GROUP CHARACTERS AND NORMAL HALL SUBGROUPS

P. X. GALLAGHER

TO RICHARD BRAUER on his 60th birthday

1. Introduction

Let G be a finite group and let ψ be an (ordinary) irreducible character of a normal subgroup N. If ψ extends to a character of G then ψ is invariant under G, but the converse is false. In section 3 it is shown that if ψ extends coherently to the intermediate groups H for which H/N is elementary, then ψ extends to G. If N is a Hall subgroup, then in order for ψ to extend to G it is sufficient that ψ be invariant under G. This leads to a construction of the characters of G from the characters of N and the characters of the subgroups of G/N in this case.

Let $1(H)_G$ denote the character of G induced by the 1-character of the π -Hall subgroup H. If H is normal in G then the degree of each irreducible component of $1(H)_G$ divides the index of H. In section 4, the converse is proved in the case in which G is π -solvable and in the case in which G has a nilpotent π' -Hall subgroup.

2. Notation and Preliminary Results

In what follows, group means finite group. For a character ϕ of a subgroup H of a group G, ϕ_a denotes the character of G induced by ϕ (for a definition, see [1]). Induction has the following properties:

(i) If $H \subseteq K \subseteq G$, then $(\psi_K)_G = \psi_G$.

(ii) If χ is a character of G, then $(\psi_G, \chi)_G = (\psi, \chi)_H$.

If χ_1 and χ_2 are characters of G, then $\chi_2 \in \chi_1$ means that there is a character χ_3 such that $\chi_1 = \chi_2 + \chi_3$. For example, $\psi \in \psi_G | H$ for each character ψ of the subgroup H of G.

The 1-character of G is denoted by 1(G).

Received November 18, 1961.

The degree of the representation with character χ is denoted by f_{χ} . A linear character is a character of degree 1.

If ϕ is a matrix representation, then det ϕ is a linear character. Equivalent representations have the same determinant, so we may put det $\phi = N(Z)$, where Z is the character of ϕ . For each linear character ω , we have $N(\omega Z) = \omega^{f_X} N(Z)$.

If π is a set of prime numbers and f is a rational integer, then f divides π means that each prime factor of f is in π . A π -group is a group whose order divides π . A group is π -solvable if each of its composition factors is either a π -group or a π' -group, where π' is the complimentary set of prime numbers. A π -Hall subgroup of a group G is a π -subgroup whose index in G divides π' .

In what follows, character means irreducible character.

We will need the following results due to Clifford [3]:

THEOREM 1. Let ψ be a character of the normal subgroup N of G and let T be the subgroup fixing ψ . Then for each character $\chi \in \psi_G$ there is a unique character ζ of T such that $\zeta \in \psi_T$ and $\chi \in \zeta_G$. For this $\zeta, \zeta | N = a \psi$ for some positive integer a, and $\zeta_G = \chi$.

Proof. Given $\chi \in \psi_G$, choose a character ζ of T such that $\zeta \in \psi_T$ and $\chi \in \zeta_G$. Then $\zeta | N \in \psi_T | N = (T:N)\psi$, so $\zeta | N = a\psi$ for some positive integer a.

For $\rho \notin T$, $(\zeta^{p}, \zeta)_{N} = a_{2}(\psi^{p}, \psi)_{N} = 0$. Therefore $(\zeta_{G}, \zeta_{G})_{G} = (\zeta_{G}, \zeta)_{T}$ = $\sum_{p \mod T} (\zeta^{p}, \zeta)_{T \cap T^{p}} (T: T \cap T^{p})^{-1} = 1$. It follows that $\zeta_{G} = \chi$.

Since $\chi | T = \zeta + \zeta_1$, where $\psi \notin \zeta_1 | N$, the only character of T with the required properties is ζ .

COROLLARY. With the same hypotheses, $(G:T)f_{\downarrow}$ divides f_{χ} .

THEOREM 2. With the same hypotheses, if ψ extends to a character ψ_1 of T, then as ω ranges over the characters of T/N, $(\omega\psi_1)_G$ ranges over distinct characters of G, and

(1)
$$\psi_G = \sum f_{\omega} \cdot (\omega \psi_1)_G$$

Proof. Both ψ_T and $\sum f_w \cdot \omega \psi_1$ are 0 off N and restrict on N to $(T:N)\psi$. Therefore they are equal. Inducing to G, we have (1). From (1) it follows that

$$(T:N) = (\psi_G, \ \psi)_N = (\psi_G, \ \psi_G)_G = \sum_{w, \ w'} f_{w'}((\omega\psi_1)_G, \ (\omega'\psi_1)_G)_G.$$

224

The diagonal terms alone contribute at least $\sum f_{\omega}^2 = (T : N)$, so the $(\omega \psi_1)_G$ are irreducible and distinct.

COROLLARY. If N is normal in G and ψ_1 is a fixed extension of the character ψ of N to G, then each extension of ψ to G is uniquely of the form $\omega\psi_1$ where ω is a linear character of G/N.

THEOREM 3. Let N be a normal subgroup of prime index p in G. Then each invariant character of N extends to a character of G.

Proof. Let ψ be an invariant character of N. Let χ be a character in ψ_G . By Theorem 1, $\chi | N = a\psi$. For each character ω of G/N, $\omega\chi$ is a character of G and $\omega\chi | N = a\psi$. The characters $\omega\chi$ are distinct. In fact, if $\omega\chi = \omega'\chi$ for $\omega \neq \omega'$, then $\chi = 0$ off N, so $a^2 = (\chi, \chi)_N = p(\chi, \chi)_G = p$, a contradiction. Therefore

$$\sum_{\omega} a \cdot \omega \chi \in \psi_G.$$

Since $(\psi_G, \psi_G)_G = (\psi_G, \psi)_N = p$, this implies that a = 1. Thus χ is an extension of ψ to G.

3. Extension of Characters from Normal Subgroups

An elementary group is a direct product of a cyclic group with a group of prime-power order. According to a theorem of Brauer [1], each character of a group G may be written in the form $\sum a_{\hat{z}} \xi_a$ where ξ ranges over all linear characters of all elementary subgroups H of G and the coefficients $a_{\hat{z}}$ are rational integers. Using Brauer's theorem we will find conditions under which an invariant character of a normal subgroup can be extended to a character of the whole group.

THEOREM 4. Let N be a normal subgroup of G and let ψ be a character of N. Suppose that for each intermediate group H for which H/N is elementary ψ may be extended to a character $\psi(H)$ of H in such a way that

(i)
$$\psi(H)^{\rho} = \psi(H^{\rho})$$
 $(\rho \in G)$,

(ii) $\psi(H') = \psi(H'')|H' \quad (H' \subset H'').$

Then ψ may be extended to a character of G.

Proof. By Brauer's theorem we may write

(2)
$$1(G/N) = \sum a_z \xi_G$$

where ξ ranges over all linear characters of H/N, for all intermediate groups H for which H/N is elementary, and the coefficients a_{ξ} are rational integers. Put

(3)
$$\chi = \sum a_{\xi} (\xi \cdot \psi(H_{\xi}))_{\theta},$$

where H_{ξ} is the group of which ξ is a character. Then χ is a generalized character of G for which $\chi | N = \psi$.

From (2) and (3) we have

$$1 = (1(G/N), 1(G/N))_{G} = \sum a_{z'}(\xi_{G}, \xi_{G}')_{G},$$

and

$$(\mathcal{X}, \mathcal{X})_{g} = \sum a_{z} a_{z'} ((\xi \psi(H_{z}))_{g}, (\xi' \psi(H_{z'}))_{g})_{g}$$

We shall show that corresponding inner products in these two sums are equal, proving that $(\chi, \chi)_G = 1$ and hence that χ or $-\chi$ is a character, from which since $\chi | N = \psi$, it will follow that χ is a character.

For any two characters ζ and ζ' of subgroups H and H' of G,

$$(\zeta_G, \zeta'_G)_G = (\zeta_G, \zeta')_{II'} = \sum_{\rho \bmod H} (\zeta^{\rho}, \zeta')_{B' \cap B\rho} (H' : H' \cap H^{\rho})^{-1}.$$

Thus it is enough, in view of (i) and (ii), to show that for each intermediate subgroup H for which H/N is elementary, and each pair of linear characters ω and ω' of H/N,

$$(\omega \psi(H), \omega' \psi(H))_H = (\omega, \omega')_H.$$

This is true since by the corollary to Theorem 2, $\omega\psi(H)$ and $\omega'\psi(H)$ are equal only for $\omega = \omega'$.

As an application of Theorem 4, we will prove the following special result which may also be proved using Schur's lemma and factor sets.

THEOREM 5. Let N be a normal subgroup of G and let ψ be a character of N such that

- (a) ψ is invariant under G,
- (b) $N(\psi)$ extends to a character ξ of G,
- (c) f_{ψ} is prime to (G:N).

Then there is a unique character χ of G such that $\chi | N = \psi$ and $N(\chi) = \xi$.

Proof. If ψ extends to a character of G, there is a unique extension χ such that $N(\chi) = \xi$. In fact, all extensions are given by $\omega \chi_1$ where χ_1 is any

one extension and ω ranges over the linear characters of G/N. Since $\xi N(\chi_1)^{-1}$ is a linear character of G/N and f_{ψ} is prime to (G:N), there is a unique linear character ω of G/N for which $\omega^{f_{\psi}} = \xi N(\chi_1)^{-1}$, i.e., for which $N(\omega\chi_1) = \omega^{f_{\psi}} N(\chi_1) = \xi$.

To prove the existence of an extension, suppose first that G/N is supersolvable. If G = N, put $\chi = \psi$. If $G \neq N$, let K/N be a normal subgroup of prime order of G/N. Since ψ is invariant under K, Theorem 3 shows that ψ has an extension to a character of K. By the last paragraph, ψ has a unique extension ψ_1 for which $N(\psi_1) = \xi | K$. For each $\rho \in G$, ψ_1^{ρ} is an extension of ψ to K for which $N(\psi_1^{\rho}) = \xi | K$. Thus ψ_1 is invariant under G. By induction, ψ_1 extends to a character of G.

To complete the proof in the general case, we note that elementary subgroups are supersolvable. Hence there are unique extensions $\psi(H)$ of ψ to the intermediate groups H for which H/N is elementary such that $N(\psi(H)) = \xi | H$. Properties (i) and (ii) of these extensions follow easily from this uniqueness and the invariance of ξ under conjugation.

LEMMA 1. Let G = HN where H is a subgroup of G and N is a normal subgroup of G and $H \cap N = 1$. Then each linear character of N which is invariant under G extends to a character of G.

Proof. Let δ be an invariant linear character of N. Put $\xi(\sigma\tau) = \delta(\tau)$ for $\sigma \in H$, $\tau \in N$. Then $\xi | N = \delta$ and ξ is a linear character of G, since for $\sigma_1, \sigma_2 \in H$ and $\tau_1, \tau_2 \in N$,

$$\begin{aligned} \xi(\sigma_1\tau_1\sigma_2\tau_2) &= \xi(\sigma_1\sigma_2\tau_1^{\sigma_2}\tau_2) = \delta(\tau_1^{\sigma_2}\tau_2) \\ &= \delta(\tau_1^{\sigma_2})\,\delta(\tau_2) = \delta(\tau_1)\,\delta(\tau_2) = \xi(\sigma_1\tau_1)\,\xi(\sigma_2\tau_2). \end{aligned}$$

THEOREM 6. If N is a normal Hall subgroup of G, then each invariant character of N extends to a character of G.

Proof. Let ψ be an invariant character of N. Since f_{ψ} divides (N:1), f_{ψ} is prime to (G:N). By a theorem of Schur [5, p. 162], there is a subgroup H such that G = HN and $H \cap N = 1$. Therefore $N(\psi)$, which is also invariant, extends to a linear character of G. Consequently ψ extends to a character of G, by Theorem 5.

THEOREM 7. Let N be a normal Hall subgroup of G. Pick a character ψ

of N, let ψ_1 be an extension of ψ to the group T fixing ψ , and let ω be a character of T/N. Then $(\omega\psi_1)_G$ is a character of G, and each character of G is obtained in this way.

Proof. By Theorem 6, ψ_1 exists. By Theorem 2, each $(\omega \psi_1)_G$ is a character of G and each character $\chi \in \psi_G$ is obtained in this way. For each character χ of G there is a ψ such that $\chi \in \psi_G$ so χ is of the form $(\omega \psi_1)_G$ for some ψ and some ω .

4. Conditions Implying a Hall Subgroup is Normal

It was proved by N. Ito [4] that if the degree of each character of a solvable group is prime to p, then the group has an abelian normal p-Sylow subgroup. In this section we prove an analogous result in which the conclusion is "G has a normal π -Hall subgroup" and the hypothesis " $p+f_x$, for all characters χ " is replaced by

 α : G has a π -Hall subgroup H and the degree of each character in $1(H)_{g}$ divides π' .

LEMMA 2. If G satisifes α and $N \triangleleft G$, then N and G/N also satisfy α .

Proof. Let G satisfy α relative to the π -Hall subgroup H and let $N \triangleleft G$. Then $H \cap N$ is a π -Hall subgroup of N and HN/N is a π -Hall subgroup of G/N.

Since $\psi \in \psi_G | N$ for each character ψ of N, $\psi \in \mathbb{1}(H \cap N)_N$ implies $\mathbb{1}(H \cap N) \in \psi_G | H \cap N \in \psi_G | H \cap N$ and hence

$$(\psi, 1(H)_g)_N = (\psi_g, 1(H)_g)_g = (\psi_g, 1(H))_H = (\psi_g, 1(H \cap N))_{H \cap N} (H:H \cap N)^{-1} \neq 0.$$

Therefore for each character $\psi \in \mathbb{1}(H \cap N)_N$, there is a character $\chi \in \mathbb{1}(H)_{\sigma}$ for which $\psi \in \chi | N$ and hence for which f_{ψ} divides f_{χ} . By hypothesis, f_{χ} divides π' , so f_{ψ} also divides π' . Thus N satisfies α relative to $H \cap N$.

Since $1(HN) \in 1(H)_{HN}$, we have

$$1(HN)_G \in (1(H)_{HN})_G = 1(H)_G.$$

If χ is a character of G/N in $1(HN)_G$, then χ is a character of G in $1(H)_G$. By hypothesis f_{χ} divides π' . Thus G/N satisfies α relative to HN/N.

THEOREM 8. If G is a π -solvable group which satisfies α , then the π -Hall subgroup H is normal in G.

Proof. Let M be a minimal normal subgroup of G. Then G/M is also a π -solvable group which satisfies α , so by induction G/M has a normal π -Hall subgroup K/M.

If M is a π -group, then K is a normal π -Hall subgroup of G.

If $K \neq G$, then K is a π -solvable group which satisfies α , so by induction K has a normal π -Hall subgroup, which is then a normal π -Hall subgroup of G.

Finally, suppose M is a π' group and K = G. Then G = HM and $H \cap M = 1$. Consequently, $1(H)_G | M = \sum f_{\psi} \psi$, where ψ ranges over the characters of M. Let ψ be a character of M. Then there is a character $\chi \in 1(H)_G$ for which $\psi \in \chi | M$. Let T be the subgroup fixing ψ . Then (G:T) divides f_{χ} . By the hypothesis, f_{χ} divides π' , so (G:T) divides π' .

Since (G:T) divides (H:1), which divides π , (G:T) = 1. Thus each character ψ of M is invariant under G. It follows that H, in its action on M by conjugation, preserves the M-classes of M. By a theorem of Burnside [2, p. 89], H centralizes M. Thus $G = H \times M$, so $H \triangleleft G$.

LEMMA 3. Let A be an abelian group, B a subgroup of A, and χ a possibly reducible character of A such that $\chi = 0$ off B. Then (A:B) divides f_{χ} .

Proof. Let $\chi = \sum a(\xi)\xi$ be the decomposition of χ into linear characters. For each character ω of A/B, we have $\omega\chi = \chi$, so $a(\omega\xi) = a(\xi)$. Also, $\omega\xi = \omega'\xi$ only for $\omega = \omega'$. Hence

$$\chi = \sum_{\xi} a(\xi) \sum_{\omega} \omega \xi = \sum_{\omega} \omega \sum_{\xi} a(\xi) \xi,$$

where the prime indicates that the summation is only over some ξ . It follows that $f_x = (A:B)\sum' a(\xi)$.

For a character χ of a group G, denote by $Z(\chi)$ the normal subgroup on which $|\chi| = f_x$. Denote by Z(K) the center of a group K.

LEMMA 4. Suppose that the group G has a Hall subgroup K and let χ be a character of G such that f_{χ} divides (K:1). Then $(Z(K):Z(K) \cap Z(\chi))$ divides f_{χ} .

Proof. For $\sigma \in Z(K)$, the centralizer of σ contains K, so the number of elements in the class of σ is prime to (K:1) and hence to f_X . By a theorem of Burnside [2, p. 322], either $\sigma \in Z(\mathcal{X})$ or $\mathcal{X}(\sigma) = 0$. Thus $\mathcal{X} | Z(K)$ is 0 off $Z(K) \cap Z(\mathcal{X})$, and the result now follows by Lemma 3.

P. X. GALLAGHER

THEOREM 9. If G satisfies α relative to a π -Hall subgroup H and G has a nilpotent π' -Hall subgroup K, then H is normal in G.

Proof. It is enough by Theorem 8 to prove that G is π -solvable. Since the hypotheses of Theorem 9 carry over to normal subgroups and factor groups, it is enough to show that if G has no proper normal subgroups, then K = 1.

If G has no proper normal subgroups, then $Z(\chi) = 1$ for all characters χ of G except 1(G). Lemma 4 then shows that (Z(K):1) divides f_{χ} for all $\chi \in 1(H)_G$ except 1(G). Putting

$$1(H)_G = 1(G) + \sum a_{\chi} \chi,$$

we then have

$$(K:1) = (G:H) = 1 + \sum a_{k} f_{k} \equiv 1 \mod (Z(K):1).$$

This implies that Z(K) = 1. Since K is nilpotent, K = 1.

References

- Brauer, R. and Tate, J.: On the characters of finite groups. Ann. of Math. 62, 1-7 (1955).
- [2] Burnside, W.: Theory of Groups of Finite Order. Second Edition, Cambridge Univ. Press. 1911.
- [3] Clifford, A. H.: Representations induced in an invariant subgroup. Ann. of Math. 38, 533-550 (1937).
- [4] Ito, N.: Some studies on group characters. Nagoya Math. Journal 2, 17-28 (1951).
- [5] Zassenhaus, H.: The Theory of Groups. Second Edition, Chelsea Publishing Co. 1958.

Massachusetts Institute of Technology

and Paris, France

230