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To Professor RICHARD BRAUER on the occasion of his sixtieth birthday

In his address at the International Congress of Mathematicians at Am-

sterdam [1] Professor R. Brauer proposed a problem of characterizing various

groups of even order by the properties of the involutions contained in these

groups and he gave characterizations of the general projective linear groups of

low dimensions along these lines. The detail of the one-dimensional case has

been published in [5], but the two-dimensional case has not appeared yet in

detail. His work was followed by Suzuki [7], Feit [6] and Walter [11]. The

present paper is a continuation of [73 and discusses a characterization of the

two-dimensional projective unitary group over a finite field of characteristic 2.

The precise conditions which characterize the group in question will be stated

in the first section. The method employed here is similar to the one used in

[7]. An application of group characters provides a formula for the order.

However a difficulty comes in when one attempts to identify the group. In

order to overcome this difficulty we will use a method primarily designed to

study a class of doubly transitive permutation groups (cf. [9]). We need also

a group theoretical characterization of a class of doubly transitive groups called

(ZT)-groups. This is a generalization of a result in [8], and may be of in

dependent interest.

1. Preliminaries. Let F denote the finite field of q elements. In this paper

we consider the case when the characteristic of F is 2. We have

for some integer n. If E is a quadratic extension of F, the mapping

a-*aq (a<zE)

is an automorphism of E, which generates the Galois group of E/F. Let V
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denote the three-dimensional vector space over E consisting of the triplets

(xu #2, #3) of elements of E. The totality of linear transformations of V which

leave the bilinear form

B{x, y) = xiyί + x2yί + xzyϊ

invariant forms a unitary group Γ. The two-dimensional projective unitary

group U- U(q) over F is the quotient group of Γ by its center. The element

0

1

0

is an involution of Γ and it is easy to see that every involution in U is con-

jugate to the coset of the center containing /. The centralizer CAJ) is the

totality of matrices

a, b,

aea +

r
V
\d

C, d, :

•bcQ =

0

c

e

e^E, a

ad' + b1

Ί
a)

+9 + daQ

' = 1,

= 0.

where

Hence in U the centralizer of an involution is isomorphic to the group of

matrices

( 1 0 0'

a d 0

.* c lt

where a, b, c, d<=E, d1+Q = 1,

(1)

We denote by H~H(q) this group of matrices M(#, Z>, c; J).

The main result of this paper is the following theorem.

THEOREM 1. Let G be a finite group of even order satisfying the following

conditions:

(1) the involutions of G form a single conjugate classy

(2) if x is an involution in G, its centralizer CQ(X) is isomorphic to H(q),

and
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(3) a Sylow 2-group of G is not a normal subgroup of G.

If q>2, then G is isomorphic to the projectiυs linear group U(q). If q = 2, G

contains an abelian normal subgroup A such thai G/A is isomorphic to H(2).

In this last case the structure of A is not uniquely determined.

2. A few properties of the group H(q). By computation we see that

M(a, b, c\ d)M(a', b\ c' ί)=Mfl", b", c" dΊ)

where a" = a + da!, b" = b + b' + ca\ c" = cd' + c' and d" = dd'.

Hence the mapping M(af b, c\ d)-*d is a homornorphism of the group H onto

the multiplicative group of non-zero elements of E satisfying xVτq = 1, The

kernel of this homomorphisrn is the totality of matrices M(a, b, c\ 1), which

is obviously a 2-group.

il) The group H(q) contains.a normal 2-group Q = Q(q) such that H/Q

is a cyclic group of order 1 -f q. The order of Q is qz.

If Mia, b, c\ d)^Q, we have J = l . Hence the conditions (1) become

(2) aq^c and b + bQ^aι+Q.

Hence for a given α, there exist exactly q choices for b. The last assertion of

(I) follows immediately.

(II) The center of Q consists of elements of order ^ 2 and contains all the

involutions of Q. Its order is exactly q.

(III) If the order of an element x^l of Hdivides q-\ 1> then the centralizer

CH(X) is an abelian group of order q(q + l) containing all the involutions of H.

These two properties are proved by easy computations. From the second

property it follows that the group © is a quaternion group of order 8 if q = 2.

3β General properties of the group G. Let G be a group satisfying the

conditions of Theorem 1. We shall prove a few properties of G in this section.

Throughout this and subsequent sections, except §6, H-H(q) stands for the

group defined in the second section. Also the letter Q = Q(q) is reserved for

the Sylow 2-group of H(q).

LEMMA 1. A Sylow 2-group of G is isomorphic to Q.

Proof By assumption if x is an involution in the center of a Sylow 2-group

S of G, CG(X) is isomorphic to H(q). From the choice of xy CG(x) contains S.
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Hence S must be isomorphic to Q.

LEMMA 2. // S and S' are two distinct Sylow 2-groups of G, then S Γt S'

= {1}.

Proof. Suppose SΠS'^{1>. Then there is an involution t of G contained

in SOS'. Both S and S' are isomorphic to Q by Lemma 1. According to (II)

t belongs to the center of S and at the same time to the center of S'. Hence

both S and S' are Sylow 2-groups of CG(t). By assumption Co(t) is isomorphic

to Hiq) which contains only one Sylow 2-group. This contradiction proves

Lemma 2.

LEMMA 3. Two involutions of S are conjugate in NG(S).

This is an immediate consequence of Lemma 2 and the first condition on G.

LEMMA 4. The order of NQ(S) is q\qz-l).

Proof. Represent N0(S) as a permutation group on the involutions of S.

The subgroup leaving one involution, say t, fixed is C0(t). Hence the order

of NG(S) is the order of Co(t) multiplied by the number of involutions in S.

The assertion follows from (I) and (II).

LEMMA 5. If t is an involution of S, then the normalizer of CG(t) is NQ(S).

Proof Since Co(t)~H, Cait) contains all the involutions of S in its center.

Hence every element of N0{S) transforms CG(t) into itself. On the other hand

the normalizer of C0(t) is contained in NG(S) since S is a characteristic sub-

group of Cβit).

4. The case v=2. If # = 2, a Sylow 2-group S of G is a quaternion group.

By a theorem of Brauer [4] G is not simple; in fact if N is the maximal

normal subgroup of odd order, then G/N contains exactly one involution. This

implies that G = NCG(t). By assumption, C0{t) is isomorphic to the group H(2).

By (III) of §2, CG(t) contains no non-trivial normal subgroup of odd order.

The intersection NΠCG(t) is however a normal subgroup of CG(t) and of odd

order. Hence we have iVΠ CQ(t) = {1}. This implies that the element-1 induces

an automorphism of order 2 in N which leaves only the identity element fixed.

By a result of Burnside N is an abelian group. Hence G is a solvable group.

In this case the structure of N is not uniquely determined. The projectiye
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unitary group £7(2) is obtained if JV is a non-cyclic group of order 9.

From now on we assume that q>2.

5. The centralizer of 2-regular elements. Let S be a Sylow 2-group of G

and let t be an involution contained in S. By the second condition on G, CG(t)

is isomorphic to H(q). We are interested in the following set D of elements-

D is the totality of 2-regular elements x*l of CQ(t). If xeD, then by (III)

CG{x) Π Ccλt) is an abelian subgroup of order q(q + l). Let So denote the center

of S. Then we have

cG(#)ns = So.

LEMMA 6. The group So is a Sylow 2-group of CG(x) for all x e D.

Proof So is contained in a Sylow 2-group T of CG(x) and the group T is

contained in a Sylow 2-group R of G. Then R and S are two Sylow 2-groups

of G such that i ?nSiS 0 ^{ l>. By Lemma 2 we conclude"that R = Sand hence

CG(X) = s n cG(#) = So.

LEMMA 7. If x^D, CG(x) satisfies the property that the centralizer of any

involution is abelian.

Proof. Since So is a Sylow 2-group of CG(X), it suffices to prove the as-

sertion for an involution t of So. Then by (III) of the section 2, CG(x) Π CG(t)

is an abelian group. It is clear that Co{χ) ΠCG(t) is the centralizer of t in

Coix).

On account of Lemma 7 the result of [7] is applicable to CGix).

LEMMA 8. We have one of two cases:

Ca(x) E NoiS) for all * e D, or

CG(x)^LF(2, q) x Z for all # e D, where Z is a cyclic group of order q+1.

Proof. If x e D, the centralizer CG(x) - W satisfies the condition that the

centralizer of any involution of W is an abelian group of order q(q-\-l). By

Lemma β the group So is a Sylow 2-group of W and it is an elementary abelian

group of order q. The main theorem of [7, /] says that we have one of three

possibilities: (1) a Sylow 2-group of W is cyclic, (2) a Sylow 2-group of W is

normal, or (3) W is direct product of the linear group LF(2, q) and an abelian

group X of odd order.



164 MΪCHΪO SUZUKI

Since we have assumed that q>2> So is not cyclic, so the first possibility

does not occur. Suppose that, for some x&D we have the third case; i.e.

W^LxX where L~LF{2} q). Since the center of LF(2? q) is trivial, X coin-

cides with the center of W. By definition x is contained in the center of W.

This implies that x ei X If y is an involution of W, y is contained in L, It

follows from the structure of LF{2, q) that the centralizer C^y) of y is an

abeίian group of order q. Hence Cw{y) = CLiy) x l We have seen that Cwiy)

is an abelian group of order q(q~\Ί). This means that X is an abelian group

of order q-γ 1. Since # e l ) , W contains So. If t is an involution of So, & x l

is the centralizer of t in W. The order of X is q -f 1. Hence we conclude that

So x x = Co(χ) ncβ(ί).

Since Cβit)^H(q) it follows from the structure of if(gθ that X is a cyclic

group of order <y-fl and that any element of D is conjugate to an element of

X Hence for all x e D we have

If we have the second possibility for all x&D, then CG(x) is contained in

NG(So). By Lemma 2, NG(SQ) is a part of Λr

GίS). This proves the assertion.

6β A characterization of (ZΓ)-groups. A doubly transitive permutation

group G of odd degree d is called a ίZ'Γ)-group if no element # 1 leaves three

different letters invariant and G contains no normal subgroup of order d. This

class of groups has been studied in detail (cf. [9]) and some group theoretical

characterizations have been given [8]. In this paper we need a generalization

of a theorem in [8].

THEOREM 2. Let G be a finite group. Assume that G contains a subgroup

H satisfying the follotving conditions:

(1) the subgroup H* of H generated by the involutions of H has a non-trivial

center,

(2) if xEίH, x^l, then the elements y satisfying

y"1xy = x or %~ι

belong to NG(H), and

(3) if x e H is an involution, C^ix) is a part of H<
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Then we have one of the following cases: (a) Ho is a normal subgroup of G,

(b) a Sylow 2-group of G is either cyclic or a generalized quaternion group or

(c) G is a {ZT)-group.

For convenience we denote by CGix) the set of elements y^G such that

y"1 xy — x or x~\ Then clearly CZ(χ) is a subgroup of G containing CG(x) as

a normal subgroup of index 1 or 2. Replacing the conditions (2) and (3) by

(2)' C"0(x)^H for all x*l of H,

we have proved a similar theorem in [8]. The proof of Theorem 2 is a modi-

fication of the proof in [8].

First of all we remark that H contains a Sylow 2-group of G by (3). Hence

the index \_NG(H) - Hi is odd and every involution of NG(H) is contained in

H. An element of a group is called strongly real if it is a product of two

distinct involutions.

LEMMA 9. If an element x of H is strongly real, then x is a product of two

involutions of H.

Proof. Suppose that x is a product of two involutions u and v. We want

to prove that u&H. Since u~ιxu~ u~\uv)u = x~\ u is contained in CS(x).

By (2), CG(x) ΈNG(H). Hence u is an involution of NG(H) and so u<sH.

It follows from Lemma 9 that each coset of H except H itself contains at

most one involution. Assume that Hύ is not normal. Then the argument in

[8] shows that G contains only one conjugate class of involutions and that for

any involution u of H we have Co(u) = H. Combining with Lemma 9 we

conclude that a strongly real element of H is an involution. Furthermore we

see that H=CG{Ho). This implies that two involutions of H are conjugate in

NcAH). Then each coset of H not contained in NG(H) contains exactly one

mvolution.

LEMMA 10. If * e NG(H) - H is strongly real, C0(x) ^NG(H).

Proof. Suppose not. Then there exist y<sH and an involution u not con-

tained in H such that xyu = yux. Then

y~ιxy = uxu and x~ιy"ιxy = x~1uxu.

The right side of the last equation belongs to H since x&NG(H). By Lemma
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9 we have x^ux-u. This means that x is a strongly real element of CG(u).

The group CG(u) is conjugate to H. Lemma 9 applied to CG(u) says that x

is an involution. This not the case since x^No(H) but is not in H.

LEMMA 11. If x<^NG(H) -~H is strongly real, then A = CG(X) satisfies the

following properties:

(i) A is an abelian group of odd order,

(ii) if y*rl and y& A, y is strongly real,

(iii) if y^l andy^A> then CG(jy) = A, and

(iv) NG(A) f) NG(H) = A.

Proof. By assumption x is a product uv of two involutions u and v. Then

u G CG (X) and hence u e NG(A). Suppose that an element w * 1 of A commutes

with u. Put Hf = CG(u). Then H' is conjugate to H and H' contains w. Since

Mje A, ΛΓ is in the centralizer CG(W). By the second assumption on H> applied

to the conjugate subgroup H\ we see that CQ(W) ^NG(Hf). Then x is contained

in NG(H'). Since u<=H\ we have x~xvΓxxu^W. On the other hand x~ιu~ιxu

= tf""1 ΛΓ1 = ΛΓ2. Hence x2 commutes with u. This implies that xA = 1. This

is impossible as x &NG(H) - H. Therefore there is no element =*F 1 of A which

commutes with u. A result of Burnside shows the validity of the properties

(i) and (ii). If v=^l is an element of A, y is strongly real by (ii). Hence

CrAy) is abelian by (i). This proves the property (iii).

Put K=NG(A~) ΠNG(H). A is a part of K by Lemma 10. The conditions

(i) and (ii) together with Lemma 9 imply that AΠJfl
r={l}. It follows from

(iii) that the group Ho A is a Frobenius group. If K*A, KHQ can not be a

Frobenius group. Then K contains an element 2 # 1 which commutes with an

involution of Ho. This implies that

By the isomorphism theorem K Π H is a normal subgroup of K. Since AftH

= {1}, KΠH is contained in the centralizer of A. This means that

KΠ HE Co( A) Π H= A Π # = {I}.

This contradiction proves the last property (iv).

We return to the proof of Theorem 2. We assume that i/0 is not normal

in G and that Syiow 2-groups of G are neither cyclic nor generalized quaternion
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groups. Then as in [8] we see that NG(H)*H. Hence N0(H)-~ H contains

at least one strongly real element x. By Lemma 11 we see that the transfer

theorem of Burnside (in a generalized form) is applicable. We conclude that

Nσ(H) contains a normal subgroup N such that NG(H) = NA and NftA- {1}.

By Lemma 11 (iii), NG(H) is a Frobenius group and N is its Frobenius kernel.

By a theorem of Thompson [10] N is nilpotent. Since A is of odd order, N

is of even order and is a centralizer of an involution. Hence N coincides with

H. If x*?l is an element of H,C$(x) is contained in NG(H) by the second

assumption of Theorem 2. However NO(H) is a Frobenius group. Hence

Co(x) is contained in H. Since NG(H)/H is of odd order, C$(x) is also a part

of H. By a theorem of [81 we conclude that G is a (ZT)-group.

7. Further study of the centralizer of the elements in D. The set D of

elements has been defined in §5. We continue the study of the structure of

CG(X) for x s D. Put M= CG(x).

LEMMA 12. M is a direct product of two groups L and Z such that

L~LF(2y q), q>2, arid Z is a cyclic group of order ά + Ί . M is the normalizer

of any subgroup = {̂1} of Z.

Proof. By Lemma 8 we have two possibilities. Suppose that CG(x) is a

part of NG(S) for all # e D . For an involution t of S put T = CGU). Then for

any involution u of S we have CG(u) = T since T^H(q). We want to show

that the subgroup T satisfies all the assumptions for H of Theorem 2. The

involutions of T generate the subgroup So which is elementary abelian. So the

first condition is trivially satisfied. Take x*l of T. If the order of x is even,

some power of x is an involution u of T. Then u e S and C<j(#) ̂ CG(u) = T.

If the order of x is odd, # belongs to the set D. Hence by assumption CG(x)

is a part of NG(S), which is by Lemma 5 the normalizer of T. We claim that

if * e A C£(#) = CoU). If not, the index ICG(X) : C G U ) ] is 2. Hence C£(tf)

contains a Sylow 2-group S* which covers So. By Lemma 2 S* is a part of S.

This is impossible since Cί(x) = CAx). This verifies the second condition.

The third one is trivial. By Theorem 2 we have several possibilities.

A Sylow 2-group S of G contains exactly q - 1 involutions. We have as-

sumed that q>2. This eliminates the second possibility in Theorem 2. If G

Were a (ZD-group, the order of its Sylow 2-group would be q or q" (cf. [9J).
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This is not the case. The remaining possibility is that So is a normal subgroup

of G. By Lemma 2 this means that S is a normal subgroup. This case has

been excluded. Hence for all x e D, the centralizer CGix) is the direct product

of two groups L and Z, where L is isomorphic to LF(2t q) and Z is a cyclic

group of order q+1.

It remains to prove the last assertion. As remarked earlier in the proof of

Lemma 8 any element of D in conjugate to an element of Z and conversely

an element ± 1 of Z belongs to D. By Lemma 8 the order of CG(x) is in-

dependent of the choice of x. If M—CG{x) for some x ^ D, and if M = L x Z ,

then # e Z and for any vΦl of Zwe have CQ(y) = M. Consider NG(ZQ) for a

subgroup Zo^il} of Z. Then NG(Z0) C\ CG(t) for an involution t of S is abelian.

Hence Ar

GiZo) satisfies the assumption of the main theorem of [7]. Since

N(ΛZo) i' M, JVG(ZQ) is the direct product of the linear group and an abelian

group. This implies that NG(Zϋ) = CG(ZQ). The assertion follows immediately.

8. The order of G. By Lemma 12 we see that all the assumptions of the

second section of [7, /] are satisfied for G. We apply Propositions 5 and 6 of

[7, /] to obtain the order of G.

It follows from Proposition 6 of [7, 7] that the order g of G has the form

(3) g^q'miq2 - l ) / ( / + ε)/(/~ a)2 (e= ±1)

where/ is the degree of an irreducible character X, m{q -1) is the order of

some subgroup of G and a is the value of X on an involution. From Proposition

5 of [7, /] we get a congruence:

(4) m=Ξl (mod 2(0-1)).

If <7>4, the degree / satisfies /== s(mod m(p — l)). Hence we have

(5) / ί / + e ) = 2 (mod tn(q-D).

There are (q/2)-l irreducible characters Y, of degree /-he and the relations

(6) X+ε-=Yi (ι = l , 2 , . . . (0/2)-1)

are valid for all elements of order relatively prime to 0 — 1. In particular the

relations (β) are true for all elements of order 2 and 4. If we denote the degree

of Yi by /' and the value of Y, on the involutions by a\ the formula (3) can

be written as
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(7) g = q'miq2 - 1)///(/' - a')2.

Hence the order formula (3) is symmetrical with respect to / and /'. The

congruence (5) is also symmetric. The following lemma is crucial.

LEMMA 13. f - a =/ ' - a1 == 0 (mod q).

Proof. Consider the group N•= NG(S). The factor group N/S is a group

of order ςp-1 by Lemma 4. If t is an involution of S, C0(t) is of the form

SZ where Z is a cyclic group of order <7+l. If M= CG(Z), M is the direct

product of Z and a group L isomorphic to LF(2, q). If So is the center of

S, L contains So. From the structure of L we conclude that there is a cyclic

group C of order q — 1 of £ which normalizes So. Since Sylow 2-groups of G

are independent C normalizes S. Therefore the normalizer Ar of S contains a

cyclic group K of order q2 - 1. This means that Λr= SK.

We claim that K acts on S/Sύ transitively. Suppose that an element k of

K leaves an element of S/So invariant. Then there is a subgroup A of order

2 q in S such that k~ι Ak = A. Since So is the center of S and [A : SJ = 2, A

is abelian. The squares of the elements of A form a characteristic subgroup

of order 2. If this group of order 2 is generated by c, then k~ιck^c. Hence

& is in Co(c). By assumption C<?(c) is isomorphic to H(q). It is easy to see

that no element # 1 of odd order in CG(c) commutes with a subgroup of order

2 #. This proves that the group K acts regularly and hence transitively on

S/So.

It is not difficult to prove that the group N has q2 — 1 linear characters,

one character of degree q2-l and q+1 characters of degree q(q-~l), which

are irreducible. The values of these characters on elements of order 2 and 4

are listed in the table below.

1 1 1

<72-l <72-l - 1

αte-i) -q o

The first column indicates the degrees, the second the values on the involutions

and the last one is the values on the elements of order 4. Note that all the

elements of order 4 are conjugate in N.

The character X of degree / decomposes into a sum of irreducible characters
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of N. Suppose that this decomposition contains exactly x linear characters, y

characters of degree q2 - 1 and z characters of degree q(q - 1). Then we obtain

f = χ+(q2~l)y+q(q~l)z,

(8) α = #-f(<f- l)y-qz,

b = x-y,

where b is the value of X on the elements of order 4. We have immediately

(9) f-a = q2z.

This proves Lemma 13. We also remark that the numbers x, y and z in (8)

are non-negative integers.

Since the order g of G is divisible by #3, we see from (7) and Lemma 13

that //' s 0 (mod q). Since f = / ± 1, q must divide either / or /'. Without

loss of generality we may assume that

(10) f=0(moάq).

As remarked earlier, b - 1 or b 4-1 is the value of some irreducible charater

of G. The orthogonality relation of group characters implies that

since the order of the centralizer of any element of order 4 is q2. The formulas

(8) and (10) imply that Z>Ξ=0 (mod q). Combined with the above inequality

we conclude that

(11) b^O.

Let 2m and 2/ be the exact power of 2 dividing f-a and f respectively.

Comparing the power of 2 dividing both sides of (7) we get

3n-6n+l-2m,

where we used the equation q = 2n. We want to show that / = 3 n.

By (9) and (10) we may write

m = 2 n -f m! and / = n + /'

with non-negative m1 and /'. We have V = 2 m!. Hence the assertion / = 3 n is

equivalent to the relation m1 ̂  n.

By way of contradiction assume that m'<n. The orthogonality relation

implies that



ON CHARACTERIZATIONS OF LINEAR GROUPS III 171

= O (mod q*).

This congruence is obtained by summing X over S and observing the formula

(11). The term f- a is divisible by 2m and m<3n. Hence the term aq must

be divisible by the same power of 2. This means that 2n + m ' is the exact power

of 2 dividing a. The exact exponent of 2 dividing (/— a) Λ a is therefore

n + m'. By definition we have I = n + m' or /' = ml. This together with the

previously obtained equation /' = 2m' implies that /' = mf = 0.

We write

(12) f=qu.

The previous discussion proves that u in (12) and z in (9) are odd integers.

The order formula (7) is now

g=q*m(q2-l)u(qu±l)/z2.

Both qu and qu ± 1 are degrees of irreducible characters, so that they divide

the group order. Since z2 is odd we see that z2 is a divisor of m{q—l). On

the other hand

q3u(qu±l)/z2

is an integer because it is the index of a subgroup of G. Hence z2 divides

quiqu±l). Suppose that q>4. Then by (5), qu{qu±l) is relatively prime to

m(q-l). Hence we conclude that £ is a divisor of #4-1. We have

(13) a ~qw with w ~u~ qz- qy - z.

There are (q/2) irreducible characters of G with values either a ov a±l on

the involutions. Hence the orthogonality relation implies that

(14)

We write this inequality in the form

(15) (u + z-qz-z±(l/q))2<2(q-l).

By definition we ha ye W + 2 Ξ = 0 (mod q), which implies that

u- (q- l)z s 0 (mod q).

We have shown that z is a positive integer whose square is a divisor of </+!•

If u*(q-l)z, the right side of (15) is larger than (q-z- (l/q))2. Since z2
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divides q + 1, z ̂  (q/2) - 1. For z> (q/2) - 1 would imply

4 + l>22>(tf--2)74, or q<8.

We are assuming <?>8. The inequality (15) implies

or (q-2(z+l))q+(z+(l/q))2<4r.

Since the first term is non-negative, we get 2 = 1 and q = 4. This is not the

case. Hence u = (#— 1)2. This is however impossible because of the congruence

(5) which is written as

qu(qu±l) =2 (mod m(q—D).

It remains to treat the case # = 4. We get the inequality (14). Since #~4,

we obtain a bound for a. We have \a\ ^ 13. This gives an upper bound 3 for

w\ (see (1.3)). By definition u^w + Az and 22 is a divisor of

In particular z is a divisor of w(4w±l). Since \w\ ^ 3 , we have a very small

number of possibilities for z and hence for u. Only the values 1, 3, 5 are

possible for z. The formula (13) gives the corresponding values of w and u.

We have the following four possibilities:

z
1

1

3

5

w
•— 1

3
o

- 1

u

3

7

9

19

qu±l

11, 13

27, 29

35, 37

75

It follows from Proposition 5 of [7, 12 that the subgroup B of order (q~l)m

satisfies the property that B Π v~ιBv = {1} if v"~ιBυ^B. Hence the index of

NcΛB) is congruent to 1 mod 3 m. The index of NCJB) is again by Proposition

5 of [7, /] q3u(qu±l)/2 z2. In particular u{qu±l) is prime to 3. This eli-

minates all the possibilities but one. In the remaining case we have

qzu(qu ± l)/2 z2 = 32 7 29 = 6496.

Hence m is a divisor of 2165 = 5*433. The congruence (4) implies that m = l

(mod 10). The only possibility is m = 1. The order of G is 64 7 29 15 and
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the index of N=NG(S) is 7 27. By Lemma 2 the index [_G:N] is congruent

to 1 modulo 64. This is not the case as 7 29$1 I mod 64).

We have shown that / = 3 n. In other words / is divisible by qz

y which is

the highest power of 2 dividing the group order g. Hence by a theorem of

Brauer-Nesbitt [3] the character X of degree / vanishes on 2-singular elements.

In particular we have a = 0. Put f—qJv. The order formula (3) is now

g=,q\q2-l)m(qzv±l)/v.

As before q\(fv±l)lv is an integer and υ is odd. This means that v is a

divisor of (fv ± 1 and hence v = l.

Since the order of Mis divisible by. (tf-fl)2 (cf. Lemma 12), miq*±l) is

a multiple of # + 1 . By (4) m is prime to </+l. Hence we have the plus sign.

Being the index of NG{S), m(q*+l) is congruent to 1 modulo qz. Hence

(16) W Ξ I (mod q3).

If #>4, qλ or <73+l is congruent to 1 modulo m{q-l). This implies that m

is smaller than #3. The above congruence gives the value m~\. If <? = 4, this

argument does not apply. However

is the index of the subgroup NG(B) and is congruent to 1 modulo 3 m. Hence

m is a divisor of 693. No divisor of 693 except 1 satisfies the congruence (16).

We have proved the following proposition.

PROPOSITION. The order g of G is qHq2 - 1)(<?3+ l).

COROLLARY. G is represented as a doubly transitive permutation group of

degree qs -h 1, in which N=NG(S) is one of the subgroups leaving one symbol

invariant.

Proof Represent G as a permutation group Γ on the cosets of N. Since

the degree is </34-l, the Sylow 2-group S of N is regular on the cosets X^N.

For if l=*F#eS leaves a coset Y invariant, we have Yx= Y. If Y=Ny, yxy'1

belongs to N. Since x is of order a power of 2, yxy"1 is contained in S. Then

ySy'1f]S^{l). By Lemma 2 we have ySy"1 = S andjy eiVσ(S) = N. This proves

that Γ is doubly transitive.

9. The structure of Na{S). In this section we study the structure of the
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normalizer N-NG(S) of a Sylow 2-group S. The group S is by Lemma 1

isomorphic to the group Q of the matrices M(ά, b, c> 1) with c -aQ and b + bQ

= a1+Q (cf. (2) of §2) where a, b, c are elements in the field E of V elements.

We take a fixed isomorphism of S onto Q and label the elements of S by the

pairs (a, b) of field elements a and b of E. The structure of S is given by the

multiplication table for pairs:

(17) (a,b) (c, d)

As remarked in the proof of Lemma 13, N contains a cyclic group K of

order q2 — 1 which acts on S/So regularly. Here we denote by So the center of

S. From (17) it follows that So is the totality of pairs (0, b) with b = bq.

Hence the mapping {a, b)->a defines an isomorphism of S/So onto the additive

group of E. Since K acts regularly we may identify the group K as the

multiplicative group of non-zero elements of E. If k e Kr then k is a non-zero

element of E and the action of k on S/SQ. is that of left multiplication. Hence

we may write

(18) k'Ha, b)k = (ka9 b*)

where b* depends on k, a and b. Taking the square of both sides we get

(19) JΓ'ω, c)*=(0, k1+gc).

Put a'•= 1 in (18). Then 6* is a function of k and 6. We write

k'\h Wft=(A, 6*(ft, 6)).

Multiply (19) to the right. After a simple computation we get

6*(ft, ^ + c)=^*(^, £)+£ 1 + *c.

This implies that 6*(β, 6) -f ft1+<7ά does not depend on b. We write therefore

(20) /ΓHl, i)ft=(ft,

which serves as the defining equation of the function ψ(k). By (2) b satisfies

the equation b + bQ=l. Hence ψ(k) lies in F since ψ(k)q = ψ(k). For arbitrary

{a, b) with # # 0 , we can find bf such that

It is only necessary to check that the element b' defined by
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satisfies the requirements. This is easily done. The formula (18 > now becomes

(21) k~\a, b)h=(ka, k1+Qb + φ(k; a))

where ψ(k; a) = kι+Qψ{a) + ψ(ak).

This function ψ(k\ a) satisfies various properties. First of all it is linear

with respect to a:

(22) ψ(k; a-ha') = ψ(k; a)+ψ(k; a1) for a fixed ft.

This is an easy consequence of the formula (17). Transform (21) by another

element / of K. Then we get

(23) φikl; a)=ϊ1+gψ(k; a) + φ(l; ha).

LEMMA 14. We may assume that φ(kl a) = 0 for all k and a.

Proof, Let ZΓ* = {ft*} be the cyclic group isomorphic to K. The corre-

spondence k-+k* is assumed to be an isomorphism. Define a semi-direct product

iV* of S and K* by defining

(24) h*-ι(a, 6)ft* = (fta, k1+Qb).

We shall prove that the group iV* is isomorphic to N.

Suppose that y is generator of K. If λ is an additive mapping defined on

E taking values in F, the function definend by

μ(a) = λ(ay) + λ(a)y1+g

is additive. The mapping λ-*μ of Horn (E+, F + ) into itself is one-to-one. For

if λ(ay)=λ(a)y1+Q for all α e £ , then

λ(aym) = λ(a)ym{1+Q) for all m.

Since y is a generator of E, we have for all a^E

λ(a)=ca1+Q w i t h c ^ d ) .

Then for any pair a, b of elements of E

) 1 + Q = λ(a) + λ(b) =c{aι+Q + bί+Q),

or

This means that c = 0 and Λ = 0. Since Horn (E*, F f ) is finite, the mapping
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λ-*μ is onto. Since the function ψ(y a) is additive, there is an additive

mapping θ of E into F such that

ψ(y; a) = θ(ay) + θ(a)yι*Q for all a^E.

We prove that

ψ{ym\ a)=0{aym) + 0(a)yma+Q) for all

If w = l, this is the defining relation of β. Assume that ra>l. Then by in-

duction

θ(aym) + Θ{a)ymil+Q) = θiayy"1-1) + θ(ay)y{m-l){i+Q)

φ(y; a)ym-ιnι+q).

This is equal to ψ(ym a) by (23). Hence.for any k^K

(25) ψ(k a) = 0(ak) + Θ(a)kι+Q for all

Define a mapping <; of S into S by

σ{a, b) = (Λ,

Then a is an automorphism of S. Extend a to a mapping <;* of iV" into iV by

defining /(**) = Λ and <y*|S=c;. Then

; a))

:=k~\a, b + 0ia))k

= k-ισ{a,b)k.

This prove that <;* is an isomorphism of A/* onto N.

It follows that the structure of N is completely determined by the formulas

(17) and (24).

10. Structure equations of G. As before let Ndenote the normalizer.ΛΓG(S)

of a Sylow 2-grouρ S. We have shown that Af is a semi-direct product of S

and a cyclic group K. In the preceding section we proved that for a suitable

choice of notation S is the totality of pairs (a, b) of elements of E satisfying
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and the elements of K are labelled by non-zero elements of E, so that we have

formulas (17) and (24). Moreover by Lemma 12 there exsists an involution t

of G which normalizes K. The involution t commutes with elements of order

#4-1 but transforms each element of order q—.l into its inverse. Therefore

we have

(26) Γ1M = hΓ9 forfte/T,

If x*?l is an element of S, t~ιxt is an element outside of N. Being doubly

transitive (Corollary to Proposition) G satisfies the property that every elements

outside N can be written uniquely as ytz with y^N and zeS. We define

functions /, g and h by

(27) Γ1xt = g(x)h(xW(x)

where g(x), /<#)eS and h(x)cK. The equations in (27) are called the

structure equations of G.

LEMMA 15. The functions /, g and h determine the structure of G uniquely

{together with formulas (17), (24) and (26)). They satisfy the following pro-

perties :

(28)

(29) f{k~ιxk) = kqf(x)k~q and {

(30) /</(*ι) = * and f(g(x)) = HxΓQAxΓιh{x)Q,

(31) f(xy) =h(y)QAz)h(y)'qf(y)

where x, > G S,

/V00/. The first statement is almost obvious. Observe that the elements

of G- Ar can be written uniquely as utv with u&N and ί/eS. The formulas

(28), (29), (30) and (31) can be proved by using (27).

Since G contains a subgroup isomordhic to LF(2, q), we see that the sub-

group S contains an element s such that

(32) 52 = 1 and t^st^s^ts.

By suitable choice of the notation we may assume that S is labelled (0,1). In

general if x is labelled as (a, b) and if fix) is (a\ b') we write (af, b1) =f(a, b).

We want to prove that the functions /, g and h are determined uniquely.
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11. The structure equations of the unitary group. In this section we

consider the structure equations of the unitary group U=U(q). We have seen

that the totality of matrices M(a, b, c\ 1) of §2 with (2) forms a Sylow 2-group

Q of U. Let D(k) denote the diagonal matrix with kQ, kQ~\ AT1 in the main

diagonal. Then

D(k)D(l) = D(kl) and D{kYιM(ay b)D(k) =M(ak, kι+qb),

where we denote

M(a, b)=M(a, b, aq \ 0).

Hence the totality R of the matrices D(k) is a cyclic group of order q2 ~ 1 and

normalizes Q. If T denotes the matrix

0

0

1

0

1

0

1

0

0

T is in the normalizer of R and we have,

(33) T-ιD(k)T=

The elements of U corresponding to the matrices Mia, b), D(k) and T

generate the whole group U. We have

(34) T'ιMKQ, l )T = M(0, 1) ΓΛf(0, 1).

The structure equations of U may be written as

ΓΛf(β, b)TΞE Mia', b')D(k)TM(a"y b»)

and the congruence is modulo the center of U. It is easy to see that the ele-

ments M(a', bf)yM{an, b"), D(k) are uniquely determined by a and b. By the

formulas (29) and (34), the mapping Mia, b) ->M(af, b'), D(k) is determined

if we know the images of Λf(l, c) with c-\-cQ = l. We check

(35) ΓΛf(l, c)T=M(c-\ c-χ)D(c2-Q)TM(c-Q, c~ι).

12. Identification of G. We will compare the structure equations of G to

those of U. If we label the element 5 of S satisfying (32) as (0, 1), we get

(36) /(O, 1) = (0, 1) and *(0, 1) = 1.

This is in agreement with (34). By the transformation formula (29) we obtain
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/CO, b). We have the following formulas:

(37) /(O, δ).= (0, 6"1), g(Q, b) = (0, 6"1) and , fe(0,.δ) =6.

Define three functions a, β and r by

(38) / ( I , *) =*= (•*(*), /?(*)) and Ml, *) = r(*),

Then #(#), /9(ΛΓ) and r(#) are elements of E and <χ{x), r(^)^Q».

Consider any element {a, b) of S. We assume that «Φ0. Then

(Λ, b) = a-\l} z)a with άΛqz^-b.

Hence by (38) and (29) we get

(39) f(a, b) = β*(α(;z), β(?))a~9 = (a~Qx(z), a~ι~c}β(z)).

Similarly we have the fallowing two formulas:

g(a\b) = (a-ηa(zQl aΓ1-*&(zq)«),

h(a, b)=aι-Qr(z) (z = a'ι-Qb).

We have used the fact that (a, b)"1 = (a, bq) (cf. (17)).

Define another function 3(x) by

(41) ' δ(x)

If jy = δ(^), we have

/ ( α ( * ) , β(x)) - (α

On the other hand the left side is//(vl, ΛΓ),. which is (1, x) by (30). Hence we

have

(42) a(y) = a(x)Q and j3(>) = xcc(x)1+*.

This implies in particular that δiy) -x or

(43) δδ(x)=x.

LEMMA 16. There is an element (1, x^ such that

(44) $ ( * ) = * * •

Proof. Compute/(^(l, Λ:)) in two different ways. By (40)

gil, x) = (a(xQ), β(xq)Q).

Put « - d(xQ). Then by definition (38) we get
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f(g(X x)) = (a(xqΓQa(zq)9 aix')'1''β(zq)).

On the other hand the formula (30) can be applied. We have

/te(l, x)) = k~1f(lt x)"ιk with k = γ(x)Q.

Hence f(g(l, x)) = (cc{x)k, β(x)qk1+q). Then we have

a{x)k = a(xq)"qa(zq) and β{x)qklJrq = a

The above equations imply that

(45) d(zq) = αUT^/SU*) = αί*)" 1

Consider the set TO consisting of all the elements of E satisfying x -h xq = 1.

The set To contains exactly q elements. We say that two elements a, b of To

are equivalent if there are elements ao, tfi, . . . , an of To such that ao = a,an-b

and for any i(l ^ * ̂  ί̂) #,- = β?-i or α, = δ(ai-i). Let Ti be any equivalent class

of To in above sense. Let x be an element of TΊ. Since ΛΓ=*F#<7, TΊ contains at̂

least two elements. By definition Tj contains y = 5(ΛΓ) and 2 = 5(ΛΓ<7). TI also

contains yq and /', but by (45ϊ δ(zq) =.yq. Hence Ti contains at most 6 elements.

Since the set To contains exactly q elements, there must be an equivalent class

with fewer than 6 elements. Otherwise q would be a multiple of 6, which is

not the case. Then if 7\ is one such class with fewer than 6 elements, x

coincides with one of yt z, yq or zq. If x = yt δ(xq) is z and at the same time

it is zq. This is impossible. If x = z, δ(z)=xQ by (43) and x satisfies the

requirement. If x=yq, we have y = δ(x) and δ(y) ^χ=yq. If x = zq, we get

the contradiction y=yq. In any case there is an element in TΊ satisfying the

requirement.

Let x be one of the elements of E satisfying (44). Then δ(x) = xq and the

formulas (41) and (42) imply that

(46) a(xq)=a(x)q and β(x9) = β{x)q.

By definition

/(I , x + y) = (αU + jι), β(x + y))9

and here y is an arbitrary element of F. Note that y-\-yq -0. We compute

/(I, * + v) differently. Apply the product formula (31). We have

/(I , x)g(0, y) = (α(^), /9(x) )(0, ĵ ""1) = UU), j9U) +J'" 1).
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If z^o(x)Λ-y-1a{xr1'Q-xqΛ-y'ιa{xYι"Q

i

/(I, x+y)=y{a(x)-Qa(z), a{x)'l'q ^z))y"ι^y y'1)

= {y-ιcc{xrηa{z), y-

Hence we get

(47) <κ(x + y)=y~1a(xΓ9a(z) with z = xq+y-ίa(x)~1~9.

For the function g the product formula corresponding to (31) is

g(xy) ^g(x)h(x)g(z)h(x)'1 with z = f(x)g(y).

we have

Equating the first entry we obtain

(48) a(xq+y) =

•where. 2 is defined as in (47). The two formulas (47) and (48) give the equa-

tion

y~1a(χqΓqa(zq) = a(xq)

By definition ^ = ^ 4 - ^ where w=,y'"1α(jif)"1"<7. The above equation gives the

value a(x+'u):

(49) .:α(jif + «) = l/ίM; + M) where «; = γ{x)~ιcc{x)~2q.

This formula (49) is true for a fixed x satisfying (46) and for an arbitrary

non-zero element u of F. Since

by (43), we can apply the preceeding argument to obtain

- .«(#*+») = 1/O + n)

for an element w=^θ of F, where v = r ^ < 7 ) " 1 α : ( ^ ) " 2 < 7 . The element of Esatisfies

the equation xq = x+1. Hence we have a(x) = 1/iv + 1). Substitute these values

in (47). After a simple computation we get

yυ+ (v-
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Since this equation is true for any non-zero element y of F, we conclude that

v = υQ +1 and w = v -f 1.

Note that we have assumed the inequality q>2, and so there are more than

one non-zero elements in F. These equations imply that the formula (49) is

true for all « e F and that w- x is an element of F Hence we have

(50) a(s) = l/(sq + c)

for all 5 satisfying s -f sq = 1, where c is an element of F independent of s.

Then cq = c and a(sq) = ot(s)q for all s. Using (42) we get

This equation implies that

(51) δ(s)=sq for all s.

Since (51) is true for all s, we have (cf. (49))

(52) r(s)=a:(sΓ 2 < 7 + 1 for all s.

It remains to prove that c = 0 in (50). If c = 0, then a(s) = s~Q, j9(s) = s""1

and γ(s) = s2~q. This means that the structure equations of G are identical

with the equations (35) of the unitary group. Then G is isomorphic to U(q).

We use the formula (31) again. Compute / ( I , x + y) using the fact that

(1, x+y) = (0, y)(l, x) for y&F. We have

f(0,y)g{l, *) = (0, y

By (50) and (52), γ(x) = cc(xΓ2Q+ί^ (xq + c)2q~\ If z =/(0, y)g(l, x), then by

(39)

where w = x+ (x+c)1+9y~ι. By (31) we get

/ ( I , ^ + ^ ) = ( ^ + O 2 -V(2)(^ + c)^ 2 ((

In particular we have by using (17), (24) and (38)

(53) (xq +y)(xq +y + cVx~Q = Λ; 7 (^ + c)"ι'q4- (ΛΓ + c ) " 1 ^ + c)" 9 + w(w + e)

By definition we have



ON CHARACTERIZATIONS OF LINEAR GROUPS III 183

Multiply (x + c)ι*g(xη +y + c)1*" to the above equation (53). We get

Since w = x+ (χ + c)1+ηy~\ this is reduced to

^(xί' + x+l)+y(x'I + x+

The element x satisfies the equation xqΛ x~\. Hence we have

Since y was an arbitrary element of F the desired equality c = 0 is proved.
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