A THEOREM ON FACTORIZABLE GROUPS OF ODD ORDER

OSAMU NAGAI
To Richard Brauer on his 60th birthday

Recently, W. Feit [2] obtained some results on factorizable groups of odd order. By using his procedure and applying the theory of R. Brauer [1], we can prove the following theorem similar to that of W. Feit [2]:

Theorem. Let G be a factorizable group of odd order such that

$$
G=H M
$$

where H is a subgroup of order $3 p, p$ being a prime greater than 3, and M is a maximal subgroup of G. Then G contains a proper normal subgroup which is contained either in H or in M.

Proof. It is sufficient to prove the theorem in the case in which H is nonabelian. In fact, if H is abelian, then, as $p \neq 3$, the theorem follows immediately from the theorem of W. Feit [2].

Now, assume that no proper normal subgroup of G is contained in M. Suppose that $D=H \cap x M x^{-1} \neq 1$ for some element x in G. If $D=H$, then $H \subseteq x M x^{-1}$. Since every subgroup of G conjugate to M is of the form $y M y^{-1}$ for some element y in H, it follows that H is contained in every subgroup conjugate to M. Hence the intersection of all subgroups conjugate to M is a normal subgroup of G, contained in M. This contradicts our assumption. Thus $D \neq H$. In this case H is represented as the form $H=A D$, where A is a subgroup of prime order which is either p or 3 . Since the conjugate subgroup $x M x^{-1}$ is the form $y M y^{-1}$ for an element y in $H, G=A \cdot y M y^{-1}$. By a theorem of T. Ikuta [3], either A is normal in G or $y M y^{-1}$ contains a proper normal subgroup of G. Thus we can assume that $H \cap x M x^{-1}=1$ for every element x in G.

Let π be the permutation representation of G induced by the subgroup M.

Since the kernel of π is contained in M, π is faithful. Therefore we can assume that G itself is a transitive permutation group of degree $3 p$. Since M is a maximal subgroup, G is a primitive permutation group. Since $H \cap x M x^{-1}=1$ for every element x in G, H is a regular subgroup of G. Since the order of G is odd, G cannot be doubly transitive. Therefore, by the results in [4], G has the following properties:
(a) The order of G contains the prime p to the first power only.
(b) The centralizer of a Sylow p-subgroup P is contained in P.
(c) G^{*}, considered as matrix-representation of G, contains no irreducible constituent of degree 1 except the unit representation. Furthermore,
(d) G^{*} contains no irreducible constituents of the exceptional type (in Brauer's sense). In fact, if G^{*} contains an irreducible constituent of exceptional type, then by Theorem 3 of H . Tuan [5], either $G \cong A_{\text {T }}$ or $G \cong L F(2, p)$. Since the order of G is odd, this is a contradiction.

Under these circumstances, the degrees of the irreducible constituents of G^{*} can be determined completely (see [1], or [4], p. 204). They are $1, p$ and $2 p-1$. Corresponding to this decomposition, the subgroup G_{1} leaving fixed one letter has just three transitive sets whose lengths are $1, v$ and w (see [6], p. 77). Of course $1+v+w=3 p$. If $v=w$, then $3 p=1+2 v$. Since $p-1 \equiv 0$ $(\bmod 3)$, we can put $p-1=6 l$ where l is a rational integer. Then $q=$ $3 p v w / p(2 p-1)=3(9 l+1)^{2} /(12 l+1)$ is not a rational integer. By a theorem of J. S. Frame (see [6], p. 83), this is a contradiction. Hence $v \neq w$.

Now, assume that $1<v<w$. By the methods of H. Wielandt (see [6], in particular p. 92), we obtain the following two equations:
(1) $v+s p+t(2 p-1)=0$,
(2) $v^{2}+s^{2} p+t^{2}(2 p-1)=3 p v$,
where s and t are rational integers. Since $1+v+w=3 p>1+2 v,(3 p-1) / 2>v$. From (2), $t^{2}<3 p v /(2 p-1)<p^{2}$. This means $|t|<p$. From (1), $t \equiv v(\bmod p)$. If we put $t=v+x p$, then, since $v>0$ and $|t|<p, x \leqq 0$. If $x \leqq-3$, then $2 p \leqq p(-x-1)<v$. This is impossible, since $(3 p-1) / 2>v>0$. Hence $x=0$, or -1 , or -2 , that is, $t=v$ or $t=v-p$ or $t=v-2 p$. If $t=v$, then, from (1), $s=-2 t$. Substitute this in (2), $2 t=1$. This is a contradiction. If $t=v-p$, then from (1), $s=-2 t-1$. From (2) $2 p=6 t^{2}+3 t+1$. On the other hand,
since H is non abelian, $p-1 \equiv 0(\bmod 3)$. This is a contradicton. If $t=v-2 p$, then as above, we have $2 p=6 t^{2}+9 t+4$. This is also a contradiction.

Thus the proof is completed.

References

[1] R. Brauer: On permutation groups of prime degree and related classe of groups, Ann. of Math. 44, 57-79 (1943).
[2] W. Feit: A theorem of factorizable groups, Proc. Amer. Math. Soc. 11, 658-659 (1960).
[3] T. Ikuta: Über die Nichteinfachheit einer faktorisierbaren Gruppe, Nat. Sci. Rep. Lib. Arts Fac. Shizucka Univ. 9, 1-2 (1956).
[4] O. Nagai: On transitive groups that contain non-abelian regular subgroups, Osaka Math. J. 13, 199-207 (1961).
[5] H. Tuan: On groups whose orders contain a prime number to the first power, Ann. of Math. 45, 110-140 (1944).
[6] H. Wielandt: Vorlesung über Permutationsgruppen (Ausarbeitung von J. André.) Tübingen 1955.

Department of Mathematics

Yamaguchi University

