
THETA FUNCTIONS AND ABELIAN VARIETIES
OVER VALUATION FIELDS OF RANK ONE I.

HΪSASI MORIKAWA

Introduction. We shall denote by 501 the Z-module of integral vectors of

dimension r, by T a symmetric complex matrix with positive definite imaginary

part and by I the variable vector, ϊf we put #(m, n) ~eΛy~lίmτn and u(m)

= βίΛί/-1'«12(ιn, tiGSW) the fundamental theta function Σ e*v~ltmτm'tl«y:Zitmi is

expressed in the form: ϋ(q\u) = Σ flint, w)u(m) as a series in <? and u.
tnegtf

Other theta functions in the classical theory are derived from the fundamental

theta function by translating the origin and making sums and products, so these

theta functions are also expressed in the form: Σ cmfl(w, n'ιxn)u(m) as

series of q and u. Moreover the coefficients in the relations of theta functions

are also expressed in the form: Σ dmq(m, n^m) as series in q.

All the parts of theory of theta functions are formal except only one point:

The products of theta functions are also theta functions. This property of the

products of theta functions comes out as a result from the positive definiteness

of the imaginary part of T. The positive definiteness of the imaginary part of

T is equivalent to the condition: |fl(m, m ) | < l for tn#O.

This situation suggests the possibility of replacement of the field of complex

numbers with a field complete with respect to a valuation of rank one.

§ 1. Summary and notations.

1.1. We mean by a valuation v of rank one of a field Ω a mapping v of

Ω into the additive group of real numbers satisfying v(ξ-η) = v(ξ) 4- v(-η) and

v(ς + ?)>min{t;(f), v{-η))(ξ, ? # 0 in Ω).

We fix, once for all in the following, an algebraically closed field Ω complete

with respect to a (non-trivial) valuation v of rank one. We also choose a field

K containing Ω such that 1°K is algebraically closed and 2°K contains infinite

many elements xlt x2, . . . such that there exists no relation Σ <*ιv ιr#ίι
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• x1/ - 0 (β/. iv e i?, w e Z) we call K the univarsal domain of Ω. We fix,

once for all in the following, a mapping of Kx x Q onto Kx : (?, β)~>£β(Kx

= K-{0};Q is the field of rational numbers) satisfying Γξaηa= (ξ η)", 2°ξaξb

= ίώ+δ, 3°(ξa)b = ζab, 4°£° = 1, 5°?Λ = ? — f, β 0 ^ " 1 is a primitive wio-th root of

unity ίra -p*tnoI (wo, .£) = !) (f, η e Kx C ^ G Q ; W, W, W 0 eZ). By the Zorn's

Lemma we can always construct a mapping (?, a)-*ξa satisfying 1°, . . . , 6°.

By this mapping Ω is maped.onto itself.

We denote by ΊRQ a. space of r-dimensional rational column vectors {'(#i,

. . . , Xr)\xι, . . . , ΛΓreQ} and denote by 3JI the Z-module of all the integral

column vectors in %RQ. For a r-square rational matrix cc we mean by αW the

Z-tnodule {αm|me5IB}.

In the following we shall fix once for all a positive definite symmetric in-

tegral matrix S of degree r and an involutive Q-algebra ΛQ in the full matrix

ring Endq(ϊftQ) with the involution * : αr* = S'αS~\ where we assume that ΛQ

contains the identity matrix. We denote by A the Z-algebra consisting of all

the elements α such that αS~1WczS~1Wl. An element α in ΛQ is called sym-

metric if #* = α and a symmetric element β is called positive if all the charac-

teristic roots of β are real positive.

We choose a particular Z-base (mx, . . . , mr) of S" 1 ^ such that S m ^ ' d , 0,

. . . , 0), . . . , Sιt?r = '(0, . . . , 0, 1) (mi, . . . , mr) is also a Q-base of 9J?Q.

We write each vector in in WQ with components ̂ (m), . . . , #r(tn) with respect
r

to (mi, . . . , mr) as follows: m = S
ί

1.2. A function 7 on ΊΪIQ valued in Kx is said multiplicative if X satisfies

) =Z(m)X(n) and a function ψ on 9JΪQX9JΪQ is said bimultiplicative if

', n + n') = 0(m, n)0(m'f n)^(m, n')0(m', n;)(m, m', n, n'eTOq). If 0(m,

= 0(π, m), ^ is called symmetric. If a symmetric ψ has values in Ωx and

, m))>0 for every non-zero m in WQ, we call ψ positive symmetric. All

the multiplicative functions on TIQ valued in Kx form a commutative group in

the natural way; We denote it by (£(K) and denote by (£(!,) the subgroup of

(£(K) consisting of all the multiplicative functions on 5D̂Q valued in a subfield

L of K. A multiplicative function is uniquely determined by the system of

values (/(nu), . . . , Z(mr)), because ί f l(?GK x, α e Q ) are definite elements in

i2x. So we may identify (£(£) with the direct product LY x xZΛ Similarly
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a symmetric bimultiplicative function ψ on 9JIQ valued in Ωκ is also uniquely

determined by </Kmt , my), (1</<;,/'< r).

The full matrix ring EΠCIQ(TOQ) operates on @(K) in the following way:

Γ(m)=Z(α:m), (αreEndq (9JΪQ), Ze(?(K), me3JfQ).

Using multiplicative functions, we can characterize the universal domain K

by the following conditions: 1°K is an algebraic closed field containing Ω and

2° there exists infinite many elements Wι, z#_>, . . . in (£(K) such that there

exists no non-trivial relation Σ cnlf.. ,π^i(m) - w/(τiz)=0 Unlt...tnι
Πj,..., Π / & - Λ - J 9 ^

e i2; I I G Z ) . We say MJI, . . . , w/ in @(K) to be independent over a subfleld

L of K if there exists no non-trivial relation Σ cnJ>...,n/tt>i(nι) * wι(r\ι)

= 0 (cn1,...,nι^L; ΛeZ). If (̂; in g(K) satisfies no non-trivial relation:

Σ cn^(n)=0 ( e e l ; ΛeZ), then we call **; a variable element in &(K)

over L.

1.3. We choose a positive symmetric bimultiplicative function q on 9ftQ

valued in Ω* \ Namely we choose a system qimj, my) (l<i<j<r) of elements

in i2x such that iviqimi, my))) is a positive definite real matrix. We denote by

q(m) ( m e ^ q ) the multiplicative functions defined by

(1)

and we denote by Km) (m e9Jίq) the multiplicative function defined by

(2) l(m)(n) = l(rπ, n) = l ί m S 2 n.

Let uu . . , ur be indeterminates over K. We define a multiplicative func-

tion u on WIQ as follows:

(3) u(m) = Π«fί(m> ίm= i3«(m)m, e2JlQ).

We shall now define theta functions and abelian functions:

Definition 7. A matrix a in End/ίS" 1^) is called a multiplication of a

period (S~\ q) if <?U*m, n) = ̂ (m, an) for m, Π G I Q , where a^^S^S'1. All

the multiplications of (S~\ <?) form a Z-algebra We denote it by 9l(S~\ ^).

Definition 2. Let or be a positive symmetric element in 3ί(S~\ (7) and X

be a multiplicative function on ΉQ valued in K. A formal power series φ(u)

== ΈJ2 cιnu(m) in «i, . . . , wr, MΓ1, , Ur1 is called a theta function of type
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(cc, X) with period (S"1, q), if ψ(u) satisfies

(4) φ(q(m)u) = q{m, αmΓMαrmΓΎUm)""1^**), (m e= S" 1^),

where <7(m) w means the product of multiplicative functions q(m) and u. If

all the coefficients ^ f m e S " 1 ! ) belong to a field L, we call ψ(u) a theta

function with coefficients in L.

Definition 3. The quotient/(w) =<f(u)/ψ(u) of theta functions ?>(«),

of the same type (n, X) with period (S~\ #) is called an abelian function with

period (S~\ q)t where we restrict n in the positine integers (See Proposition 12).

If we can choose ψ(u) and ψ(u) whose coefficients belong to Z, we call f(u)

an abelian function with coefficients in L.

Since we shall see, in the following, that products of theta functions are

also theta functions, the quotient <p(u)/ψiu) in Definition 3 has definite meaning.

In the present paper we shall prove the following results:

1° We denote by Ίflaia, '/) the vector space of theta functions of type

(α, X) with coefficients in Ω. Then we have

JΪΩ(α:, £) = detα: for Z O

2° A theta function in TlQ(af X) converges at every point uι = ξu - . . , ur

= £r, (£i, . . . . ζr<ΞΩX).

3° All the abelian functions with the period (£Γ\ q) and with coefficients

in Ω form a field KStQ such that KS,Q/Ω is separably and finitely generated.

4° A period (S~\ q) uniquely determines an abelian variety As,q defined

over Ω such that the law of composition of Ast(J is induced from the composi-

tion in 6(K) and the field of rational functions on As,q over Ω is canonically

isomorphic to Ks,q.

5° There exists a system of /adic (resp. j£-adic) coordinates of AS,Q and

an isomorphism γ of W(S~\ q) into the ring of endomorphisms Endz (As,q) of

As,Q such that

=(
\ 0 ScrS"1/

and, if p * 0,

"1, g))t
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where Mi (resp. Mp) is the /-adic (resp. p-aάic) representation of End (As.<?)

by the system of /-adic (resp. p-aάic) coordinates.

6° Let ΛQ be the commutor algebra of ΛQ in Endo (%}), i.e. the Q-subal-

gebra {β e EndQ (OTQ) I aβ = βa for every # in ΛQ}. Then ΛQ has also the in-

volution * : a* = 5'αS"1. If ΛQ is generated by symmetric elements in ΛQ, then

there exists a positive symmetric bimultiplicative function q on 9JΪQ X 3J?Q valued

in Ωx such that the ring of multiplications 9I(S~\ q) of (S~\ ̂ ) coincides with Λ.

§2. Formal theta functions.

2.1. Let D be a symbolic symmetric bimultiplicative function on 2JΪQX2KQ,

i.e. D is a symbol satisfying the following relations:

(5) Q(m + n, m'fn')=O(m, m')O(m, nOO(n, m;)D(π, n')

(6) O(m, π) = C(n, m), (m, mf, n, n'e93?Q).

Furthermore we assume

(7) O(α*m, n) =Q(m, an)

(m, Π&ΉQI OC e ^,.

We call O the symbolic bimultiplicative function associated with S and Λ. Later

we shall specialize O to a positive symmetric bimultiplicative function q valued

in Ωx,

We define the multiplicative function O(m) by O(m) (n) =O(m, n)2, (m, n

The formal theta function is defined by

(8)

For vectors 9, ϊj in URQ we shall define the formal theta function with charac-

teristic [8, ί)] as follows:

(9) τ?[B, ί)](Q|w)= Σ Q(m + 9, m + 9)w(m + fl)l(ή, m + fl).

Then, by simple culculation, we have the following formulae:

(10) /?[0, W(Ob) = /?(O|O(0)l(ί))w)C(9, 9)w(8)l(§, 8),

(11) tfCfl, I)](C|D(m)l(n)«)

= D(m, m)" I^(m)'1l(8, n) l(ΐ), -m)*[0, W(O|«), (m, tt
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(12)

(13) ^[β + tn, ή + nΠ(D|«) = #Cff, W(O|«)l(β, n),

(14) 0[β, H (OI n) = #[ - (5, - W (OI u).

The formal theta function of order cc (cc is a positive symmetric element

in A) with characteristic [9, ί)] is defined as follows:

= Σ
s 1

Then, by simple calculation, we have

(16) #«[9, fc|(O|Q(m)l(n)«)

= D(m,

(m, nert).

For symbolic O we shall define a theta function of type (a, 7) as a power

series ^(w) = Σ cm«(tn) in ult . . . , «r, wf1, . . . , Url with coefficients in

a field such that y(O(m)») = O(m, αm)"1»(*m)'"1Z(αm)"1f(M) ( m e S " 1 ! ) .

We denote by {8i = 0, g2, . . . , gdiΛ)) a system of representatives of

cc~1S'1Ώl/SΓ1m in cc~ιSΓιW, where rf(α) =det-α. We shall now prove that

{ΛCdi, 0](Q|Ztt), . . . , ΛCβrfί ), 0](O|Zι#)> form a base of theta functions of

type (α, Z).

PROPOSITION 1. L̂ f φ(u) - Σ cmw(m) fo a formal theta function of type

(αr, Z).

(17)

= O(β;,

(18) ¥>(*#)= Σ

Proof For any element n in S xWl we have

= Σ c«tθ(n, m)2w(m)= Σ
mr1die)

= Σ Σ
t = i m S 1

= O(π,
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This shows

Olπ, trn)"1Z(απ)""1Cα(numgί) - O(n, aim -ί-9/))2Cα

Putting m = 0, we have

D(π, an)~17Λan)~ιclx(n+gi) = D(n, «r9/)2

Since or* = α: and Q(α:*m, n) = O(m, an), it follows

This implies
ff.{«)

= Σ cmtt(m) = Σ Σ
s 1 ^ sl

C(9ι,

PROPOSITION 2. #<£&, 0](D|w), . . . , ί«CQj(α), 0 ] ( Q | « ) αr^ linearly in-

dependent as series in u.

Proof. Since for ί*/ there exists no element m in S~lςΰl satisfying u(ccQi)

=*u(cc(iij+m)). This shows that ΰ£$i* 0](D|«), . . . , #«[&*<«„ 0](D|«) are

linearly independent as series in u.

Remark. This Proposition is also true for any specialization of D.

PROPOSITION 3. Let a and 0 be positive symmetric elements of A. If αfl,

i9G'eS~lsJJί, then «?e[9, OK&V/u)^', 0](D|Z'κ) is a formal theta function of

tvpe (a + β, γf^tnγjH**?)-^ g i υ e n by t h e s e r i e s :

Σ ( Σ
S ' S ^ S 1 ^ 1

This is an immediate consequence from the expansions of #e[0, 0](O |w)

and i?p[9', 0](Dlw). This proposition is also true for any specialization C of

Q provided that

Σ
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has definite meaning.

By virtue of (18) and Proposition 3 we have

PROPOSITION 4. // <f(n) and ψ(u) are formal theta functions of type (a, 7.)

and (β, '/'), respectively, then ψ(u)ψ(u) is a formal theta function of type

COROLLARY. // <fi(u), . . . , <ft(u) are formal theta functions of type (a, X),
t

then Π ψi(u) is a formal theta function of type (ta, / ) .
« = 1

PROPOSITION 5. If n is a positive integer greater than one, then there exists

no homogeneous relations of ϋnί0, 0](D|«), ΰnΐn~ιmi9 0](Q|u), . . . , AJV^nir,

0](O|w) as functions in u.

Proof We shall denote briefly ψQ(u) = &,[0f 0](D|u), <fi(u) =#nίn~1mit

0](Q| u) (1 < i< r). Assume, for a moment, there exists a non-trivial homo-

geneous relation of degree d

where we may assume that the degree d is the lowest value of the possible

case and the number of terms t is the least value provided that the degree is

d. From the expansions of ψι (0< i< r), each term of ψl" * frVΓ is of the

following form:

r r

C[λv]t)#(wΣjΛw 9 "h ΣSΛv/Πty) (y ε S 9Jί).

Therefore the degree of uι in each term of ψ£v* ψryr is of the following

form:

If λv&λii (mod #) for some z> and F, the number of terms in

Σ «CλvĴ oVO * " ψr"r =0

is smaller than t. This contradicts the assumption on t. Hence ΛVι = Λv,;mod#

for every v and *Λ Since the degree <i is lowest, λvi (i = 1, 2, . . . , r ẑ  = 1, 2,

. . . , t) must be congruent to zero mod n. From this it follows that λ^ = λ^Q
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mod n {v, ι>f = l, 2, . . . , t). We denote by / the positive integer such that

0<>f<n and ; V 0 + / Ξ Ξ O mod n. Putting ψi(u) =φ?(u) (i = 0, 1, 2, . . . , r), we

have a relation of ψ0% . . . , ^ r of degree J ' = (d+flrΓ1

(***) Σβiλv#ί v β * " ' 0rv r = O, where

Then the degree d' is the lowest of the possible case and the number of terms

t is the least one. Moreover, by virtue of (**), the degree of w in each term

of ψf φΐvr is of the form

Therefore, by the same reason as for {Av/}, we have μ^+f = μ^i = = μ^r = 0

mod^ with / satisfying 0 <f <n and d> d' = {d-\-j)n'x> d" = (d' i-f')n~\ This

shows that the precess of generating {μ^} from {Λvί} does not stop. It is,

however, impossible, for the degree d of (*) is finite. This is a contradiction.

2. 2. Let Zi, . . . , It be multiplicative functions on 93?Q. We shall denote

by ZlZO,Xu . . . , XtJ] the Z-algebra generated by D(m, n), Z(m), (m, neff i Q )

and series

( ( ) ) O ( " 1 ( ( )), m -

(or, ]9: positive symmetr ic elements in A 9, m

7, %': multiplicative functions Ziι - * Zt* (n, . . . »

W e d e n o t e b y Q ( ( O , Z i , . . . , 7 ί ) ) t h e q u o t i e n t field o f Z d J O , & , . . . , /

PROPOSITION 6. L^ί n be a positive integer greater than one and 1 be a

multiplicative function on %RQ. Put

{They are theta functions of type («4-l, Z)). T ^ n ί/ẑ r̂  ^x/sίs Λ positive

integer M(n) such that for any positive integer m and any theta function ψ of

type (mf Z) with coefficients in Q((O, Z)) there exists a homogeneous relation
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in ψ, <po, . . . , ψr at most of degree M{n) with coefficients in Z[[O, X~Π which

is non-trivial on ψ.

Proof. By virtue of Propositions 1 and 3, there exists a non-zero element

ξ in Z[[O, Z]] such that the coefficients of u(m) in ξψ(u) ( m ε S " 1 ! ) belong

to Z[[D, Z3J Since ψ is a theta function of type (m, Z) with coefficients in

Q((O, Z)), putting φ = ψn+\ we get a theta function <ρ of type ((n + l)mt X).

Since the number of products of degree x of ψ0, . . . , ψr equals to (x ) , the

number of products of <p} ψo, . . . , ψr that are theta functions of type (χ{n

+ Dm, X) equals to

If ΛΓ>(w-f l ) r W, this number is greater than

On the other hand, by virtue of Propositions 1 and 2, the number of linearly

independent theta functions of type (x(n + l)in, X) equals to xr{n + l)rmr.

Since the reading term of

xr+{x-l)r+ ••• + ( * - U + l ) V n r - r / ( w + l ) r * r is x\

there exists a positive integer M such that

M Γ + ( M - l ) r + ••• +(Λf

Hence we have

for every m>0 in Z. This shows that there exists a non-trivial relation of

degree M and M is independent of m. From Proposition 5, ψ0, . . . , V̂- are

inderendent, hence the relation is non-trivial on ψ. Since all the coefficients

belong to O((D, Z)), the coefficients in the relation can be chosen in Z[[O, Z]

Therefore, putting M{n) = (w-f DM, we get M(n) in the Proposition.
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COROLLARY. Let ψ(u) and ψ(u) be theta function of type (mf X) with co-

efficients in Q((Q, X)). Then there exists a homogeneous relation in ψ/ψy fi/fo,

• , ψr/ψo at most of degree M{n)2 which is non-trivial on ψ/ψ.

Proof, By virtue of Proposition 6,

Q((O, X))(ψi/Ψo, . . . , <pr/<Po)l<.Min)

and

CQ((D. X)) (Ψ/ψo, φ!φ*>... , ψr/φΰ:

Q((O, X))(<f/<Po, . . . , ψr/ψoΏ<M(n).

Hence

[Q((O, X))(φ/φt <pι/φQt . . . , ψr/ψo) :

Q((D, 7)(ψi/<Po, . . . , ψr/ψo)l<M(n)2.

PROPOSITION 7. Let ψo, . . . , ψr+i be theta functions of type (a, X) with

coefficients in Q((O, X)). Then there exists a non-trivial homogeneous relation

in ψo, . . . , ψr+i with coefficients in Q((Q, X)).

Proof. The number of products of degree x of ψo, . . . , ψr+i equals to

\ Γi ) a n c ^ t n e t v P e °f s u c n products is (#<*, Z). On the other hand the

number of linearly independent formal theta functions of type (xa, X) equals

to xr detαr. Since the reading term of ( ^ ^ ^ ΐ 1 ) is ( ( r + l ) ! )~V+ 1, we have

( 1\ )>Mr det a for a sufficiently large M. This implies the existence

of a non-trivial relation of <fo, . . . , <pr+i Since the coefficients in the products

of ψo, . . . , ψr+i belong to Q((O, X))t the coefficients in the relation can be

chosen in Z[[D, XJ].

§3. Theta functions and abelian functions with coefficients in Ώ.

3.1. In the following we denote by q the positive symmetric bimultiplicative

function on ΈIQ X 9J?Q valued in Ωx defined in § 1.

All the results in the previous section are valid for the replacement of the

symbol O with q, if we prove the convergence of the coefficients of the products

of two theta functions τ?βCfl, Ql(q\Xu) and #„[#, 0l(q\7'u).

By the definition of 3ί(S~\ q) we know that %(S~\ q)®zQ has the involu-

tion * : α* = S ί α S " 1 and by the positive definiteness of S we have a*a>0 for
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αr#O in SKS"1, q).

LEMMA 1. If a is a positive symmetric element in 9l(S~\ #), then v(q(m,

ccm))>Q for m=*0.

Proof Since α: is positive symmetric, there exist a positive integer c and

ft, . . . , βh in 5ί(S"x ,<?) such that ca = Σ 0 ι * 0 i . υ From this follows cι;(g(m,
z = l

αm)) = tι(ί(m, cαrtn)) = f;((jf(m, (Σ0/*0i)m) = v( Π<?(m, 0, *0, m)) = Σ » U ( f t m ,
*' = 1 t = l ί = l

0f m)). On the other hand (v(q(n\i> my))) is positive definite, hence v(q(xnt m))
h

>0 for m#0. Therefore v(q{m, am)) = c'^f(i(0/nt, 0, m))>O for m#0.

LEMMA 2. Z^ί f (w) Z>β α theta function of type (or, X) with coefficients in

Ω (a is a positive symmetric element in 3KS""1, q)). Then 1 has values in Ωκ

on 9Jίq.

Proof. Putting φ(u) = Σ cmu(m) with cm in Ω, by virtue of (17), we

have

This shows that Jf(αtn) ( m e S - 1 i ) belong to i?x. On the other hand oc is posi-

tive, hence for any n in 9J?Q there exists a positive integer v such that Ϊ Ί I G S " 1 ! ) ] !

Namely Z(n)v = X(^n) belongs to Ωx. Since J2 is algebraically closed, X(ri)

belongs to Ω.

PROPOSITION 8. Let 1, X1 be multiplicative functions on 9J?Q valued in Ω*

and or, β be positive symmetric elements in $Ϊ(S~\ q). Then the series:

Σ tfdf + β, α(n + β ) ) ί ( 0 " 1 ( m -
nes~x3^
+ 0)) converges for every 0, m in

Proo/. We shall denote by 7(n) the n-term

q{n + Qi α:(n + 9))ζ?(i3"1(m-α(π + 0)), m -

Since it is sufficient to prove for non-archimedean case, it is sufficient to show

that for any positive integer N, there exists a positive integer M such that, if
r

Σ l # / ( n ) | > M then v{I(vi))>N. Put α// = ιH<jf(iπ, , αmy) and * i y = f;(ί(0"1α:m, ,
t = l

αmy)).. Then, since or and 0 are positive symmetric elements in 9ί(S~\ q) by

See [1] p. 482.
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virtue of Lemma 1, the symmetric matrices {an) and (jbij) are positive definite.

The principal part (as a polynomial in *i(n), . . . , xΛn)) of v(I(n) is Σ(tftf

+ bij)xi(n)xj(n), hence, by the positive definiteness of the matrix {aa + bij) we

see that for any positive integer JV there exists a positive integer M such that

if Σ U / ( π ) | >M, then v(I{n))>N.
t = l

PROPOSITION 9. #«[fli, Ol(q\u) ( !< ;*< detα:) converges for every multi-

plicative/unction X on MQ valued in Ωx\

Proof. In the complex case, this is classically known, so it is sufficient to

prove for non-archimedean υ. Let us culculate the value:

i, .7 =

By virtue of Lemma 1, (v(q(\r\if αm, ))) is positive definite, hence, for any

positive integer N, there exists a positive integer M such that v(q(m+St a(m
r

+ 9))>iV for every m in S~lςHl satisfying Σ k / ( m ) | > M This proves the
/ = 1

convergence of #α[9, Ol(q\u).
By Proposition 8, Lemma 2 and (18), we have

PROPOSITION 10. Lei ψiu) be a theta function of type {a, 2) with coefficients

in Ω {with the period (S~\ q)). Then, <f(ξ) converges for every multiplicative

function ξ valued in Ω*.

3.2. By virtue of Proposition 4, the product of abelian functions with

coefficients in Ω and with period (S~\ q) is also an abelian function of the

same type. Obviously the differences, the sums and the inverses of abelian

functions are also abelian functions. Hence all the abelian functions with

coefficients in Ω and with period (S~\ q) form a field KStQ over Ω. We shall

now prove the following theorem:

THEOREM 1. Ks,q is a finitely and separably generated extension of dimension

r over Ω.

Proof Putting Fni(u) =τ?rt[w~1m/, 0](q\u)/#nl0, 01 (q\u) (n>l; l<i<r),

we shall prove that (if p*0) KS,QIΏiFpAu), . . . , Fpr(u)) is a finite separable



14 HISASί MORIKAWA

algebraic extension and KStQlΩ{Fn\ (u), . . . , Fnr(u)) is a finite algebraic

extension. It is sufficient to prove the former assertion, because, by virtue of

Proposition 5, Fm(u)y . . . , Fnr(u) are algebraically independent over Ω. First

assume, for a moment, Ks,q is not separable over ΩiFpΛu), . . . , Fpr(u)). Then
n

there exist an element / in K3>q and an irreducible polynomial Σ β / X1 with
t = 0

coefficients in Ω(FPU . . . , Fpr) such that Σβ//*1'== 0. • Let ^ and V be theta

functions such that / = ψ/ψ. Then the relation induces a homogeneous relation

of ψ, ψ, ΰplO, 0], ̂ Cί"1^!/, 0] (l<i<,r) with coefficients in Ω:

, OP &pZp-ιmn 0yrφIpψ{n-l)ί> = 0,
1 = 0

r

where we may assume that the degree d = Σ*7 on τϊpCO, 0], dpLp'1 ixii, 0],

. . . , $pLp~ιmr, 0] irj the relation is the lowest of the possible cases and the

number of terms is also the least value provided that the degree on # is d.

Since the degree of UJ in each term of fipίp^mi, 0] is <5/y modulo p (1< iyj<r)

and the degree uj in each term ?ϊplθ, 0], φίp, ψ{n~l)p is zero modulo p. This

shows the degree of uj in each term of #/>[0, (ύ^ΰplp^mi, OT1 &plp~ιn\r,

Ojrψιpψ{n"l)p is ij modulo p. This means that the degree of tf/JJΓMiii, 0] in

each term of (*) is congruent to the same value, say λj, modulop, for otherwise

Σ Σ buh...Jri%l0, OT' •
I

is a shorter relation than (*). If λjΦO modi, we can get a lower relation. So

λj s 0 mod ̂  and consequently all degree i0 of #/>[(), 0] in (*) are also congruent

to the same value, say Λo. modulo p. Let h be the integer 0 < h <p, such that

fe + ; 0 = 0 mod^. Then, putting μo=p"1(io-hh)f μj^p^ij, aιiμr..μr = bf~il..ir, we

have ΣΣtf/;μo...μr<W, O^^C^^mj, 0]μi ί ^ m r , OT^V^"^ = 0. This
l - l ( ] ι )

shows f = ψ/φ is separable over Ω(Fpu . . . , Fpr). This is a contradiction.

Namely Ks,Q/Ω(Fph . . . , F^r) is separable. On the other hand, by virtue of

Proposition 6, every element / in Ks>q is of bounded degree over Ω(Fpu

Fpr) (p^O)y hence KStQlΩ(Fpu - . . , Fpr) is an algebraic simple extension of

finite degree. Since by virtue of Corollary of Proposition 6, Ω(Fnu » Fnr,

FpU . . - , Fpr)/Ώ(Fni, . . . , Fnr) is a finite algebraic extension, Ks,Q/Ω(Fnu

. . . , Fni) is also a finite algebraic extension. Since every element in KS,Q is
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a bounded degree over Ω(Fnh . • , Fnr), if P*0, KSlQ is a finite algebraic

extension of Ω(Fnu . > Fnr). This completes the proof of Theorem 1.

3.3. We shall now prove the Addition Theorem of abelian functions with

coefficients in Ω.

LEMMA 3. Let f{u) be a non-zero abelian function in Ks>li. Then there

exists ξ in ${Ω) such that /C?)#0.

Proof. By virtue of the definition of abelian function there exist theta

functions <p and ψ of some type (n, Z) with coefficients in Ω such that'/ = ψ/ψ.

Since ψ and ψ are power series in uu > wr> #Γ\ . . . , uΓ\ we may consider
r

them as analytic functions on Ωx x x Ω*. So the quotient / is not always

zero on Ωx x xΩx.

We call an element to in @(K) to be variable over a subfield I in K if

there exists no non-trivial relations Σ cmiϋ(m)=0 with coefficients cmdπ

e w " 1 ^ ) in L. Then simalarly as Lemma 3 we have.

LEMMA 3'. Let w be a multiplicative function on 3J?Q variable over Ω and let

f{u) be a non-zero abelian function in Ω{{w))Ks,Q. Then there exists a multi-

plicative function ξ in 6(J2) such that / ( f ) # 0 .

LEMMA 4. Let w be a multiplicative function on 9KQ variable over Ω. Let

fi, . . . , fs be abelian functions in Ks>q {resp. Ω((ιv))Ks,q) linearly independent

over Ω {resp. Ω{{w))). Then there exist multiplicative functions ζi, . . . , ξN in

such that

Proof. We shall prove the Lemma by the induction on N. By virtue of

Lemma 3 (resp. Lemma 3'), for N=l the Lemma is true. If we assume the

Lemma for JV-1 we have multiplicative functions ?i, . . . , ξy-i in $(Ω) such

that

\
detl * 0.

\Λ-i(?i), . , /*-i(ft*-i)/

Since fu . . , fN are linearly independent over Ω (resp. Ω{{w))> we have

/ /l(fl), - ,/l(^-i), /,(«) \

det kθ.
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Hence, from Lemma 3 (resp. Lemma 3'), there exists a multiplicative function

ξN in &(Ω) such that ξh . . . , ξN satisfying the condition of the Lemma.

LEMMA 5. Let ψ and ψ be theta functions of type {n, Xo) with coefficients

in Ω and X be a multiplicative function on 9JΪQ. Put f(u) = ψ(Xu)/ψ(Xu). Then

f belongs to Ω{(X))KStQ.

Proof. It is sufficient to prove for variable X. We shall denote by ϋf0 the

field Ω(Fpu . . . , Fpr) for jf?=̂ O and Ω(Fnu . . . , Fnr) for p = 0, where F#,

Fnj (1 < i, j < r) are the quotients of the theta functions in Theorem 1. Then,

by virtue of Theorem 1, KSΛQ/KO is a separable extension of finite degree.

Assume Ω((X))KStQ does not contain / and denote by v the degree of / over

Ω((X))Ks,Q. Let Xu . . . , Xt be independent generic specializations of X over

Ω and fu . . - , ft be the images of / by the specializations. First we shall

prove that {/ί1 / t | l < iι< v - 1 1< l<>r) are independent over Ω((Xu

. . . , Xt))Ks,q. Assume there exists a non-trivial relation

0Sf"r=ΞV-l

with coefficients in i?(Zi, . . . , Xt))Ks,Q, where we may assume (*) is non-

trivial on /. Specializing & , . . . , & to suitable multiplicative functions on 2JΪQ

valued in Ωx such that the specialized relation of (*) is non-trivial on /, we

have a contradiction with ZΩ((X))Ks,Q(f) : Ω((X))K8,q] = v. This proves

ZΩ((Xh . . . , Xt))KStQ{fu . . . ,ft):Ω((Xu . . . , ft))ΛΓθf*:i = iΛ

This contradicts Proposition 6 for sufficiently large t.

THEOREM 2. (The Addition Theorem). Let fu .'. • , f\ be generators of

Ks,q over Ω and f be any abelian function in KS,Q. Then f(uw) belongs to

Ω(fi(u), . . . , fx(u), fi(w), . . . , fκ(w)) and fiu'1) belongs to Ω(fi(u), . . . ,

Mu)).

Proof Let w be a multiplicative function on WQ and put gw(u) =f(wu).

Then, by virtue of Lemma 5, gw(u) belongs to Ω((w))Ks,Q. Therefore there

exist abelian functions ψu - . . , ΨM in Ks,q linearlly independent over Ω({w)))

and elements bi(w), . . . , ^ ( M ; ) , CI(W), . . . , cM(w) in Ω{{w)) such that

ΛI M

•• l^jbi(ιv) ψi(u)I yΊ(
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We may assume that the number M of {ψάu)} is the least value of possible

cases and, after changing the indices, we may assume CM(W) = 1. From Lemma

4, there exist multiplicative functions &, . . . , ξM on 2JΪQ valued in Ωx such

that det (φAξj))*O. After translating ψu . . . , ψM by the matrix (ψi(ξj)), we

may assume that (ψiiξj)) is the unit matrix. Hence by (*), we have

and

<**) Έ{(f(wu) - f{ξitv))φΛu)ci(w)) + (fitvu) -/(£MW))<PM(U) =0.
• i - l

{(f(wu) - f(ξiw))<Pi(u), ( l ^ i ^ A f - 1 ) } are linearly independent over Ω, for,

otherwise *Σdi(f(wu) - f(ξiw) )<fΛu) = 0, /(itw) = 'ΣdifiξiwXPiiuWΣdiψilu)

and this contradicts the assumption on M. Therefore by virtue of Lemma 4,

we have M - 1 multiplicative functions τ?i, . . . , -ηM-ι on ΪRQ valued in i2x such

that det (ψii-ηj)) =vθ, where 0«(«) = (f(wu)) - f(ξiiv))ψi(u). Hence, from (**),

Ci(w) (1 <L i< M — 1) are rational function of (f{wτ)j) — f(hw))ψi( ηj) (1< ί < M ;

l ^ y ^ M - 1 ) . This shows that £,•(#), cy(w) (1 < i<>M \ l<j<M-l) are

abelian functions in Ω(fx{w)i . . . , fAw)), because f(wηi), f(ζjw) e Ω(fiiw),

. . . ,/Iv(fϋ)) ( l < / , y < M ) . This shows f(wu) e Ω(Mu), . . . , Mu\ fχ(w),

. . . ,/v(w)). By virtue of (18) any theta function of type (ny 7) is a linear

combination of &,[β, 0] (£ I »Jί) (w9 e S"1^) and ??rt[β, 0] (<71«) = 'ί»C - α, 0] (α I w""1).

This means that, if <f(u)/ψ(u) is the quotient of theta functions <f, ψ of type

(n, 7.) with coefficients in J2, <f{u~ι)lψ{u~ι) is also the quotient of theta func-

tions φ*(u) =<f(u~1), <ρ*(u) ^ψiu'1) with coefficients in Ω. This proves the

last assertion of the Theorem.

3.4. We shall prove the multiplicative theorem.

PROPOSITION 11. Let a be a positive symmetric element in SίίS"1, q)t β be

a non-singular element in %{S~ι> q) and ψ be a theta function of type (a, X)

with coefficients in Ω. Put ψ(u) = <p(u*)(u*(m) means u(βm)). Then ψ{u) is a

theta function of type iβaβ*, Z) with coefficients in Ω.

Proof. From the definition of theta functions of type (or, '/) and multiplica-

tions of (S~\ q), for any m in S ' 1 ^ we have
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φ(g(m)u) = φigbnYu*) = φ{q{β*m)u*)

PROPOSITION 12. Z^ί ψi and <f2 be theta functions of type (oc> X) with

coefficients in Ω. Then there exist a positive integer n and theta functions ψi

and ψi of type (nt X) with coefficients in Ω such that

ψi(u)/ψ2(u) = ψi{u)/ψ2(u).

Proof Let n be a positive integer such that β = n — a is a positive sym-

metric element in 9t(S~\ <?). Put

and

Then ψi and ^2 satisfies the condition in the Proposition.

By virtue of Proposition 12, abelian functions in KS,Q are defined by the

quotients of theta functions of the same types (a, X) with coefficients in i2,

where a runs over positive symmetric elements of 9KS"1, q).

THEOREM 3. (The Multiplication Theorem). Let a be a multiplication of

(SΓ\ q) and f be an abelian function in KS,Q. Put g(u) = /(wΛ). Then g belongs

to KStQ.

Proof Let ψλ and ψ2 be theta functions of type (n, 7) (n<=Z) with co-

efficients in Ω such that f(u) = <pi(u)/<pt{u). Put ψΛu)=ψi(u*) and ψ2(u)

= <p2(ua). Then, by virtue of Proposition 11, ψx(u) and ψ2(u) are theta functions

of type (naa*, X) with coefficients in Ω such that g(u) = ψi(u)/ψ2(u). Therefore,

from Proposition 12, we have

§4. Abelian variety with period (S~\ q)

4.1. By virtue of the addition theorem of abelian functions in Ks,q, we

can now prove that Ks,Q is canonically isomorphic to the field of rational func-

tions on an abelian variety As,q and the law of composition on As,q is induced

by the multiplication (v, w)-»vw of multiplicative functions υ, w on WIQ.

We shall mean by (£(S~\ q) the subgroup {^(m)|m e S " 1 ! } of ®(K) and

Zs.q the quotient group of @(K) by ©(S"1, q). We shall mean by %s,q(Ω) the

quotient group $(Ω)/®(S~\ q).
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LEMMA 6. Let β, % be elements in n^S'1^ such that QΦS~lςm. Then

and

Proof. By the periodical properties of z? we have

« Σ α(m - 0, n(m - 8)) l(ή, w(m - Q))q(Q, *i(m - fl))

and

= Σ
m 1

Σ
r 1

Since ΰnί-Q, 0](q\l) =ΰnίt, 0l(q\l), we have

#nΓ0, 0](ίk(9)l(ή))=Λ n β J ^ M -

On the other hand, since v(q(m, nm))>0 for m^O, we have

and

This implies

v(^C~9, 0Hq\l)/#nl0,
and

Hence

This shows
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and

: W 0 , 0]

LEMMA 7. Zef / be a prime number different from p and 9 be an element

in TιS~xΈi such that 9Φ S~~lςΰl. Then there exist a positive integer v and an

element ϊj in ΠS'lςΰl such that

and

Proof. Since (v(^(m, , my)) is positive definite, there exists a positive real

munber e such that if 'ί)S2ίj<e implies v(q{% ί)Xi/(ί(m + ί), m-f ΐ))) for every
r

non-zero m in S" 1^. Putting 8 = Σ#ί(9)mί, we assume Xi(Q) is not an/-integer.

Let v be a positive integer such that /""2v<ε. Then we have

#/v[Γvm/, 0]Ull(α))= Σ $(m-h

= 1(9, m, ) Σ

= 1(9, m/)ftv[Γvm/f O](ζfll)

and
= Σ flfίm. /vm)l(9, /vm)=Λv[0,

ws~ι%fi

On the other hand, Γ2Vίm, S?m, = Γ 2 v <e, hence v(^(Γvm, , τnf )<t;(^(m + /v

/vm + mf )) for every non-zero m in S" 1^. This shows t;(Λv[Γvm/,

= »(^(Γvm, , in/) and Λv[Γvmt , 0 ] ( ^ | l ) # 0 . Since l(o, m) = l* i ( 9 ) *l, we have

*v[r vm f > 03(011(9))*0

and

ftv[Γvm, , 03(^1 Kfl)) : /̂v[0, 0](^|l(9))

%-t?/v[Γvm, , 03(^11) : *v[0, 03(^|l).

4.2. Let /i, . . . , fN be abelian functions such that Ω(fi, /2, . . . ,/v) = ϋΓs,̂

and ψo, . . . , ΨN be the theta functions of certain tyer, say (n, X), with coeffici-

ents in Ω such that /i = ̂ i/^0, . . . , fa = ̂ v/fo. Putting ^, (iί) = ψi{X'ιu) (0 ̂  i

< ΛO and ^/(M) = ψi{u)/ψo(u) (1 < t ̂  JV), we have a system of abelian functions
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gh . . . , &v with coefficients in Ω such thatgi{Xu) =fi(u) (l<i<N). Therefore

by virtue of Theorems 2 and Lemma 2 we have Ω(gι(u), . . . , gAu)) = Ω(fiiXu).,

. . . , MXu)) = fl(/i(»)f Uu\ /i(Z), . . . , /*(*)) = fl(/i(»),..., Mu)))

= K3,q. Hence, by virtue of (18), we get

THEORM 4. There exists a positive integer n such that

ΛiCfli, Ol(q\u)/ΰnlO, Ol(q\u), . . . , ft,DJ*r, Ol(q\u)/'ΰ£θ, 01{q\u)

generate Ks,q over Ω, where {fli = 0, ft, . . . , 9«» } is a system of representatives

We shall denote by An,a,Q the locus of h%ίgu 0](tfiu) t . . . , dnlgn*; Ol(q\u))

over Ω in the protective space of dimension nr — 1. The mapping pn: X-+ (t?«ϋθi,

0](αU), . . . , ΰnZgn*, Ol(q\X)) of @(K) into AΛ,ι,α induces a mapping p« of

%s,Q into i4rt,s,α : p« is defined on the subset {~/0\ theta functions of type (n, X)

do not vanish simultaneously at Xo).

Let us show that An,s,q has a normal law of composition for a sufficient

large n.

PROPOSITION 13. If m is α positive integer not less than the positive integer

n in Theorem 4. Then Am,stq has the normal law of composition such that

Pm(vw) = Pm(v)°pm{w) for independent v, w in @(K) over Ω.

Proof. We shall denote briefly

Aι[βi, Ol(q\u),

For any independent v and w in 6(K) ov^r i? we have, by virtue of Theorem 2,

Fi(vw)eΩ(Fι(v), . . . , Fn'-iCe;), FΛw), . . . , Fn -i(ttO) and F/ίv""1) <=Ω(Fi(v),

. . . . Fn^-tdi)). This shows that the loci of {ρm(v)f ρm(w), pm(vw)) and (pm(v),

Pmiv'1)) over Ω define rational mappings γ of Am, S ( 9xAm,s, ί and ω of Am,sίQ

onto Amfβ,ί such that r(pm(v), pmiw)) = pm(vw)f ω(pm(v)) = Pmiv"1). Since

v(w7) = (vw)X, vv~ι~l and vw = wv, we have γ(pm(v), γipmiw), ρm(/))) =

Pm(X)), r(pm(v)t ω(pm(v))) = p m (l) and r<Pm(v), Pm(u ))

Moreover we have Ω(pm(vw), ρn(w))c:Ω(pm(v)i pm('w))

c:Ω(pm(v), Pmiwvv'1)) ^Ωipmiv), pm(vιv)). Similarly we have Ω(pm{w), ρm(vw))

= Ω(pm(v), Pm(w)). This shows that, putting pm{v)°ρm(w) = r(Pm(v), pm(w)),

we have a normal law of composition such that pm(v)opm(w) = pm(vw) and
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Pm{v"1)°Pm(v) = Pm(l]

By virtue of the fundamental theorem of pre-group variety,2) there exists a

uniquely determined commutative group variety Am.s.q such that there exists

the birational transformation τm of Am,s,q generically surjective on Amts,q and

the law of composition of Am,s,Q is obtained by transformering of that of Am,s,g

by rm. For m, m>n, the varieties Am,a,q and A%s,q are isomorphic over Ω

so that we may denote it by As,q. We denote further by A8.Q{Ω) the group

consisting of all ^-rational points on As,q.

PROPOSITION 14. There exists a homomorphism p of TstQ into As,q such that

'ρ(v) = (τm°pm) (υ) for m>n and the variable v, where n is the integer in

Theorem 4 and v is the class of v in %s,q. Moreover we have

Proof. Let % be any element in &K) and w be a variable element in <£(K)

over i?((/0)- Then pm(w) and pm(w~17.) are generic points of Am,s,q over Ω.

So the birational transformation of Am,a.q onto As.q is biregular at pm(tv) and

Pm(w~ι%). Hence we may put

(19) p(χ) = (tmQP

Let Wι be a variable element in @(K) over Ω((X, w)). Then since pm(w)

°ω(ρm(wi)) =5 βmitvwϊ1) and pm(to~1Z)°ω(pm(^Γ1Z)) = Pmί^""1/(^ΓI7)""1), we have

where ω is the rational mapping such that Pm(v)°ω(pm(v)) = pm(l).

This shows that p(χ) does not depend on the choice of w and p{χ) is a

ί?((£))-rational point of AS f 9 . Let Xu X2 be elements in K(K) and II I, ^2 be

independent elements in ®(K) over Ω((Xu X2)). Then, since p m ( ^ i \ PnAw^ are

independent generic points of Λ4OT,5,<7 over i2 and pmiXiwϊ1), PmiXztvϊ1) are in-

dependent generic points of Am,s,q over Ω> we have

= (r^°pm) (Wi)-f (r w °p^)(^Γ 1 7i) 4- (τm°pm) (Wz) + {τm°pm)

and

»» See [3] p. 438, Theorem (Qhevalley), or [4] III 7°, p. 50.
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"9(Hi) = ~ (rm°pm)(w) - (τm°p,n) (iv'^/i)

= (τmopm)(w'"1) + ( r w o P m ) ( Ϊ U " 1 / ! ) = pί/Γ1).

This proves that ~p is a homomorphism of %s,<? into Aς)<?.

We denote by ^* t 9 the subgronp of %s,q consisting of all elements of finite

order and denote by p the homomorphism of 6(K) into As$q such that p(v)

PROPOSITION 15. The restriction of p on %*tQ is an isomorphism.

Proof. Let 7 be an element of @(K) such that 7 e %*,q

r> p'Ho). Since %£<,

is the image of {#(Q)l(ϊj)!8, ^GTOQ} in ϋ£s,9, there exist n} 0, I) such that

7 = q(Q)l(l)) and 9, ή ε ^ S " 1 ! . It is sufficient to prove p(7w) # p(w) for a

variable element w in (£(K) over Ω. If β ^ S " 1 ^ or l(ί>)#l, there exists by

Lemmas 6 and 7 a theta function ψ(u) of some type, say (nv, 1), with coeffici-

ents in Ω such that p(l)/#Λv[0, 0] (^|1) *φ(q(Q)l(l)))/unj0y Ol(q\q(Q)l(f))).

This shows <f(tv)/&n*lQ, Oi(q\w)^<p(Xw)/^i09 0Hq\7w). Hence p^Λw)

^ Pn^(Xιv). Since jθ«v(tt;), pn\(7w) are generic points of -A«vfSf<7 over i?, p(z^)

= (:«v°|9nv) (z<;) ̂  (r»vθjθM0 (7w;) = p(w7). This proves Proposition 15.

THEOREM 5. A«?,<7 /s an abelian variety defined over Ω. Ifp^tO, the number

ZAs,η(p) : {0}] of p-division points of As,a is pr. Let p* be the mapping of the

field of rational fnnction Ω(As,q) over Ω into KsiQ such that p*(f)(v)=f(p(v))t

(f & Ω(A$,Q)). Then p* is an isomorphism of the field of rational functions

Ω(As,q) onto Ks.q such that p*{f){vw)^f(p{v) + p(w)) and p*(f)Url)

Proof. By virtue of the structure theorem on group variety, there exists a

connected linear group L defined over Ω such that A = As,q/L is an abelian

variety and L is the direct product of the semi-simple part Ls and the unipotent

part LM.3) If / is a prime number different from p, then the group Ls(l) (con-

sisting of all /-division points in Ls) contains /d i m L elements and Lu has no

/-divison point other than the unit element. On the other hand, for an abelian

variety A we have lΆ{l) : {0}] = liΰlmΊ and ίλ(ρ) : {0}] ^^dimΛ4) On the other

hand, by virtue of Proposition 15, lAs,q{l) : {0}] = l2r. This shows that the

3> See [3], or [4] III 7°, p. 50.
*> See [2] Chap. VII.
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linear group L must be the identity group. Namely As,q is an abelian variety.

Therefore by virtue of Proposition 15, ZA(p): {0}] =./Λ For sufficient large

tn Am,stq is birational equivalent with AS,Q and Am,a,q is the locus of (#mlA,

0D(ζf|«), . . . , &nίSnr, 0l(q\u)) over £. So p* is a isomorphism of Ω(As,q)

onto ϋfs,*. Since p is a homomorphism of 6(K) into AS>Q, p* satisfies the

condition in Theorem 5.

THEOREM 6. There exists a positive integer no such that for every n>

the locus of

(Λfti, 0l(q\u), . . . , unit*, 0l(q\u))

over Ω is a projective embedding of As,Q over Ω.

Proof. An abelian variety defined over Ω is always embedded in a pro-

jective space over J2.5) Let (/0, . . . , fa) be a system of rational functions on

As.q over Ω such that, if # is a generic point of AStQ over Ω, (fo(x), . . . , fΛx))

is a generic point of the embedding of ASiQ in the projective space. Then there

exist a positive integer n, a multiplicative function Ί on WQ valued in j? and

theta functions ψOl ."..., ¥^+i of type (w, if) with coefficients in Ω such that

f(p(u)) = <pi(u)/<pr+i(u) {0<i<N).

This shows that the locus of (ψo(u), . . . , ψa(u)) over i? is a projective em-

bedding of As,q ever J2. From (18) we know that the locus of

over i? is a projective embedding of As,q over J2. Since AS,Q is an abelian

variety, (ihίgu 0](<?|w), . . . , ??n[fl«r, O](ζf|w)) gives also projective embedding

of Aa,q. By virtue of Lemma 2, the embedding is defined over Ω.

4.3. Let us now show that any multiplication α of q induces an endo-

morphism of AS)Q. In the classical case, for some special value of q, AS,Q has

endomorphisms other than those corresponding to the multiplications of (S~\ q).

For non-archimedean case, however, we have no knowledge about such endo-

morphisms of As,q.

THEOREM 7. There exists an isomorphism γ of 9ί(S~\ q) into the ring of

endomorphisms of AStQ such that p(ξΛ) =γ(cc)p(ξ) (fe(ϊ(K), a^%(S~\ q)),

5) See [6].



ΐHETΛ FUNCTIONS AND ABELIAN VARIETIES 25

where p is the canonical homomorphism of %χtq~&CK)!ik(S~ι, a) into As,?.

Proof, Let ψQ} . . . , ψn be a system of theta functions of some type, say

(n, X), with coefficients in Ω such that the locus of (<p0, . . . , ψa) over Ω is a

projective embedding of AS,Q. Let a be an element of 9ί(S~\ <?) and put ψΛ,i(u)

= ψAu*) (0<i<N). Then, by virtue of Proposition 11, ψaj(u) (0<i<N) are

theta functions of type (nctα*, 7.) with coefficients in Ω. Hence φα,i(u)/φα,o(u)

*ΞKs,q (l<i<N). This shows that the locus of

(<po(u), . . . , ?*(«)) x(<Po(«β), . . . , <PN(U*))

over Ω gives a rational mapping r(#) of As,q into -As,̂ . Since i4sf<7 is an

abelian variety, γ(cc) is defined everywhere on As,q. Furthermore, since

(ψoΰuv)*), . . . , ψAiuvn) = (<po(u*v«), ψAu'v*)), r(α)

is an endomorphism of i45,9 such that p(ξα) = γ(α) p(ξ) (fGβ(K)). r is an

isomorphism, because l^eSCS""1, #) for every ξ in &(Ω) if and only if α:=0.

Since the group S* q is isomorphic to the group consisting of all the points

of finite order in As,q by mean of the isomorphism p. So we may choose a

system of /-adic (resp. ^-adic) coordinates on A9tQ as follows:

), . . . , * r(β), *i(&), - , ^r(^)) (mod 1)

Γ

(resp. p(gf(fl))-*Ui(fl), . . . , XAQ)) (mod 1)) , where β = *Σ>Xi(Q)ιxn and
l

Therefore, by virtue of Theorem 7, we have

THEOREM 8. There exists α system of l-αdic (resp. p-αdic) coordimttes on

As,q such thαty if we denote by ML {resp. Mp) the l-αdic (resp. p-αdic) res-

presentαtion of the ring of endomorphisms End (Aα,q) of AS,Q ivith respects to

the system of coordinates, then

MM

and, i,

x SaS'L .0 \
a)) = [

~\ q))f

where we identify a with the integral matrix that is the representation of a
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with respect to the coordinate system of WQ.

4.4. Let us now prove the existence of a positive symmetric bimultiplicative

function q on 5 J I Q X ^ Q valued in Ωx such that 2l(S"\ q) = Λ.

PROPOSITION 16. Let (βu . , βh) be a (minimal) Q-base of the module

of symmetric elements of the commutor algebra AQ of AQ in EndQ (ΪRQ). Put

S~1j9/=U/j>) with components .c$ (l<i,j<rl 1^1 <h). Let qo be a positive

symmetric bimultiplicative function on %RQ X ΪRQ valued in Ωx and εi, . . . , ε*

be elements in Ω* satisfying v(εi) = =#(e/i) = 0. If AQ is generated by
h

{βu . . . , βh) and there exists no relation'- q<s(m, n) = Tlείι (m, π * 0 in WQI
1 = 1

(vu . . . > Ϊ Ά ) # ( 0 , . . . , 0)), then the bimultiplicative function q defined by
h {l)

q(mi, my) =#o(mt , my(Πe/^ (l<>i<j <r) is a positive symmetric multiplicative

function such that ίKS"1, q) = A.

Proof. Since βf ^S'βiS"1 = βt, we have cψ^cψ ( l ^ i , j<r\ l<l<h).

By the positivity of qQ and v(q(m, n)) = v(qo(π\, n)) (m, ΠGSHQ), q is a positive

symmetric bimultiplicative function. Let a be any element in EndQ (TOQ) such
r

that ί t S - ^ c S " 1 ^ and put αrm/= Σβv(α)my with β/y(α) in Z (1</, y < r ) .

Then, since nil = S'^Cl, 0, . . . , 0), . . . , nv = S"1#(0, . . . , 0,1), we have (β//(α))

= S"xα:S and (β,> (α:*)) = S~1<x*S= SΓ1(StaS~1)S= V Let us now write the

condition on (aij(a)) to be a multiplication of (S~\ ^ ) : ^(αin/, my) = Π tf(m/,
^ / , / ( , y < r ) . Hence a e SHS""1, ^) if

and only if Π^βίπiί, m / ^ ^ Π e ί ' ^ ^ 1 = Πtfβίm/, m y ) ^ ( α ) Π e ? ^ ^ . Since there

exists no relation <7o(m, n) = Πε/* (ivi, . . , vh)* (0, . . . , 0)). we see that

"1, <f) if and only if (*) ( « ( « ) ) d?g}) = (cίf

Since (αu(oc)) ^S^ccS, (Λ/y(α*))=^ and (cty) =S"1/3S, the condition (*) is

equivalent to arj9s = &a: ( l < s ^ / ^ ) . On the other hand AQ is semi-simple, the

commutor algebra of AQ coincides with AQ, Therefore, by virtue of the assum-

ption on AQ, the condition (*) is equivalent to α belongs to AQ. This proves

Proposition 16.

PROPOSITION 17. // AC

Q is generated by symmetric elements in AQ, then there

exists a positive symmetric bimultiplicative function q on 9J?Q X 9#Q valued in Ώx

such that 3KSΓ1, q) = A.
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Proof. Since Ω is z -complete, Ω contains infinite many elements ξu £2, . . .

such that ι;(f, ) = 0 (ι = l, 2, . . . ) and £1, £2, . . - are algebraically independent

over the prime field IT of i2. Let qQ be a positive symmetric bimultiplicative

function on ^JIQXΉQ valued in i?x. Then <7o(rπ, n)(m, Π<Ξ9J?Q) are algebraic

over 0o(πii, my) ( l ^ / ^ / < r ) , so that there exist ?,-„ . . . , ?, A in β x such that

f (ίtx) = =v(ζih) = 0 and ξiιt . . . , £, Λ are algebraioally independent over

Π({φ(m, n) |m, neOJίQ}). This means that there exists no relation qo(m, n)

= Tίξ)ι (ivu - ' > ^Λ) ^ (0, . . . , 0)). Hence, by virtue of Proposition 16, putting
1

0(m, , my) = ^o(ϊπ, , my)!!?//^ ( l ^ / < i < r ) , we have 3KS"1, <?) = Λ.
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