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I. Introduction

1. Let f(z) be a holomorphic function defined in the unit disk UI<1,

which we shall denote by D. Let Σ be a subset of D, whose closure has at

least one point in common with C, the circumference of the unit disk. The

set of all values a such that the equation f(z) = a has infinitely many solutions

in Σ is called the range of f(z) in Σ, and is denoted by R(f, Σ). Let r be a

point of C, and let {zn) be a sequence of points in D with the properties:

zn = rnτ, 0<rn<l, limr» = l. The non-Euclidean (hyperbolic) distance p(zn,

Zn+i) between two points zn and zn+i of the sequence is defined to be equal to

I log
2 &

(cf. [31 Ch. II).

We shall abbreviate the expression "non-Euclidean" to n-E. For a dis-

cussion of the n-E geometrical matters involved in this paper, the reader is

referred to [31

Given a point τ on C, the set of all points z in D for which

where α and β are given angles and e is so small that the boundary of the

resulting set has only the point τ in common with C shall be called a Stolz

angle at τ. If a = — β, the resulting set is called a symmetric Stolz angle with

vertex τ and of opening 2 β, and will be denoted by Jτ,p.

It is the purpose of the present paper to study the boundary behavior of
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a holomorphic function in the neighborhood of the point τ, I r I = 1. We shall

arrive at a generalization of a theorem of W. Seidel. The concepts and method

used in proving it are essentially the same that were employed by Seidel (cf.

[9], pp. 159-171).

2. The following notations will also be used in the formulation of the

theorem:

(a) For every r with 0 < r < l , we shall let

z\Zr) and Dr = {z\\z\ ύr}.

We shall denote the open and closed n-E circular disks with n-E center z

and n-E radius p by D(z, p) and ~D(zy p), respectively. We shall also denote

the circumference of the n-E circular disk with n-E center z and n-E radius

p by C(z, p).

(b) Given f(z) a holomorphic function in D. For each zn in the sequence

{zn}> we shall denote the function /(-y^-—J, holomorphic in D, by f(z\ zn).

(c) For any angle cc, 0 < α : < 4 p we let

If Ω is the diameter of the unit disk connecting τ and - τ, where | τ I = 1, then

tfτ,*= UD(2, ϋ)

is the lens-shaped region bounded by two hypercycles (cf. [3], Ch. II) sym-

metric in the diameter Ω and forming at r the angles oc and — a with Ω.

II. A Theorem

3. We now prove the following generalization of a theorem given by W.

Seidel ([9], pp. 166-169, Theorem 4):

THEOREM. Let f(z) be holomorphic in D, let τ be a point of C, and let

zn-rnτy Q<rn< 1, lim rn = 1, be a sequence of points for which

(1) p{Zn, Zn+ι)<M

where M is a positive constant, and n = 1, 2, . . . , and
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(2) lilϊl/(*„) = °°.
n->oo

Then, there exists a real number a-, with 0 ^ arτ ^ -ί-> such that

1. /(2) fewί/s to infinity in every Stolz angle Jτ,β9 where β<ccx',

2. The complement of the range of the function in the Stolz angle ΔXt$t

(£/?(/, Jτ,β), consists of at most one point for every Stolz angle J τ,p, where β>aτ.

Note. The extreme case <*τ = 0 must be interpreted to mean that conclusion

2 holds for every Stolz angle J t,P, while the extreme case α x = y must be

interpreted to mean that conclusion 1 holds for every Stolz angle J τ,β.

The above theorem differs from the theorem of Seidel only in the restric-

tion imposed upon the sequence of points {zn). In his theorem, Seidel specifies

that limpUn, JZ»+I)=O.
n-»αo

4. In order to establish the theorem, we shall first prove the following

lemmas

LEMMA 1. Let f(z) be holomorphic in D, let τ be a point of C, and let {zn}

be a sequence of points ivith the same properties as in the theorem. Let the

family {f(z'> zn), n = 1, 2, . . . } be normal in D. Then the point τ is a Fatou

point (cf. [7], p. 59) of f(z) ivith the limit °°.

Proof. For each zn, the function f(z\ zn) is holomorphic in D. We have

/(0; Zn)=f(Zn)

so that, by (2), we have

(3) li

Let Jτ,p be any given symmetric Stolz angle with vertex r and of opening

2 β, 0</3< | r We want to find a sequence of closed n-E disks D(zn> ΐ)

with γ large enough so that the union ϋ D(zn, γ) will contain in its interior
n = l

the intersection of some neighborhood of τ with Λτ,β. It is clear that this

construction is always possible.

Now, by hypothesis, the family (f(z\ zn)) is normal in D, so that (3)

implies that

\imf(z; Zn) = °°
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uniformly on every disk A , r<l. In particular, setting f=tanh γ and noting

that f(z) assumes the same values in D{zn<, r) as /(z; zn) does in Dri we see

that f(z) tends to infinity on the sequence of the disks ~D(zn, r) Hence, we

infer that f(z) tends to infinity as z-*τ in Δ~^. Since the symmetric Stolz

angle Jτ,p was taken to be arbitrary, Q<β<-~9 we arrive at the conclusion

that τ is a Fatou point of f(z) with the limit °°.

LEMMA 2. Let f(z) be holomorphic in D, let τ be a point of C, and let zn = r«r,

0 < rn < 1, lim rn = 1 be a sequence of points in D. Let the point 2 = 0 be an ir-

regular point (cf. [6], p. 37) of the family of functions {f(z\ zn))- Then

&R(f, Jτ,tt) consists of at most one point for every Stolz angle J τ,β.

Proof. Since the point 2 = 0 is an irregular point of the family {f(z\ zn))9

the family fails to be normal at z = 0. Hence, in every neighborhood D\, λ<l,

of 2 = 0, every value, except perhaps one, is assumed by infinitely many of the

functions of the family ([6], p. 61). Now, f(z\ zn) assumes in the disk D(0,

a), where a--^ log - = — Γ , the same values as f{z) assumes in the disk D(zn,

a). The n-E disks are all contained within the region Hτ,a bounded by two

hypercycles symmetric in the diameter connecting the points τ and - r and

forming at τ angles a and - a with the diameter, where a = 2 arc tan λ. But

in a neighborhood of r, the region Hτ,<* is contained within the Stolz angle Jτ,a.

Hence, ("#(/, J-,«) consists of at most one point for every Stolz angle Jτ,a.

LEMMA 3. Let f(z) be holomorphic in D, and let τ be a point of C. We

associate with every sequence {Cn}> C« = rMτ, 0 < r n < l , limrn = l, a non-negative

number Γ in the following manner: Γ is the l.u.b. of the n-E lengths of the

radii of all disks Ί)c, c < l , within which the family {f(z'> CM)} is normal. If

there exists at least one sequence of sequences {z(n]) such that the associated

numbers /'v-*0, then ©/?(/, Δτtϋ,) consists of at most one point for every Stolz

angle Jτ,a, and so ax =0.

Proof. Let Jτ,* be a given symmetric Stolz angle with vertex τ and of

opening 2 a, where a is an arbitrarily small fixed number. Since we are given

a sequence of sequences {2*°} with the associated numbers A, such that Γv -> 0,

we know that there exists a sequence Wno)) with the associated number ΓVo<

tan ~- - The family {f(z\ Zno))} fails to be normal in the disk Do, Γ
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tan-^-- Thus, there exists a point z0 with \zo\<σ, such that every value,

except perhaps one, is assumed by infinitely many of the functions of the family

{fiz'y z(no))} in every n-E disk with n-E center 20. Choose the n-E radius

of such a disk so small that the disk lies wholly within the disk Da. Now

setting r = -^ log .,----» f{z\ zlno)) assumes in Do the same values as f(z)

assumes in D{z(n°\ r). Then, setting #* = 2 arc tan ΓVo, it follows by the same

argument as in Lemma 2, that Si?(/, Λ,P) consists of at most one point for

every Stolz angle J? f P, ./9>α*. Since a*<a, and since a was given to be an

arbitrarily small number, it follows that (£i?(/, A,«> will consist of at most

one point for every Stolz angle JVya> and so ατ = 0.

5. We can now proceed with the proof of the theorem. For each zn

consider the function f(z\ zn) holomorphic in D.

We shall now examine the family {fiz\ zn)) for normality. There are

altogether three mutually exclusive cases to be considered:

I. The family {f(z; zn)} is normal in D\

II. The family {f(zl zn)} is not normal in D, but is normal at 2 = 0;

III. The family {f(z\ zn)) is not normal at 2 = 0.

Consider Case I. In this case, the family {f(z\ zn^) is normal in D. By

Lemma 1 we arrive at the conclusion that in Case I the point τ is a Fatou

point of f(z) with ihe limit °°, and we have acτ = ~ -

Let us next consider Case III. In this case, the family {f(z; zn)) fails to

be normal at the point 2 = 0, and, according to Lemma 2, fe"i?(/, Jt,α) consists

of at most one point for every Stolz angle Jτ>a, and we have aτ = 0.

Finally, in Case II, let 0<q<l be the smallest modulus of all those points

in D at which the family {f(zl zn)} fails to be normal. Since the set of such

points is closed relative to D ([6], p. 38), such a smallest positive modulus

exists. Setting a- -~- log -=—--- construct the open disksD(zn, a),n- 1,2, . . .
• • • • ώ i..™1" \l

Consider now the family of all sequences {z{n])^ι where / is an uncountable

index set, such that

= r^ r, 0 < rZ] < 1, lim W =

For each v^ΐ, let Γv be the 1. u. b. of the radii of all circles Dc, c< 1, within

which the family {/(2; Zn])) is normal.
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It is clear from Lemma 2 that if any Γv = 0 we have aτ = 0. Also, if there

exists at least one sequence ΓVA->0, we have, according to Lemma 3, <χτ=0.

Hence, we may confine ourselves to the case that there exists a positive

number a such that all Γ v>a. Now take a point C«υ in D(zn, o) on Or whose

n-E distance from that point of intersection of C(zn, a) with the radius Or

which is farther from 0 is equal to -j- log wzr^~ = ^ Since the family {f{z

C«υ)} is normal in DίO, 2λ), we know, by what has been shown in Lemma 1,

that fiz) tends to infinity on the sequence of the disks D(Cn\ 2λ). Now, take

a point Cn2) in D(Cn\ 2λ) on Or whose n-E distance from the farther point of

intersection of C(Cn\ 2 λ) with Or is equal to λ. As before, it follows that in

the disks D(Cn\ 2λ)y fiz)-* «>. Proceeding in this manner, it is clear that

since p(zn, zn+i)<M, after a finite number of steps k, the point C*fe) will fall

in the disk D(zn+ι, a). This shows that f(z)-* °o as z->: along Or. Now,

Seidel ([9], p. 170, Corollary 5) has shown that if f(z) is holomornhir in Π and

r a point on C for which lim/(rr) = oo, then there e:

0 ^ art ̂  4 p . for which the conclusion of the theorem

theorem is now complete.

III. Counterexamples

6. In this section we shall investigate three questions. First, we shall

consider the possibility of drawing a conclusion for the Stolz angle Jτ,p in the

theorem when β~aτ. Secondly, we shall consider the possibility of proving

the theorem by allowing the given sequence of points {zn} to have the property

that lim f(zn) = c, where c is a value assumed by fiz) in the unit disk. Finally,
n-»oo

we shall investigate the possibility of removing the condition that the nΈ

distances between the pairs of consecutive points of the given sequence are

bounded by some positive constant M as required in the theorem, and not

imposing any other condition upon the sequence, other than that f(zn)-* °° as

zn-+τ.

Let us consider the first problem. We claim that no conclusion can be

drawn for J τ,α τ itself. The following example shows that this is the case:

Example 1, Let fiz) =ew, (z = x + iy), where
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The function fiz) is holomorphic in D and lim fix) =00. it is easily seen that

for τ = l, cc-z = ~- The function w ^ e~{*m —^ maps D onto the half-plane

— γ n < argttf<-^- Also, the ray argzί;= — | - is a Julia line (cf. [5]) for

ew. The region bounded by the two hypercycles through - 1 , -f 1 and making

angles -~- and - ~ with the diameter ( -1,1) of D is carried by the mapping

t(;==β~ίΛ/4)z-i-Γ— onto a region in the u -plane given by —%- < argz<0, and
1 — Z £

Ji,Λ/4 is mapped onto a region in the w-plane whose every point satisfies the

inequality sSlw> -L-, since the two sides of Ji, π/4 go into the straight half-

lines Ww> —L^, $w = - J L and 3ί«;= ~> $ιv < - -A-. Consequently,

V2 V2 V^ Vώ

!/(2) |>β~1 /v / T throughout JifΛ/4 and /(«) does not tend to °° as z-*l in Ji,Λ/4.

Thus neither one of the conclusions 1 and 2 holds for A,π/4.

7. Let us now consider the second problem. We note that in the theorem

we assume that lim/(zrt) = 00. Since f{z) is given to be a holomorphic func-
n->"x>

tion in' D, we know that the value °̂  is not assumed by this function there.

It is easy to see that the conclusion of the theorem also holds, with obvious

modification, if condition (2) is replaced by the condition lim/Un) = c, where

the value c is either omitted or assumed at most a finite number of times by

fiz) in D. If, however, lim/(2w) = c, where fiz) assumes the value c in the
n-» oo

unit disk infinitely many times, then it may be shown by an example that the

theorem fails to be true. This example is taken from a recent paper of F.

Bagemihl and W. Seidel ([1], pp. 11-13), and is as follows:
Example 2. Let

= Π ? *— ZnZ

where zn = 1 - e~n, n = 1, 2, . . . .
00

Since zn-»l and Πzn>0, by a theorem of Blaschke ([2], p. 202), the pro-

duct converges uniformly in every closed subregion of D and thus defines a

bounded holomorphic function Biz) in D. We have limpid, zn+i) = -TΓ*

We note, then, that the function Biz) possesses the following properties:
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(A) B(z) is holomorphic and bounded in D\

(B) UrnB(zn) = 0 where {zn) is a sequence of points for which zn-*l and
ίl-»3O

μ(Zn, Zn+l)<M< oo, n = 1, 2, . . . I

(C) The value 0 is assumed by the function Biz) infinitely often in D.

The function Biz) shows that it is not possible to replace condition (2) in

the theorem by the condition lim f(zn) = c, where c is a value assumed by f(z)

infinitely often in D. Indeed, F. Bagemihl and W. Seidel have proved that the

function Biz) does not possess a radial limit at the point τ = 1 (DD, pp. 11-13).

If the theorem, as modified, were true, this would imply that αrτ = 0. On the

other hand, conclusion (2) of the theorem can not hold since B(z) is bounded

in D.

8. We shall now investigate the third problem as stated in §6. We shall

show by an example that if no condition is imposed upon the sequence, other

than the fact that f(zn)-* °° as 2«-»l, the theorem is no longer true.

Example 3. Let R be a simply connected region in the w-plane whose

boundary contains a prime end P of the third or fourth kind (cf. [4], pp. 7-9),

the set of principal points B of whose impression1} contains the point at in-

finity. Since R is a simply connected region which is not the whole w-plane,

we know, by the Riemann mapping theorem and the fundamental theorem on

prime ends (cf. [4], p. 18), that there exists a univalent and holomorphic func-

tion z = Ψ(w) which maps the region R onto the unit disk D in the 2-plane so

that the prime end P corresponds to the point 2 = 1.

Let us now investigate the inverse function w = f(z) which is univalent

and holomorphic in D. The image of the radius 01 in D is a Jordan arc which

approaches arbitrarily near the set of points B. It follows that there exists a

sequence of real points {xn} on the radius όϊ of D such that lim/(*„)= oo.
n-»oo

By a theorem of Lindelof ([4], p. 23) the cluster set (cf. [7], p. 61) of f(z) in

any Stolz angle with vertex at r = 1 must be the set of principal points of the

impression of the prime end. Since the set B of principal points does not

consist of one point, the function fiz) can not tend to infinity in any symmetric

Stolz angle with vertex 1. Also, since f(z) is univalent in D, the function can
l) The term "impression" of a prime end was introduced by G. Piranian. (Cf. [8], pp.

45-55).
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not take any value infinitely often in any Stolz angle. Hence, according to the

theorem, we conclude that lim p{xn, xn+i) = °°.

The function constructed above shows that such an extension of the theorem

as stated in § 6 is not possible even for a univalent function.

Finally it may be mentioned that by means of our theorem one may like-

wise generalize the following results of W. Seidel: Corollaries 1, 3 and 4, and

Theorem 5 (cf. [9], pp. 163, 169-170).
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