore need prove

Theorem 1 only for the group \mathfrak{M}. We note p^{i} is the exact power of p dividing $|\mathfrak{M}|$; moreover, p is the largest prime divisor of $|\mathfrak{M}|$ by the construction of \mathfrak{M} in [7]. Let \mathfrak{M} be a maximal normal subgroup of \mathfrak{M} containing \mathfrak{F}; by b) and the isomorphism $\mathfrak{M} / \mathbb{E} \simeq \mathbb{C} / \mathfrak{S},|\mathfrak{M}: \mathfrak{M}|=p$. Denote by \mathfrak{F} a Sylow p-subgroup of \mathfrak{M} (since the rest of the proof concerns \mathfrak{M}, this should cause no confusion). As in b) the subgroup $\mathfrak{D}=\mathfrak{P} \cap \tilde{\mathfrak{M}}$ is abelian. $\mathfrak{D C} / \mathfrak{F}$ is the maximal normal p-subgroup in $\mathfrak{M} / \mathfrak{F}$ by [9] Lemma 1.2.3, and since $\mathfrak{D} \mathfrak{F}=\mathfrak{D} \times \mathfrak{F}$, the characteristic subgroup \mathfrak{D} of \mathfrak{M} is therefore normal in \mathfrak{M}.
d) Suppose $\phi(\mathfrak{D}) \neq 1$, where $\phi(\mathfrak{D})$ is the Frattini subgroup of \mathfrak{D}. Since the p-blocks of $\mathfrak{M} / \phi(\mathfrak{D})$ may be regarded as subsets of the p-blocks of \mathfrak{M} by means of the lifting mapping of characters [3] (9 B), it follows by induction that $\mathfrak{P} / \phi(\mathfrak{D})$ is abelian. But $\mathfrak{M} / \mathfrak{D} \mathscr{F}$ acts faithfully on $\mathfrak{D} / \phi(\mathfrak{D})$ by [9] Lemma 1.2.5. This is impossible, and hence $\phi(\mathscr{D})=1$. We may assume then \mathfrak{D} is an elementary abelian p-group.
e) Let D be any element in \mathfrak{D}. The condition on the heights of the characters in B^{\prime} implies that D is centralized by a Sylow p-subgroup of \mathfrak{M} (see [7] (1 A), (3 D)). Suppose \mathfrak{D}_{1} is a normal subgroup of \mathfrak{M} (written $\mathfrak{D}_{1} \triangle \mathfrak{M}$) such that $1<\mathfrak{D}_{1}<\mathfrak{D}$. By d) $\mathfrak{D}=\mathfrak{D}_{1} \times \mathfrak{D}_{2}$, where \mathfrak{D}_{2} is any complement to \mathfrak{D}_{1} in \mathfrak{D}. However, \mathfrak{D}_{2} can be selected so that $\mathfrak{D}_{2} \triangle \mathfrak{M}$. For represent $\widetilde{\mathfrak{M}} / \mathfrak{D}$ on \mathfrak{D} by transformation. Since $\mathfrak{M} / / D$ is a p^{\prime}-group, this representation is completely reducible by Maschke's Theorem. Hence there exists a complement \mathscr{D}_{2} such that $\mathfrak{D}_{2} \triangle \mathfrak{M}$. Let A be a fixed element of p-power order, A not in \mathfrak{D}. If D is any element in \mathfrak{D}_{2} then $A^{-1} D A=X^{-1} D X$ for some X in $\mathfrak{\mathfrak { M }}$, and D^{A} is in \mathscr{D}_{2}, that is, $\mathscr{D}_{2} \unlhd \mathfrak{M}$. Induction applies to $\mathfrak{M} / \mathscr{D}_{1}$ and to $\mathfrak{M} / \mathscr{D}_{2}$; therefore $\mathfrak{M} / \mathscr{D}_{1}$ and $\mathfrak{M} / \mathfrak{D}_{2}$ have abelian Sylow p-subgroups. Since \mathfrak{M} can be embedded in $\mathfrak{M} / \mathscr{D}_{1}$ $\times \mathfrak{M} / \mathfrak{T}_{2}, \mathfrak{P}$ is abelian. We may therefore assume \mathfrak{D} is a minimal normal subgroup of \mathfrak{M}.
f) Let \mathfrak{B} be the representation of \mathfrak{Z} in the vector space \mathfrak{D} over $G F(p)$. The group $\mathfrak{M} / \mathfrak{D} \mathfrak{F}$ with the representation \mathfrak{B} satisfies the hypothesis of the following theorem. Applying that theorem, we conclude that $\mathfrak{M} / \mathfrak{D E}$ is a p group, and hence $\mathfrak{M}=\mathfrak{P} \times \mathfrak{F}$. From this it follows that \mathfrak{P} must be abelian.

Theorem 2. Let $\left(\$ 3\right.$ be a finite solvable group of order pg', where (p, g^{\prime}) $=1$. Let \mathscr{V} be a vector space of dimension d over the finite field K on which (\$) acts irreducibly and faithfully. Suppose
(i) (8 has no proper normal subgroups of p^{\prime}-index.
(ii) Each vector v in \mathscr{V} is fixed by some Sylow p-subgroup of $(\mathbb{G}$.
(iii) p is the largest prime divisor of $|\mathbb{S}|$.

Then $g^{\prime}=1$, that is, © is a group of order p.
Proof. We proceed by double induction on g^{\prime} and d. We assume that the theorem is true for all groups of order $p m$ with $m<g^{\prime}$, and for all groups of order $p g^{\prime}$ acting on vector spaces of dimension less than d. Groups of order p satisfying the conditions of Theorem 2 trivially have the required structure. On the other hand, if $d=1, \mathscr{B}$ must be a group of order p, and again Theorem 2 is true.
a) Denote the representation of \mathfrak{C} on \mathscr{Y} by \mathfrak{B}. Suppose \mathfrak{F} is not absolutely irreducible. If \mathfrak{B} decomposes into $s>1$ absolutely irreducible constituents, then there exists an extension field L of K of degree s such that in $L \otimes_{K} \mathscr{V}^{\prime}$,

$$
\mathfrak{F} \approx\left(\begin{array}{ccc}
\mathfrak{W}_{1} & 0 & \tag{1}\\
0 & \mathfrak{W}_{2} & \\
& & 0 \\
& & \cdot \\
0 & 0 & \mathfrak{W}_{s}
\end{array}\right)
$$

The \mathfrak{B}_{i} are distinct absolutely irreducible representations of \mathfrak{B}, and they are all algebraically conjugate to a fixed one with respect to the automorphisms $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ of L / K. Let $L \otimes_{K} \mathscr{V}=\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \cdots \oplus \mathscr{W}_{s}$ be the decomposition of $L \otimes{ }_{k} \mathscr{V}$ corresponding to (1). If $e_{i 1}, e_{i 2}, \ldots, e_{i m}$ is a basis for \mathscr{W}_{i}, then the vectors of \mathscr{V} can be identified with the vectors in $L \otimes_{k} \mathscr{V}$ of the form

$$
\sum_{i=1}^{s} \sum_{j=1}^{m}\left(\alpha_{j}\right)^{\sigma_{i}} e_{i j} \quad \alpha_{j} \text { in } L .
$$

It follows that each vector in \mathscr{W}_{1} is fixed by some Sylow p subgroup of \mathbb{C}. Hence by induction on the degree of $\mathfrak{B}_{1}, \mathbb{B}$ has the required structure. We may assume then \mathfrak{B} is absolutely irreducible.
b) Let $\widetilde{\mathscr{E}}$ be a maximal normal subgroup of \mathfrak{G}; by condition (i) $\widetilde{\mathfrak{S}}$ must have index p in \mathfrak{B}, and indeed $\widetilde{\mathfrak{G}}=[\mathscr{B}, \mathfrak{B}]$, where $[\mathbb{B}, \mathfrak{B}]$ is the commutator subgroup of \mathfrak{G}. Suppose the restriction $\mathfrak{B} \mid \widetilde{\mathfrak{G}}$ of \mathfrak{B} to $\widetilde{\mathscr{B}}$ is reducible. If \mathscr{W} is any $\widetilde{\mathscr{C}}$-invariant subspace of \mathscr{V}, and if w is any vector in \mathscr{W}, then there exists a Sylow p-subgroup \mathfrak{F} of \mathfrak{B} which fixes w. But $\mathfrak{F} \widetilde{\mathscr{B}}=\mathscr{B}$, and thus $w \mathbb{B} \subseteq \mathscr{W}$. In other words, \mathscr{W} is also \mathbb{B}-invariant. Hence we may assume $\mathfrak{B} \mid \widetilde{\mathscr{S}}$ is ir-
reducible (We shall show later that we may even assume $\mathfrak{B} \mid \widetilde{\mathscr{S}}$ is absolutely irreducible.).
c) Suppose that \mathfrak{B} is induced by some representation \mathfrak{H} over K from some subgroup $\mathfrak{M}<\mathfrak{B}$. By b) it follows that \mathfrak{M} contains a Sylow p-subgroup of \mathfrak{G}, say $\mathfrak{F}=\{A\}$. We may assume \mathfrak{M} is a maximal subgroup of \mathbb{C} by replacing \mathfrak{M} with a maximal subgroup containing it and by replacing \mathfrak{l} by the corresponding induced representation. Let \subseteq be the maximal normal subgroup of \mathfrak{B} contained in \mathfrak{M}, and let $\mathfrak{F} / \mathbb{E}$ be a minimal normal subgroup of \mathfrak{G} / \Subset. It is well-known that $\mathbb{C}=\mathfrak{M} \mathfrak{T}$ and $\mathfrak{P} \cap \mathfrak{I}=\mathbb{C}$. We may thus take for coset representatives of \mathfrak{M} in \mathfrak{F}, elements $1=T_{0}, T_{1}, \ldots, T_{r}$ of \mathfrak{I} which are coset representatives of \mathfrak{S} in \mathfrak{T}.

Let \mathscr{U} be the subspace of \mathscr{V} on which \mathfrak{H} is defined. As a \mathfrak{B}-module \mathscr{y} is isomorphic to the $\mathscr{6}$-module

$$
\mathscr{V}^{\prime}=\mathscr{U} \otimes 1+\mathscr{U} \otimes T_{1}+\cdots+\mathscr{U} \otimes T_{r}
$$

the action being defined as follows: If G is in \mathbb{A}, let $T_{i} G=M_{i} T_{i}$, where M_{i} is in \mathfrak{M} and $i \rightarrow i^{\prime}$ is a permutation of $0,1, \ldots, r$. If $v=\sum v_{i} \otimes T_{i}$ is a vector in \mathscr{Y}^{\prime}, where the v_{i} are in \mathscr{K}, then

$$
v G=\sum_{i} v_{i} M_{i} \otimes T_{i^{\prime}}
$$

Let j be a fixed index, $1 \leq \boldsymbol{j} \leq \boldsymbol{r}$, and \boldsymbol{u} a fixed non-zero vector in \mathscr{U}. The vector

$$
v=u \otimes T_{0}+u \otimes T_{j}+\sum_{i \neq 0, j} 0 \otimes T_{i}
$$

by hypothesis is fixed by some conjugate A_{j} of A. Now we may assume $p \geq 3$; otherwise \mathbb{G} is a cyclic group of order 2. $p \geq 3$ implies that A_{j} leaves the subspaces $\mathscr{U} \otimes T_{0}, \mathscr{U} \otimes T_{j}$ fixed, and since \mathfrak{M} is the subgroup of \mathbb{B} leaving $\mathscr{U} \otimes T_{0}$ fixed, the element A_{j} must be in \mathfrak{M}. On the other hand $\mathscr{K} \otimes T_{j} A_{j}$ $=\mathscr{U} \otimes T_{j}$ implies that $T_{j} A_{j} T_{j}^{-1}$ is in \mathfrak{M}, and hence $T_{j} A_{j} T_{j}^{-1} A_{j}^{-1}$ belongs to \mathfrak{M}. Since $T_{j} A_{j} T_{j}^{-1} A_{j}^{-1}$ belongs to as well, $T_{j} A_{j} T_{j}^{-1} A_{j}^{-1}$ is in \mathbb{S}. In other words, we have shown that given any element of $\mathfrak{T} / \mathfrak{S}$ there exists a p-element in \mathfrak{M} centralizing it.

Let \mathfrak{X} be the representation of \mathfrak{B} induced on $\mathfrak{T} / \mathbb{C}$ by transformation, and let \mathscr{K} be the kernel of \mathfrak{X}. If Ω contains A, then the permutation representation of \mathscr{B} on the cosets of \mathfrak{M} would contain A in its kernel, which is impossible.

We may therefore assume $\Omega<\mathscr{B}$. In this case, the induction hypothesis applies to the group \mathbb{B} / \AA and the representation \mathfrak{X}. Ω must then be $\widetilde{\mathbb{S}}$; by the irreducibility of \mathfrak{X}, A can fix only the zero vector in the space \mathscr{I} / \subseteq. This property is shared by the conjugates of A as well. But this is impossible, since we have just seen that given any T in \mathfrak{I} / \subseteq, there is a conjugate of A which transforms T onto itself. We may therefore assume \mathfrak{B} is not an induced representation over K.
d) Let 5 be the maximal abelian normal subgroup of (8. By c) and Clifford's Theorem [5], the restriction $\mathfrak{B} \mid \mathfrak{N}$ must be a direct sum of equivalent representations

$$
\begin{equation*}
\mathfrak{V} \mid \mathfrak{I}=\mathfrak{F} \oplus \mathfrak{W} \oplus \cdots \oplus \mathfrak{B} \tag{2}
\end{equation*}
$$

where \mathfrak{W} is an irreducible representation of $\mathscr{~}$ over K. Since $\mathfrak{W}(\mathfrak{g})$ is a cyclic group and \mathfrak{V} represents \mathfrak{y} faithfully by (2), it follows that $\mathfrak{~}$ is cyclic. Let $\mathfrak{G}(\mathfrak{F})$ be the centralizer of $\mathfrak{5}$ in \mathfrak{G}. $\mathfrak{G} / \mathfrak{G}(\mathfrak{5})$ is isomorphic to a subgroup of the automorphism group of \mathfrak{K}, and hence is abelian. By b) it follows that $\mathfrak{(}(\mathscr{S}) \supseteq \widetilde{\mathscr{S}}$ (We shall show later that \mathfrak{F} is even in the center of $\mathbb{G})$.
e) We may assume $\widetilde{\mathscr{S}}$ is non-abelian. For if not, then $\widetilde{\mathscr{S}}=\mathfrak{S}$ would be cyclic, and in particular, A would act trivially on the Frattini factor group $\mathfrak{F} / \phi(\mathfrak{I})$, since p is the largest prime divisor of $|\mathcal{B}|$. This would contradict condition (i) of the theorem. Let \mathfrak{N} be a minimal non-abelian normal subgroup of $\mathbb{B} ; \mathfrak{N}$ is contained in $\widetilde{\mathscr{S}}$ and in particular, $\mathfrak{\Re}$ is centralized by \mathfrak{K}. The results of Huppert [10] $\S 2$ therefore apply to this situation. Let r be the characteristic of $K . \Re$ then has the following structure: i) \mathfrak{R} is a q-group for some prime $q \neq r$. ii) The center $\mathcal{Z}(\mathfrak{R})$ of \mathfrak{R} is cyclic and $\mathfrak{R} / \mathcal{B}(\mathfrak{M})$ is a minimal normal subgroup of $\mathfrak{G} / \mathcal{B}(\mathfrak{R})$. iii) The order of $\mathfrak{R} / \mathcal{B}(\mathfrak{R})$ is of the form $q^{2 n}$, and $|\mathfrak{R}|=q^{2 n+1}$ or $q^{2 n+2}$, the latter possibility occurring only in the case $q=2$. iv) The exponent of \mathfrak{R} is q or q^{2}, the latter occurring only for $q=2$. v) Transformation by elements of \mathscr{B} on $\mathfrak{R} / \mathcal{B}(\mathfrak{R})$ induces sympletic linear transformations over $G F(q)$. (For q odd, \mathfrak{R} is an extra-special q-group in the terminology of Hall-Higman [9].)
f) Suppose $\mathfrak{B} \mid \Re$ is reducible, say

$$
\mathfrak{B} \mid \mathfrak{N}=\mathfrak{u} \oplus \mathfrak{u} \oplus \cdots \oplus \mathfrak{u} ;
$$

the irreducible constituents \mathfrak{U} of $\mathfrak{B} \mid \mathfrak{R}$ are all equivalent by c . Let \mathscr{U} be an
irreducible subspace of \mathscr{V} for \mathfrak{Y}. If u is any non zero vector in \mathscr{U}, there exists a conjugate B of A which fixes u. Now $\mathscr{U} B$ is also an irreducible subspace of \mathscr{V} for $B^{-1} \mathfrak{M} B=\Re$, and since u is in $\mathscr{U} \cap \mathscr{U} B$, it follows that $\mathscr{U}=\mathscr{U} B$. In other words every vector u in \mathscr{U} is fixed by a conjugate of A belonging to the normalizer $\mathfrak{\imath l}(\mathscr{U})$ of \mathscr{U} in \mathbb{S}. Let \mathfrak{Z} be the group $\mathfrak{\Re}(\mathscr{U}) / \mathscr{C}(\mathscr{U})$, where $\mathscr{G}(\mathscr{U})$ is the centralizer of \mathscr{U} in \mathscr{G}. Since \mathfrak{R} is faithfully represented on $\mathscr{K}, \mathfrak{R} \cap \mathscr{C}(\mathscr{U})=1$. We may assume A is in $\mathfrak{N}(\mathscr{C})$ be replacing \mathscr{U} by a suitable conjugate subspace. If A is in $\mathscr{F}(\mathscr{U})$, then A centralizes \Re, since \Re and $\mathscr{C}(\mathscr{U})$ are normal subgroups of $\Re(\mathscr{U})$ with trivial intersection. This is impossible, for it would imply that $\mathbb{E}(\mathfrak{R})=\mathbb{(B}$ or that $\mathfrak{N} \subseteq \mathcal{B}(\mathbb{B})$. We may therefore assume A is not in $\mathfrak{C}(\mathscr{C})$. Let \mathcal{L}_{1} be the normal subgroup of \mathfrak{Z} generated by the Sylow p-subgroups of \mathfrak{R}. \mathfrak{L}_{1} has p^{\prime}-index in \mathfrak{L}, and moreover \mathbb{Z}_{1} contains no proper normal subgroups of p^{\prime}-index. Let $\widetilde{\mathfrak{R}}_{1}$ be the normal p. complement of Ω_{1}. $\mathfrak{H} \mid \Omega_{1}$ may no longer be irreducible. Suppose that

$$
\mathfrak{U} \left\lvert\, \mathfrak{Q}_{1} \approx\left(\begin{array}{llll}
\mathfrak{W}_{1} & & & \\
& \mathfrak{W}_{2} & & \\
& & & \\
& & \cdot & \\
& & \mathfrak{W}_{t}
\end{array}\right)\right.
$$

where the \mathfrak{W}_{i} are irreducible representations of \mathfrak{Q}_{1} conjugate to one another in Q. For $i=1,2, \ldots, t$ let Ω_{i} be the kernel of \mathfrak{W}_{i}. No Ω_{i} can contain A, for otherwise $\mathscr{\Omega}_{i}$ would be \mathfrak{R}_{1}, and the representations \mathfrak{B}_{1}, $\mathfrak{N}_{2}, \ldots, \mathfrak{B}_{t}$ would be trivial. Let \mathscr{W}_{i} be the subspace of \mathscr{U} corresponding to \mathfrak{B}_{i}. The group $\mathfrak{R}_{1} / \Omega_{i}$ acting on the subspace \mathscr{W}_{i} satisfies the conditions of Theorem 2. The induction hypothesis therefore implies that $\widetilde{\mathfrak{I}}_{1}=\Omega_{i}$. In other words, $\widetilde{\mathfrak{L}}_{1}$ is in the kernel of each \mathfrak{B}_{i}, and hence in the kernel of $\mathfrak{H} \mid \mathfrak{Q}_{1}$. It follows that $\{A\}(\mathbb{C}(\mathscr{U})$ is normal in $\Re(\mathscr{U})$. But $\{A\rangle \mathbb{C}(\mathscr{U}) \cap \mathfrak{Y}=1$, and again we conclude that A centralizes \Re, which we have already seen to be impossible. We may therefore assume $\mathfrak{B} \mid \mathfrak{M}$ is irreducible.
g) Let K have r^{b} elements, where r is the characteristic of K. Let s be the order of r^{b} modulo q if q is odd, modulo 4 if $q=2$. In particular s divides $q-1$ if q is odd, s divides 2 if q is 2 . The degree of \mathfrak{B} must be $s q^{n}$ by [9], 2.4. Since $p>q, p$ does not divide $s q^{n}$. In particular we conclude that $\mathfrak{B} \mid \widetilde{\mathbb{S}}$ is absolutely irreducible. Moreover, since $\mathfrak{S} \subseteq \mathcal{B}(\widetilde{\mathbb{S}})$, the matrices of $\mathfrak{B}(\mathscr{S})$ can be represented
as scalar multiples of the identity matrix in some extension field of K, and we conclude that \mathfrak{F} is even in $\mathfrak{3}(\mathbb{B})$.
h) Let \mathscr{W} be the sympletic space $\mathfrak{N} / \mathcal{B}(\mathscr{R})$, and let \mathscr{W}_{0} be the subspace of all vectors in \mathscr{H} fixed by A. Since A acts as a sympletic transformation on \mathscr{W}, there exists a complement \mathscr{W}_{1} to \mathscr{W}_{0} in \mathscr{W} which is invariant under A and on which A acts sympletically. A has no fixed vectors in \mathscr{W}_{1} besides the zero vector. Let $2 m$ be the dimension of \mathscr{W}_{1} over $G F(q)$. $m \geq 1$, for otherwise A would not only centralize $\mathfrak{R} / \mathcal{Z}(\mathfrak{P})$, but even $\because\{$ by [8] §1.3. Let $\mathscr{W}_{1}=\mathfrak{M} / \mathcal{B}(\mathfrak{R})$, and let the index of \mathscr{W}_{1} in \mathscr{W} be $q^{2 t}$. Choose a basis in \mathscr{V} over K such that the restriction of \mathfrak{B} to $\{A, \mathfrak{M}\}$ has the form

$$
\left(\begin{array}{ccc}
\mathfrak{H}_{1} 0 & & 0 \\
* \mathfrak{N}_{2} & & 0 \\
& & \\
& & \\
* & * & \\
\mathscr{N}_{a^{t}}
\end{array}\right)
$$

Here each \mathfrak{N}_{i} is an irreducible representation of $\{A, \mathfrak{M}\}$ of degree $s q^{m}$.
i) We now calculate the number of vectors in \mathscr{Y} fixed by A. Let L be an extension field of degree s over K such that over L, the representation \mathfrak{Y}_{i} decomposes into s absolutely irreducible representations

$$
\mathfrak{Y}_{i} \approx \mathfrak{B}_{1} \oplus \mathfrak{B}_{2} \oplus \cdots \oplus \mathfrak{B}_{s}
$$

If the vectors in the subspace corresponding to \mathfrak{B}_{1} which are fixed by A span a subspace of dimension N over L, then the vectors in the space corresponding to \mathfrak{N}_{i} which are fixed by A span a subspace of dimension $s N$ over K. Since there are q^{t} such representations \mathfrak{H}_{i}, the vectors of \mathscr{Y} which are fixed by A span at most a subspace of dimension $s N q^{t}$ over K.

If $r=p, N$ can be computed by the theorems of Hall-Higman [9], 2.5.12.5.3. Indeed, $q^{m}=k p+1$ or $q^{m}=k p+(p-1)$, and $N=k+1$. If $r \neq p$, we must use a different method. Since r does not divide $|\mathfrak{M}|, N$ is precisely the number of characteristic values of $\mathfrak{B}_{1}(A)$ which are 1 . Now there exist an algebraic number field Ω, a prime ideal divisor \mathfrak{r} of r in Ω, and an absolutely irreducible representation \mathfrak{X} of \mathfrak{M} written in the ring of \mathfrak{r}-local integers of Ω, such that the representation \mathfrak{X} modulo \mathfrak{r} is equivalent to \mathfrak{B}_{1}. In particular, N is also the number of characteristic values of $\mathfrak{X}(A)$ which are 1 . Let χ. be the character of \mathfrak{X}; we then have

$$
N=\frac{1}{p} \sum_{i=1}^{p} \chi\left(A^{2}\right)
$$

Since \mathfrak{M} is a group whose order contains p only to the first power, N can be computed by the results of Brauer [2] Theorem 4. Indeed, for $i \neq 0(\bmod p)$,

$$
\chi\left(A^{i}\right)= \begin{cases} \pm f & \text { if } \chi \text { is non-exceptional } \\ \pm \varepsilon^{i} f & \text { if } \chi \text { is exceptional }\end{cases}
$$

where ε is a primitive p-th root of unity and f is the degree of an irreducible character of the p^{\prime}-part of the centralizer of A in \mathfrak{M}. The structure of \mathfrak{M} implies that f must be 1 . As for the case $r=p$, we find that $q^{m}=k p+1$ or $q^{m}=k p+(p-1)$, but now we have only $N \leq k+1$. In any case, we can conclude that the total number of vectors in \mathscr{V} fixed by A is less than or equal to $r^{b s N q^{t}}$.
j) Let \mathfrak{F} be a Sylow p-subgroup of \mathbb{G}, and let $\Re(\mathfrak{P})$ be the normalizer of \mathfrak{F} in \mathfrak{G}. Since the total number of vectors in \mathscr{Y} is $r^{b s q^{n}}$, the conditions of Theorem 2 imply that

$$
\begin{equation*}
\mid\left(S: \mathfrak{S}(\mathfrak{P}) \mid \geq r^{b s\left(q^{n}-N q^{t}\right)}\right. \tag{3}
\end{equation*}
$$

Represent $\left(\mathbb{S}\right.$ on $\mathfrak{R} / \mathcal{B}^{(\Re)}$, and let \Re be the kernel of this representation. By [10] Hilfssatz II

$$
\begin{aligned}
& \mathfrak{B} / \mathfrak{R} \subseteq S p(2 n, q) \\
& \mathfrak{R} / \mathfrak{F} \subseteq \mathcal{J}(\mathfrak{N}) \times \mathfrak{Z}(\mathfrak{R}) \times \cdots \times \mathfrak{Z}(\mathfrak{N}) \quad(2 n \text { times }),
\end{aligned}
$$

where $\operatorname{Sp}(2 n, q)$ is the sympletic group of dimension $2 n$ over $G F(q)$. Now

$$
\begin{aligned}
|\operatorname{Sp}(2 n, q)| & =\left(q^{2 n}-1\right)\left(q^{2 n-2}-1\right) \cdots\left(q^{2}-1\right) q^{2 n-1} q^{2 n-3} \cdots q \\
& \leq q^{2 n^{2}+n} \\
& |\Omega / \mathscr{S}| \leq \begin{cases}q^{2 n} & \text { if } q \neq 2 \\
q^{4 n} & \text { if } q=2\end{cases}
\end{aligned}
$$

It then follows that

$$
r^{b \leq\left(q^{n}-N q^{t}\right)}|\mathcal{P}(\mathfrak{P})| \leq \begin{cases}|\mathfrak{S}| q^{2 n^{2}+n} q^{2 n} & \text { if } q \neq 2 \\ |\mathfrak{S}| q^{2 n^{2}+n} q^{4 n} & \text { if } q=2\end{cases}
$$

$\mathfrak{F} \subseteq \mathfrak{Z}(\mathfrak{B})$ implies that $\mathfrak{S} \subseteq \mathfrak{M}(\mathfrak{P})$ and thus we have finally

The inequality (4) holds only for small values of n, r, p, and q. The proof will then be complete once we show no groups \mathbb{G} correspond to these exceptional values.
k) To obtain an estimate on n, we use the inequality

$$
q^{n}-N q^{t} \geq q^{n}-\frac{2 q^{n}}{p}
$$

Putting this in (4) we obtain the inequality

$$
\frac{p-2}{p} q^{n} \log r \leq \begin{cases}\left(2 n^{2}+3 n\right) \log q & \text { if } q \neq 2 \\ \left(2 n^{2}+5 n\right) \log q & \text { if } q=2,\end{cases}
$$

and this can hold only for the following values of n and q.

n	q
7	2
6	2
5	2
4	2
3	2,3
2	$2,3,5,7$
1	$q \leq 31$

We treat the case $p=3$ separately. For $p=3$, the 3 -complement in (B) must be a 2 -group. Hence $|\mathscr{B}: \mathfrak{R}|=3,|\Re: \mathfrak{B}(\mathfrak{R})|=4$, and $|\mathscr{B}|=48$ or 24 . Since the representation \mathfrak{B} of \mathfrak{B} is absolutely irreducible, \mathfrak{F} must have degree 2 . Let \mathfrak{P} be a Sylow 3 -subgroup of $\mathbb{G} ; \mathfrak{R}\left(\mathfrak{S}_{\mathcal{B})}\right.$ has index 1,2 , or 4 in \mathbb{B}. \mathfrak{P} can fix at most r^{b} vectors in \mathscr{Y}, so that (3) for this case becomes $4 r^{b} \geq r^{2 b}$. This is possible only for $r^{b}=3$. But then s would be 2 and the degree of \mathfrak{B} would be 4 , which is a contradiction. We may therefore assume that $p \geq 5$.

If $n=1, p \mid q \pm 1$ implies that $p<q$ or $p=3$. Thus no groups \mathbb{E} can occur for this case. The same argument allows us to assume $m \geq 2$ in the remaining cases. The following argument will be used frequently. For given n, m, q, p we know that $|\mathscr{B}: \mathscr{R}|$ divides the order of $\operatorname{Sp}(2 n, q)$. The conditions (i) and (iii) of the theorem further restrict the possible divisors of $|\mathbb{S}: \mathbb{R}|$. Using the bounds for $|\AA: \Omega|$ obtained in this way in (3), we can eliminate most of
the remaining cases.
If $n=2$, there are three cases,

m	q	p
2	2	5
2	3	5
2	5	13

The case $m=2, q=2, p=5$. The group $S p(4,2)$ has order $2^{4} .3 .5$, and hence $\mid\left(\mathbb{O}: \mathfrak{R} \mid=5\right.$. If $|\mathcal{B}(\mathfrak{R})|=2$, then (3) for this case becomes $2^{4} \cdot r^{b s} \geq r^{4 b s}$ or $r^{3 b s} \leq 2^{4}$. This cannot hold for any possible value of r. If $|\mathcal{Z}(\mathfrak{R})|=4$, then $|\mathfrak{G}: \mathfrak{P}(\mathfrak{P})| \leq 2^{4}$. (3) for this case becomes $r^{3 b s} \leq 2^{4}$ and again this is impossible.

The case $m=2, q=3, p=5$. The group $S p(4,3)$ has order $2^{i} .3^{4} .5$. The subgroups of $S p(4,3)$ have been studied by Dickson in [6]; in particular \mathbb{B} / \mathscr{R} must have order dividing $2^{7} .5$, and thus $|\mathfrak{B}: \mathfrak{R}(\mathfrak{F})|$ divides $2^{7} .3^{4}$. Since $|\mathfrak{B}: \mathfrak{R}(\mathfrak{P})| \equiv 1(\bmod 5)$, we can even assert that $|\mathcal{B}: \mathfrak{P}(\mathfrak{P})|$ divides $2^{4} .3^{4}=6^{4}$. (3) for this case becomes $r^{7 b s} \leq 6^{4}$. If $r=2$, then $b s \geq 2$ and the inequality is false. No other values for r are possible.

The case $m=2, q=5, p=13$. The group $S p(4,5)$ has order $2^{7} .3^{2} .5^{4} .13$, and hence $|\mathbb{C}: \mathbb{R}|=13$. (3) for this case becomes $r^{23 b 3} \leq 5^{4}$, which is impossible.

If $n=3$, there are five cases,

m	q	p
2	2	5
2	3	5
3	2	7
3	3	13
3	3	7

The case $m=2, q=2, p=5$. The group $S p(6,2)$ has order $2^{9} .3^{4} .5 .7$, and hence $|\mathfrak{B}: \mathfrak{K}|$ divides $2^{9} .3^{4} .5$. The representation \mathfrak{X} of \mathfrak{G} / \Re on $\Re / \mathcal{Z}(\mathfrak{R})$ is irreducible, and has dimension 6 over $G F(2)$. A degree consideration shows that $\mathfrak{X} \mid \widetilde{\mathscr{S}}$ is still irreducible. Now if 3^{4} does not divide $|\mathbb{B}: \mathscr{R}|$, then $|\mathbb{S}: \mathscr{A}|=5$, and (3) for this case becomes $r^{6 b s} \leq 2^{12}$. If $r=3$, then $b s \geq 2$ and the inequality is impossible. No other values for r are possible. If 3^{4} divides $|\mathbb{C}: \Omega|$, then $\widetilde{\mathbb{G}} / \AA$ must have a normal Sylow 3 -subgroup of type (3,3,3,3). But such a
group cannot have an irreducible representation of degree 6 over $G F(2)$.
The case $m=2, q=3, p=5$. The group $S p(6,3)$ has order $2^{10} \cdot 3^{9} .5 .7 .13$, and hence $|\mathbb{C}: \mathscr{\Omega}|$ divides 2^{10}. 3^{9}.5. (3) for this case becomes $r^{21 b s} \leq 2^{10}$. 3^{15}. If $r=2$, then $b s \geq 2$ and the inequality is impossible. The inequality cannot hold for $r \geq 5$. The last three cases are very similar to this one. Indeed (3) for these cases becomes $r^{6 b s} \leq 2^{12}, r^{25 b s} \leq 3^{6}, r^{23 b s} \leq 2^{10} .3^{15}$ respectively, and these are impossible.

If $n=4$, there are four cases,

m	q	p
2	2	5
3	2	7
4	2	5
4	2	17

The group $S p(8,2)$ has order $2^{16} .3^{5} .5^{2} .7$.17. (3) for the cases $p=7,17$ becomes $r^{12 b s} \leq 2^{16}, r^{14 b s} \leq 2^{16}$, respectively, and both are impossible. Suppose then that $p=5$, so that $|\mathbb{S}: \mathbb{R}|$ divides $2^{16} .3^{5} .5$. If $\mathbb{\$} / \AA$ has no principal factor of type (3,3,3,3), then $|\mathscr{B}: \Omega|=5$, and (3) becomes $r^{12 b s} \leq 2^{16}$, which is impossible. Let \mathcal{Z} / Ω be the maximal normal 3 -subgroup of $\mathscr{B} / \mathscr{R}$; the order of \mathcal{Z} / \mathbb{R} is either 3^{4} or 3^{5}. If \mathfrak{X} is the representation of \mathbb{B} / Ω on $\mathfrak{R} / \mathcal{B}(\mathfrak{R})$, then the restriction $\mathfrak{X} \mid \mathfrak{Q} / \mathbb{\Omega}$ must decompose into four distinct irreducible representations; otherwise \mathfrak{X} would not represent \mathbb{R} / \mathbb{R} faithfully. But this would imply that \mathbb{B} has a subgroup of index 4 , and hence a homomorphic image in the symmetric group on 4 letters This is a contradiction, since 5 does not divide 4 !

If $n=5$, there are six cases,

m	q	p
2	2	5
3	2	7
4	2	5
4	2	17
5	2	31
5	2	11

The group $S p(10,2)$ has order $2^{25} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11.17 .31$. All six cases can be eliminated by the same sort of argument. For $p=5,7$, (3) becomes $r^{24 b s} \leq$
$2^{45} \cdot 3^{6}$; for $p=17,31$, (3) becomes $r^{30 b s} \leq 2^{20}$; and for $p=11$, (3) becomes $r^{29 b s} \leq 2^{45} .3^{6}$. In all six cases, these inequalities cannot hold for the possible values of r and $b s$.

Finally, for $n=6,7$ the inequality (4) cannot hold for $p \geq 5$. Indeed, for
 becomes $r^{48 b s} \leq 2^{102}, r^{96 b s} \leq 2^{133}$ respectively, both of which cannot hold for the possible values of r and $b s$.

References

[1] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo, 1956, pp. 55-62.
[2] R. Brauer, On groups whose order contains a prime number to the first power, I, Amer. J. Math. vol 64 (1942), pp. 401-420.
[3] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. vol. 63 (1956), pp. 409-444.
[4] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. vol. 45 (1959), pp. 361-365.
[5] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. vol. 38 (1937), pp. 533550.
[6] L. E. Dickson, Determination of all the subgroups of the known simple group of order 25920, Trans. A.M.S. vol. 5 (1904), pp. 126-166.
[7] P. Fong, On the characters of p-solvable groups, Trans. A.M.S. vol. 98 (1961), pp. 263-284.
[8] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. vol. 36 (1934), pp. 29-95.
[9] P. Hall and G. Higman, On the p-length of p-soluble groups, Proc. London Math. Soc. vol 6 (1956), pp. 1-42.
[10] B. Huppert, Lineare aufösbare Gruppen, Math. Z. vol. 67 (1957), pp. 479-518.
[11] B. Huppert, Z weifach transitive, auflösbare Permutations-gruppen, Math. Z. vol. 68 (1957), pp. 126-150.
[12] W. Reynolds, Blocks with normal defect group, Seminar on Finite Groups at Harvard University, 1960-1961 (mimeographed notes).

University of California
Berkeley 4, California

[^0]: Received November 12, 1961.
 Revised June 6, 1962.

