
ON FROBENIUS EXTENSIONS II

TADASI NAKAYAMA and TOSIRO TSUZUKU

In Part Iu we introduced the notion of 2. Frobenius extensions of a ring,

as a generalization of Kasch's [10] Frobenius extensions and hence of classical

Frobenius algebras. We proved, in I, bilinear (or sesqui-linear, rather, to follow

Bourbaki's terminology) form and scalar product characterizations of Frobenius

extensions in such extended sense, generalizing Kasch's and classical case, and

then studied homological dimensions in them, generalizing and refining the

results in Eilenberg-Nakayama [4] and Hirata [6']. Dual bases were considered

in case of quasi-free (2.) Frobenius extensions Also the case of a semi-primary

or S-ring ground ring was studied.

In the present Part II we continue our study of Frobenius extensions in

such generalized sense. Thus we first study relative homological dimensions

in them, generalizing the Maschke-Ikeda-Kasch characterization of relatively

projective and relatively injective modules as well as Hirata's [6] results. Then

in § 7 we establish Kasch's [10] theorem on the endomorphism ring of a

Frobenius ring for our generalized case. Here the removal of Kasch's S-ring

assumption (which we have already discussed in our previous note [13]) and

the replacement of free module property with projective or quasi-free ones

make our proof more complicated, respectively in substance and in computa-

tion, than Kasch's case.

Then, in § 8, we transfer to the present case the annihilator relations given

in [17] for classical Frobenius algebras, on restricting ourselves to d-ideals

(similar to (but slightly more general than) ^-ideals in Kasch [10]). Further,

in S 9 we consider residue-rings of a Frobenius extension, in order to study

when they are also Frobenius extensions. In these considerations Frobenius

extensions are naturally taken in our generalized sense and thus deviations,

some rather essential and some rather formal, from (the classical case and)
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Kasch's [10] case are needed. In § 10 the case of a quasi-Frobenius ground

ring is considered. Thus, Hall's [15] theorem (on the ordinary scalar product

in vector-modules over a quasi-Frobenius ring) is observed to be transferable

to the case of a regular sesqui-linear scalar product in projective modules, and

this is combined with § 9 to consider residue-rings of (quasi-Frobenius) Fro-

benius extensions of a quasi-Frobenius ring.

§ 6. Relative homological dimensions in Frobenius dimensions.

First we proceed in parallel with I, § 3, generalizing Hirata [6]. Let A be

a ring (with unit element) and B a subring of A (containing the unit element

of A).

LEMMA 17. Let 2 be an A-left-module and m a B-left-module. Then

\0 q>0,
(1) , ) ( }

(2) ExtQ

UtB)(KomB(Af m), 2) = \
ί H U / Γ 1 , m), β) <? = 0

Let further 3t be an A-right-module. Then

(3) Tor? ,̂β)(Sff, Horn*(A, m)) = j ° Q>°
(βt m) α = 0.

of (1), for instance, runs similarly as in Lemma 7. Thus we recall

the isomorphism

(4) HoiϊuίS, i4®Bm)^HomB(2, (i?"1, no)

derived there from the isomorphism I, (18), i.e. A<g>£mΞ:Hoiritf,p-i(i?;4, m). (4)

proves (1) for g = ϋ. On replacing il with its (A, B)-projective resolution 36

and passing to homology we obtain

Ext^, B) (& A®Bm)^HQ(nomBa, (β~\ m)))

and the right-hand side is 0 for <7>0, since 36 5-splits.

Analogously, (2), (3) may be proved similarly as Lemmas 7', 7", again

using I, (18).

THEOREM 18. Let A be a β-Frobenius extension of B. If 2 is an A-left-

module and if \.dimUtB)2< °°, then I dim (Δ,B)2-0. The same holds with



ON FRO3ENIUS EXTENSIONS II. 129

Lάim{AiB) replaced either by Linj.dim^,/?; or l.

Proof. Let l.dim(i4fβ)2 = w< ° Let Έl be an A-left-module such that

?B)(2, m)*0 and

be exact with g A-left-free. Since ExtfX*) (2, 9ί) = 0 it follows that the induced

homomorphism Ext\ι

A, n)(Z, g) -* Ext^,*) (2, TO) is epimorphic. Since here g has

a form t? = A<g)̂ in with a B-left( free) module m, Ext^,*>(2, 80=0 if «>O,

by our lemma. Hence Extern (2, TO) =0 too if w>0. This implies that n

must be 0.

The other parts of the theorem can be seen analogously.

COROLLARY 19. Let A be a 2. Frobenius extension of B. Then

1.(resp.r)gl.dim(Λ, B) = 0 or <χ\

w.gl.dim(A, J3) =0 or ~°.

Remark. In analogy to this corollary, we could state the following coral-

lary to Theorems 8, 8', 8", 9, 9', 9" in I, § 3:

COROLLARY 9 a. Let A be 2.Frobenins over B and assume that B is γ-l-

isomorphic to a direct summand of the B-B-module A. Then

l.(resp.r. )gl.dim A = 1. (resp.r.)gl.dim B or °°

w.gl.dim A = w.gl.dim B or °°.

The equation l.dim(ilf*,2 = 0 (which we have, in case A is 2.Frobenius over

Bf seen to be the case whenever l.dim(^,β)2< °°) means that 2 is (relatively)

(Ay B)-projective. It is well known (cf. Hochschild [7]) that with any B-left-

module m the Λ-left-module A0i?m is (A, £)-protective and conversely any

{Ay £)-projective A-left-module 2 is a direct summand of an A-left-module of

form Λ®βUi, for example A ®B2. On the other hand, in case A is 2.Frobenius

over By Lemma 17, (1) shows that A®Bw is (A, £)-injective and hence any

(A, Z?)-projective A-left-module is (A, jB)-injective too. The converse is seen

from (a well known general fact on (A, Z?)-injective modules and) Lemma 17,

(2). Thus

THEOREM 20. A left-module 2 over a 2.Frobenius extension A of B is (A,

B)-projectiυe if and only if it is (A, B)-injective,
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The above mentioned fact, that an (A, J3)-projective Λ-left-module 2 is a

direct summand of A®*2, is seen by considering the A-epimorphism p of

A®/>2 to 2 defined in

(5) JO(ΣΛ, ®/, ) =Σβ//ι (Λ, eA, /, ε 8 )

and observing that Ker p is a direct summand of Λ® Λ S as a ZMeft-module

(as we see by the 5-monomorphism /->1®7 of 2 into A<g>js2). The last is

the case generally, and 2 is (A, Z?)-protective if and only if Ker p is a direct

summand of the Λ-left-module A® *2. Similarly the (A, J5)-injectivity of an

Λ-left-module 2 is reduced to the image of a certain canonical Λ-monomorphism

2-^Homβ(Λ, 2) being a direct summand of the Λ-left-module HomB(A, 2).

In case Λ is β-Frobenius over B, we have an A -isomorphism A®n(β, 2)

^Hom^-'ίΛ, (j9, 2))=Hom*(Λ, 2), by I, (18) (used above repeatedly). In

combination with the above remark it follows that the (Λ, J3)-injectivity too

can then be characterized by means of a tensor product, A®/? (/9, 2), and indeed

by that the image of a certain canonical Λ-monomorphism 2-*A®/?(j9, 2) is

a direct summand of Λ® β (β, 2) as Λ-module.

This last we have seen without making use of Theorem 20 (If we use it,

it is clear that the (Λ, jB)-injectivity of 2 is, in case Λ is 2.Frobenius over B,

characterized by means of the tensor product Λ ® B 2, indeed by that the kernel

of a canonical Λ-epimorphism A®*2-»2 is a direct summand of A®/, 2 as

Λ-module.) In fact Theorem 20 may be derived directly from the above remark

(and its dual) readily. For, an (Λ, Z?)-injective module 2 is a direct summand

of Λ®«(j9, 2) as Λ-module, by the above remark. The last module is, being

of form Λ®Bm,(Λ, Z?)-projective, and hence its direct summand 2 is so too.

This proves one half of Th.20, and the other half is seen dually.

Now, if Λ is further quasi-free over B, Theorem 20 can be made more

explicit in

THEOREM 21. Let A be quasi-free β-Frobenius over B and let u,,, v^ be as

in Prop. 10. Then an A-left-module 2 is (Λ, B)-projective if and only if there

is a (B, β)-epimorphism c of 2 such that on 2 we have

(6) Σ v̂.'Wv = 1

The sawe condition is necessary and sufficient for the (Λ, B)-injectivity too,
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Proof. Suppose that 8 is (A, 23)-protective, i.e. that Ker p (which is always

a direct summand of A®n2 as Z?-module) is a direct summand of A®B2

as A-module. * Then there is a direct summand A-submodule So of A®B2

which is A-isomorphic to 2 (in fact A®B2 = 2oΘ Ker μ). Let λ be the pro-

jection of A0B2 onto So. with respect to a direct decomposition of A<g>n2

into So and a second A-submodule (which may be Ker p, but not necessarily).

Let, on the other hand, K be the (B, /Γ^-endomorphism of A0B2 defined by

(7)

(i.e. κ = β~1π(&l\ As an operator on A(g>/?δ we have

v

For, (Σ»*A:«V)(

/ = Σ Σ #v Vvμ jΓ* TΓKμ 0 / =
V μ I/. V μ V

Σ # #μ β^π Uμ. 0 I = X Θ /
μ

by I, (42), (41) and (40). Since λ is A-homomorphic, it follows that Σ
V

= yίΣt'vArwv = λ and induces the identity map on So. On denoting by t the

(B, β)-endomorphism of 8 which corresponds to lκ on So, by an .A-isomorphism

of 8 and So, we odtain (6).

Now, let (6) be the case. Let W be an Λ-left-module having 8 as an A-

submodule such that 53? is the direct sum of 8 and a δ-submodule. Let /j be

the projection of ΊR onto 8, with respect to this direct decomposition of 9Jΐ,

and let λι be the map Σ#vίΛiWv on Ίfl. λ2 maps 2J? A-homomorphically into 8,

as the relations I, (41), (42) and the (B, ί3)-homomorρhic feature of : show.

Further, /2 induces the identity map on 8, as the relation (6) entails. Thus

9Jΐ = 2θKerΛ2 is a direct A-decomposition and this shows that 2 is (A, B)-

injective.

Lastly, assume that 2 is (A, £)-injective. Then 8 is (A, J5)-projective, by

Theorem 20.

This closes a circuit and proves our Theorem 21. (The last step in the

above circuit, concluding the (A, Z?)-projectivity from the (A, Z?)-injectivity,

is seen also by means of A0u(j9, 8), as was remarked above. An A-mono-

morphism of 8 into A®s(β, 8), used in that argument, may be given, in case

A is quasi-free β-Frobenius over B, by
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( 2 ) a\ Z - * Σ ί > -®(wvZVe= Ά®r:<β, 2 ) ( / G

where /' denotes the element of (β, 2) corresponding to an element / of 2.

For, the A-homomorphic feature of a may be seen in

μ, V

= Σ

y*μ being as in I, (41), (42). That Im a is a direct summand of A®u(j9, 2) as

mere J9-module, is seen by means of the 23-homomorphism a\ of A®B(&, 2)

to 2 defined by <n( Σ«/®/ί) = Σ ( TΓΛ,-)/,- (observe that π is (£, 1)-(B, β)-

homomorphic) and by observing that axal — <?i(Σ^vΘ (# v/)') = (πv^)u^l- I (by

I, (40)), i.e. that <7i</ is identity on 2 This explicit way and the similarly

explicit construction in the proof of Theorem 21 form the generalization of the

Maschke-Ikeda-Kasch [10] argument to our present case of a quasi-free 2.Fro-

benius extension.)

§ 7. Endomorphism ring.

With a ring A having a subring B, consider the Z?-rightendomorphism ring

@ of A the elements of @ are considered as left-operators on A. The ring

Aι of left-multiplications of elements of A, on A, is a subring with a subset

S of A we denote by S/ the set of left-multiplications of elements of S on A.

We prove the following refinement of Kasch [10], Satz 5 and Nakayama-

Tsuzuku [13], Theorem:

THEOREM 22. Let A be an extension ring of a ring B. Let β be an auto-

morphism of B which can be extended to an automorphism, say a, of A} and

denote by a1 the automorphism of the left-multiplication ring Aι of A correspond-

ing to a'1. If A is quasi-free β-Frobenius over B, then the ring © of B-right-

endomorphisms of A is quasi-free a'-Frobenius over Au Conversely, if (£ is af

Frobenius over Au then A is quasi-free β-Frobenius over B, provided that A is

finitely generated B-left-quasi-free.

Proof. We first prove the second half of the theorem. Thus, let

(9) A = ΌXB+ ' Λ-VnB
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be, as in /, (33), a direct decomposition of A into B right-submodules υ^B such

that VvB^e^B (J3-righO, vv̂ v = fv, where £v are idempotents in B. Let E^

be, for each v - 1, . . . , w, the i3-right-endomorphism of A such that

(10) £ί/, = d

As fv is mapped by any B right-endomorphism of A onto an element in

we readily see the direct decomposition

(11) g

By the assumption that (£ is αr'-Frobenius over Aι there exists, according to

Prop. 4, an (Aι, l)-(Aιt α')-homomorphism A of 6 to Ai such that A

( y e g ) implies y> = 0.

Set 7i;v/ = ΛEΛW^ZΞ Λ, in fact e£ v A). We contend that a relation

can hold only when yx = = j>π - 0. To prove this, set

and consider the elements

of @. For each μt v and b^ B we have

Since this is the case for every v = 1, . . . , n, we see

Xμ= (eμyι)ιEi+ + (e^yJiEn = eμι(yuEi -f • +v ; / /£n).

Hence

ΛX"μ = Λ(.yiz2si+ +ynιEn)eμι -= (jyi/«;iϊ+ * * +^ir^i/)α^μ/

and this is 0 by the assumed relation (12). Then AxιXμ^xιΛXμ =0 for any

XΪΞA, i.e.

ΛxιEμ(xuEi+ - - - +xnιEn) =0

for any x<= A. As this holds for every μ -1, . . . , nt we have, in view of (11),

Λ&(xuEi+ +#„/£/) = 0

and hence
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XuEt-h * +XnlEn = 0.

As xv e Λe,y we have then ΛΓV = 0, for each v = 1, . . • , # . Then jyv = 0, z/ = 1,

. . . , n, as was asserted.

So we obtain a direct sum submodule

(Bei)ιWii+ - - + (Ben)ιwnι

of Aι, where each summand (Be*)ιw*ι is ϋ?/-left-isomorphic to Bie^r, remember

that Bι is the set of the left-multiplications of the elements of B onto A (not

onto B).

Next we prove that the sum

(13) BιEχ+ - +BιEn

is a right-ideal in @ = A/£i+ + i4/Z£w((ll)). Namely, with JC =

-\-vnyn^ A(y^^e^B) and j ε ΰ w e have

••• -f )

for any £ e £ and /c, which means

This shows J5/&6cjB/Jgi+ +BιEn, for any *, and therefore (13) is a

right-ideal of 6.

As Λ is (Aι, tfO-right-homomorphic, it follows that A{B\E\+ +B;En)

= Bιtou+ - - - +BtWni is a right-ideal of Aι and indeed an JB/-left, i4/-right-

submodule of Au

Another consequence of the right-ideal property of BiExΛ * * ' +BιEn is,

as we see by virtue of Prop. 4, ii) (with A, B, 0 replaced by @ Au a')> that

by any (At, a/~1)-left-homomorphism of @ into -A/ every element in BiExΛ-

• - +BιEn is mapped into a1'1 ΛiBiE^ + £/£„) =ar"1(B/fi71/+ +

Bnvii). But, on the other hand, we see by (11) the existence of an (Au a1'1)-

left-homomorphism of K into Aι mapping E^ onto an arbitrarily given element

of a'ΉAe^i. Hence we have a'~\BiU)u+ ••• + B / W n / ) 3 a r l ( M ) / , or

equivalently,

Since the left-hand side is a right-ideal of 4̂/, as observed above, we have
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' ' ' -\- BiwuΏ (Λe^A)ί, or, what is the same

B1V1+ +Bιv,ιΏAe<JA.

As this holds for every v = 1, . , . , n and as Aβ\AΛ- ' ' * -f AenA - A by (9)

(and #v£, = t ϋ , we obtain

(14) A = 5^1 + + £/*>,;

where, as we proved above with respect to Aι in stead of A itself, the sum is

direct and each Biv^ is ZMeft-isomorphic to Be,.

Now we wish to show that the elements wv - ociι\, vv are in the dual

relationship as in Prop. 11. Thus, if, with an element *of A, we have /, (41), i.e.

then we have E.^xi- Σ^v/ ^v as is seen from

Applying yJ we have ιvμia'xι•= ΣjVμv/Wv/ or (α'" 1?^/)*/ = Σ(Λ'"1.vμv/)α'~1?/\/.

Setting wμ = axvAfx = 1, . . . , w) we obtain

n

^μ^ = Σ (βVμv)Wv,

i.e. I, (42); observe that β is the restriction to JB of the automorphism a of

A which in turn corresponds to the automorphism a'"1 of At. Here (βe^)u^

= (αr̂ v)wv = /ίv and Z?wv is 5-left-isomorphic to 5j9^v, since e^n\ = n\ and J9ίc»v

is ZMeft-isomorphic to JB£?V. Further we have

and the sum is direct, as again the application of α" 1 reduces the case to that

of ιι\.

So A is |3-Frobenius over Z?, and the second half of our theorem is proved.

The verification of the first half is rather straight-forward. Thus, assume that

A is quasi-free β-Frobenius over B. We have I, (33), (35), in notations described

in Prop 10, and I, (41s/, (42) entailing each other as in Prop. 11. Writing I,

(33) in the form (9) (as Prop. 10 tells) and defining £ v e g as in (10), we

obtain the direct decomposition (11). By the assumption of our theorem β is
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extended to an automorphism a of A, and we denote also by a the automor-

phism of Ai naturally induced by it. To each element X of 6 we associate an

element ψx of Hom.^^t^, AtAι) defined by

(lδ) <fxY=ib(ccYXv»)iuvi (re©).
V = l

with our "dual basic elements" wv, #v Then the map X-^ψx is an Arright-

homomorphism as we see from the relations I, (41), (42). The map is evidently

$-left-homomorphic too.

We wish to show that the map is an isomorphism. Let, for this purpose,

X = XuEi+ - ' - -f XniEn(X\, e Ae^) be a non-zero element of δ. There exists

an index, say 7>o, with #Vo#O. If we write ΛΓ , = Σ*>μ2μvUμv e £μZ?) for each *>,
μ = i

then μ̂ovô O for some / .̂ We have

Hence <fx*?0, and this proves that our map is monomorphic.

Further, for arbitrarily given elements 5veSίv(i> = l, . . . , n), set

Then

(16) ψxE.^ ih(*EμXυ,)iu,ι Σ(^ μ Vj^)/^/
V = 1 V = 1

ί Σ(α*iδJ/«vz = ((0ei)Σ(£δv)wv)z for ̂  = 1,

I 0 for ju * 1

Similarly, for each v and for every element * of A there exists an X in ©

such that φxEμ = {(βe^)x)ι or 0 according as μ = z; or /ί#i;. This proves that

our map X-+ψx is epimorphic too.

Thus Λ i ς: Hom^ l t t(^^, /̂A/) and (£ is (quasi-free) α '-Frobenius over Ai,

where a1 denotes, as in our theorem, the inverse of the automorphism a of Au

The first half of our theorem is thus proved too.

Remark. The necessity of the rather strong assumption on the extend-

(to a) of the automorphism βf in our theorem, seems to come from
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the midway feature of our definition of 2.Frobenius extensions mentioned already

in a Remark at the end of I, § 1. We intends to come to this point in a sub-

sequent -paper.

Remark. Kasch [10] uses his Satz 5 (which we have generalized to our

Theorem 22) to prove that if © is a semiregular automorphism group (in the

sense of [18]) of a simple ring with minimum condition A (which means that

the totality of inner automorphisms of A contained in % forms an (invariant)

subgroup ©o of finite index in (S and is indeed the set of inner automorphisms

of A induced by (all) the regular elements of a semisimple subring T of A

having finite rank over the center C of A) then A is a Frobenius extension

of the fixed subring B of ($. As Kasch [10] briefly remarks, the same holds

with a complete automorphism group of (a simple ring with minimum condi-

tion) A whose subgroup of inner automorphisms is of finite index and is

induced by (all) the regular elements of a subring T of A Frobenius over C,

the center of A, provided that the product of Tr and Aι is a tensor product

over CA - Cι) and A is projective with respective to the endomorphism ring

of A generated by @ and Aι Curtis [14] discusses when this last is the case.

One might try to make a further generalization by replacing here "Fro-

benius". with our "2.Frobenius". But this would be rather meaningless. For,

firstly, since C is a field, every 2.Frobenius extension T of C is free and,

moreover, since C should naturally be in the center of T, T must be 1.Frobenius.

Namely, if A is a β-Frobenius extension of a ring B and if B is contained in

the center of A, then necessarily β = 1. For, there is, by Prop. 4, a (B, 1)-

{B, j9)-homomorρhism π of A into B such that πaA = 0 (a^A) entails a-0.

So, with & e J3, XG Ay we have, since b> βb lie in the center of A, πbx = πxb

= (πx)βb=(βb)πx = π(βb)x, π(b - βb)x - 0. As x is arbitrary in A, π{b~βb)A

= 0 and this entails b- βb^Q. It follows that 0 = 1.

(If we should consider a Galois theory of non-simple, and perhaps non-

semisimple, rings, then it would probably be useful to consider "non-free

1.Frobenius" case, However, as the developement of Galois theory for such

general rings seems still to be at an unsatisfactory stage (except with the

outer Galois theory), we shall not go into such a consideration here).

In this context we want to remark, however, that the field property makes

no hindrance for having a non-1.Frobenius 2.Frobenius extension. As the
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examples given in I, § 2 were with respect to non-field subrings, we thus give

here

Example 3. Let K be a field having an involutive automorphism ( # 1)

?-»£, and let A be the ring of all matrices of form

(ξ, ζeK)

in K. Let B be the subring of A consisting of all x with C = 0. Clearly B is

a field isomorphic to K, and has an (involutive) automorphism /3 mapping

fξ 0\
(o V t0 (o ?)' Now> set

π l o c/

If *i = (^ | ) > then **, = ( C | i ^ | C i jΊ) and hence

/Cί1 + ίC: 0 \
πXX\ =1 - Γ

\ 0 Cfi+cC/

From this relation we see readily that zr is a (5, Ό-ii?, /5)-homomorphism

of A to JB. From the same relation we see also immediately that the condition

ir) of Prop. 4 holds. On the other hand, 1 and u = L . i form a free jB-right-

basis of A. Hence Homj?fP(AΛ, 5/?) is a free 5-left-module of rank 2. Hence

we have a i5Ά-monomorphism a-*ψa-πa of /?̂ 4̂  into Hom/?,̂  (An, BB). Since

(1, #) is also a free 5-left-basis of A, the map a-^ψa — ττa is epimorphic too.

A is thus a 2.Frobenius extension of the field B with respect to β. (In fact,

(1, u) and (z*, 1) are B-right and ZMeft free bases of A dual in the sense of

Prop. 10, 12). Since the automorphism β of B can not be induced by a trans-

formation by a regular element in A, A is not l.Frobenius over B. (This

example is closely related to Example 2 in I, §2. Indeed, if we consider our

A as an algebra over the fixed subfield L of the automorphism £-»? in K and

pass to the tensor product A® LK, then we come back to the case of Example 2).

§ 8. Annihilators of ideals.

Let A be /9-Frobenius over B. By means of the (B, l)-(#, /3)-homomorphism

x - Φ1, as in Prop. 4, we defined in § 2
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(17) RnX = {x•<= A I πXx = 0/,

(18) LΛΛ'={^

for a subset X of A

LEMMA 24. LπAX *s α rî /zί tYfeα/ of A and is indeed the largest right

ideal of A contained in Lr.X.

Proof As AX is a left ideal, we see readily that L^AX is a right ideal

in A. Clearly LπAX<^L~X. Further, if r is a right ideal of A contained in

LnX, then

whence r c j ^ A X (The lemma will be made use of in the next section).

LEMMA 25. LnXA is a left ideal of A and is indeed the largest left ideal

of A contained in L^X. Moreover, L^XA conicides with the left annihilator

(i.e. the set of all left annihilators, to be more precise) IXA of XA in A.

Proof. Denote the right ideal XA by r. As (/r)r = O we have clearly

/ r c L j , Conversely, from π(L^x)x{ —π(L*x)τA)—0 we obtain (Z,πr)r=0 (i.e.

lxΏLnx) by virtue of Prop. 4, i r). Thus Lnx — lx, proving the second half of

the lemma. Further, clearly L^x -L^XA c LT.X. If ί is a left ideal of A con-

tained in LnX, then πtX = 0, πAtX = 0, whence LY = -0, by Prop. 4, ί/), and

therefore, IXA = O, πΐXA^Q, ί&L^XA. This shows that L-XA=Lnx is the

largest left ideal contained in L-X. Now, we call right d-ideals those right

ideals of A which are direct Z?-right-summands of A they are similar to, but

somewhat more general than, what are called right f-ideals in Kasch [10].

Left e/-ideals are defined similarly.

THEOREM 26. Let A be a 2.Frobenius extension of B. For every right d-

ideal x of A the left annihilator Ix is a left d-ideal of A and its right annihilator

is r, that is}

(19) r/r = r.

[Similarly

(20) /rl = l

for every left d-ideal I of A>.
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Proof. This follows immediately from Prop. 6 and Lemma 25 (and its

right-left symmetry).

Assume now that B is semi-primary. For a finitely generated projective

(whence quasi-free) bright (resp. left) module 3ϊ (resp. 2) we denote by (3f:

B)r (resp. (2: B)ι) the number of components in a direct decomposition of 3?

(resp. 2) into directly indecomposable B-right (resp. left) modules. We have

(Oί: B)r = (Hom^βOJΐiϊ, B): B)ι for any automorphism β of B. In particular,

we have (A: B)r = (A: B)ι for a (necessarily quasi-free) 2.Frobenius algebra

A, and this common value is denoted by (A: B).

THEOREM 27. Let B be semi-primary and A be Ξ.Frobenius over B. For

every right d ideal r of A we have

(21) (r: J5)r+(/r: B)ι = (A: B).

Proof. Let, generally, A = 9ϊ φ 9}' be a direct B-right decomposition of A.

Decomposing 3f, 9Ϊ' further into directly indecomposable £-right modules and

applying Prop. 6 to the thus obtained direct decomposition of A, we readily find

<3t: B)r+(L^: B)ι=(A: B).

If in particular 9ΐ=r is a right if-ideal of A, we obtain (21), by virtue of

Lemma 25.

THEOREM 28. Let B be semi-primary and A be 2.Frobenius over B. For

every element a in A such that a A is a right d-ideal of A, the left ideal Aa

of A is B-left projective and we have

(22) (Aa: JB)/ = (βA: B)r.

Proof. We have A = <zAθ3ΐ' with a 5-right module 9ϊ' and hence, by Prop.

6, A^LπaAQLΛl'= laA®LnW. But A/laA^Aa U-left). Hence Aa^L^V

(B-left). Thus Aa is 5-left projective and (Aa: B)ι = (LJV: B)ι = (aA: B)r

proving (22).

In Theorem 28 aA is contended merely to be β-left-projective. If B is an

S-ring (cf. I, §5), it is a left d-ideal. Thus

PROPOSITION 29. Let B be an S-ring and A be 2.Frobenius over B. Every

B-right projective right ideal of A is a right d-ideal.

Proof. By Pi op. 15.
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§9. Residue-rings.

With a (two-sided) ideal 3 of an extension A of B satisfying 3Π2? = O, the

residue-ring All can naturally be looked upon as an extension of B.

PROPOSITION 30. Let be β-Frobenius over By and I be a {two-sided) ideal of

A which is a left d-ideal and'satisfies 3 Π B =0. If there is an element a in A

such that

a) RπZ = Aa = aA, and

b) π(xya - xay) = 0 for any x&A,y<^B,

where π — Φl as in Prop. 4, then the residue-ring All is β-Frobenius over B.

Proof. Consider the map π': x-*πxa of A into B. As π is {B} 1)-(B, β)-

homomorphic and π{xya - xay) =0 for any x&A, y^B, we see that π' is also

(B, l)-(Bj β)-homomorphic. Since 3 = LπRπl = L*aA <^L*a, the kernel of

π'f TΓ' induces a iB, 1)-(B, β)-homomorphism of A9-A/I into B, which we

denote also by π'. The kernel of the last is L*a/l and this contains no non-

zero left-ideal in A\ since 3( = £*/?« 3) =LnaA is, by Lemma 25, the largest

left-ideal of A contained in L^a. Thus the map rJ of A' into B has the pro-

perty i/) of Prop. 4 for A' instead of A. For every ψ1 in Hom/i(1r' d?A', RB)

there is, by Prop. 4, ii/), an element aι in A such that ψf (x mod 3) =β~ιπxai.

We have β'^^πxai-O for every # e 3 , and therefore αLe/?π3 = A#. Set thus

ai-a2a, a2^A. Then 0' (# mod 3) =β~1πxa2a = β~1π'xai and this means that

the map π' of A' into JB satisfies Prop. 4, ii/) for Af too, besides i/h Further,

since 3 is a left d-ideal, A* =A/3 is evidently (finite generated) iMeft projective.

Hence A' is #-Frobenius over B by Prop. 4.

PROPOSITION 31. Let A be a β-Frobenius extension of an S-ring B, and 3

be a (two-sided) ideal of A which is a left {or right) d ideal and satisfies 3 Π J5 = 0.

If there is an element a in A such that

a') 3 = LπAa = LnaA and b) of Prop. 30 hold,

where π = 01 as in Prop. 4, then the residue-ring A/1 is β-Frobenius over B.

Proof. As in our proof to the preceding proposition, we see that the map

rr': x-*πxa of A into B is (B, l)-(B, β)-homomorphic and its kernel is Lna

and contains 3( =LπaA^L^a). By 3 = LπAa = LnaA and by Lemmas 24, 25,

3 is both the largest right-ideal and th.e largest left-ideal of A contained in the
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kernel Lπa of πf. Hence the kernel Lna/i of the induced map of Af = All into

By denoted again by the same letter π', contains neither a non-zero right-ideal

nor a non-zero left-ideal in A1. The map π\ of A1 into B, satisfies Prop. 16,

a) (i.e. Prop. 4, \r) and i/)) for A1. A! ^ All is again (finitely generated) B-

left (or right) projective, since 3 is a left (or right, resp.) tf-ideal. Hence A1

is β-Frobenius over B by Prop. 16. (We wish to correct an error in Prop. 16:

"ZMeft" in the second line in Prop. 16 should read "ϋ?-right" (in order to be in

accord with " l r ) " in the third line. However, if we replace this "1, )" by "1;)",

then "ZMeft" goes well (without injuring the validity of the proposition)).

Remark. The application of L^ shows that the condition a') for a left d-

ideal 3 is weaker than the condition a).

LEMMA 32. Let be 2.Frobenius over B. Assume that the B-right-module A

has a direct sumnιandt say Of, which can be (B-right) homomorphically mapped

upon B; this is automatically the case with sJϊ = B if B is an S-ring. For π = 01

as in Prop. 4 we have then πA$t = B and so πA = B.

Proof. There exists, by assumption, a direct Z?-right decomposition

A = Oί Θ SRi of A and 3ΐ has a J5-right epimorphism ψ onto B. Mapping x-\-Xι

(#e3ΐ, Xί^yii) to βψx<sB, where β is an automorphism of B belonging to the

2.Frobenius extension A over B, we obtain an element ψ of UomB,v(AB, Bn).

Since φ is epimorphic, ψ is epimorphic and indeed ψΊR = B. By Prop. 4

ψ e ΦA. So B = (ΦA)$t = (ΦDAVt = πA% proving the lemma.

THEOREM 33. Let A be a β-Frobenius extension of an S ring B and I be a

(two-sided) ideal of A which is a left d-ideal of A and satisfies 3 0 5 = 0. The

residue-ring A/I is β-Frobenius over B if and only if there is an element a in

A such that a') of Prop. 31 and b) of Prop. 30 hold, i.e. 3 = LnA.a = L*aA. and

π(xya - xay) = 0 for all x e A, y e B, where π is as in Prop. 4.

Proof. The "if" was proved in Proposition 31. To prove "only if", assume

that the residue-ring A' = A/3 is β-Frobenius over B. There exists then a (B,

l)-(B, j9)-homomorphism πf of A' into B which has the properties ir), i/), ϋr),

iii) of Prop. 4 with respect to A1 in place of A. Let W be the kernel of π\ i.e.

(where 1' is the unit element (1 mod 3) of A1). As the risidue-module A1/®'
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is (Bf l)-(B, β)-> whence ZMeft-, isomorphic to B, by Lemma 32, (and B is

J3-left projective), there is a JB-left submodule 2' of A1 with A ' = £ ' 0 2 ' . rJ

induces a ZMeft isomorphism of 2' and B.

Now, since 3 is a left d-ideal, we have A = 3 0 8 with a JB-left submodule

2 of A. By the canonical map A-*A' = A/l, 2 is mapped JB-left isomorphically

onto A' ( = £ '02 ') . Denoting by ft", 2" the counter-images in 2 of if', 2', we

obtain the direct ZMeft decomposition A = 3 0 $ " 0 2"; 3 0ft" is the counter-

image, in A, of ft' by the map A. -* A' = All. By Prop. 6 we have the direct

Z?-right decomposition

A ^ RΛR"®2") ΘRMΘ2") ®RM®8").

As /?«(3Θff'0^HomΛ,p-i(S'', BB) (B-right) and as 2 " - 2 ' - £ (B-left), we see

Λ«(3ΘβΌ~HomBfp-i(Λβ, BB)^B (B-right). Hence there is an element a in

A with i?π(3 0 $ " ) = βB. Hence 3 0 ^ " = LnaB =» Zπ^, again by Prop. 6. Now, 3

is the largest right-ideal of A contained in 3 0fi", since otherwise the kernel

&' of 7r' would contain a non-zero right-ideal of A'. So, as 3 0 $ " = LπaB = 7,πtf,

we obtain 3 = Z,πA« = Lr.AaB by Lemma 24. Similarly 3 is the largest left-ideal

of A contained in 3 0 $" and hence, by Lemma 25, 3 = LπαA.

The map #-» πxa is a ZMeft-homomorphism of A into 5. Its kernel is the

module Lna which we have just seen to be 3 0 $ " . It follows that the map

(x mod 30ft") e Alii0«") - 7ΓΛrfl e Ẑ

is a £-left-isomorphism of Al(l®Rn) onto B. On the other hand, A/(i®ft")

= AVft' and we have a J3-left (and even (B, DΛB, β)-) isomorphism of A'/R'

onto B given by

(which we have made use of before). So the composite

(x mod 30^")-^ (Umod 3) mod R')^πf(x mod 3)

is a ZMeft isomorphism of πAa(^B) onto B. Considering B-left lengths, we

see that πAa = B and πxa-+ π'(x mod 3) is a ZMeft automorphism of B. Hence

there is a regular element b in B such that

(πxa)b = 7τ'U mod 3) for all X<BA.
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Since x->πf(x mod 3) is {B, l)~(By β)-homomorphic, we have hence (πxya)b

= (πxa)bβy, i.e. πxyaβ~ιb - πxa(β~ιb)y, for all .yei? (and for all « e A l Put-

ting ao^aβ'1^ we have

for all ^ ε f t x<=A. As L « A Λ O = L^AaQB = L*AaB = L*Aa( = a),

= LπαA( = 3), we have the "only if" part of the proposition on denoting aQ by

a anew.

Remark. As our proof shows, the "only if" part of Prop. 33 remains valid

when we replace the S-ring condition on B by that B satisfies the minimum

condition for left -ideals and A! = All has a 23-right direct summand (£-right)

isomorphic to B.

§ 10. Frobenius extension of a qua si-Frobenius ring.

By homological means we have seen already in Corollary 11 that a 2.Fro-

benius extension of a quasi-Frobenius ring B is a quasi-Frobenius ring. Using

the annihilator characterization of quasi-Frobenius rings, instead of homologi-

cal characterization, we may derive this theorem also from the following

generalized formulation of Hall's [15J theorem:

PROPOSITION 34. Let B be a quasi-Frobenius ring and β be an automorphism

of B. Let 2 be a finitely generated projectiυe B-left-module, 9i a B-right-module,

and let there be given a regular 1-β scalar product <, > of 2, 9ϊ in B then 9ϊ

is finitely generated B-right projective, by Prop. 15. For every B-left submodule

So of 2 (resp. Bright submodule % of 90 we have

123) LR2o = 2o (resp. RL% = »<>>,

where L, R are the same as in Proposition 15, 2).

Proof For the sake of completeness and convenience we briefly reproduce

Hall's proof in the form adapted to our present generalized formation. Express-

ing 9? as a direct sum of submodules isomorphic to right-ideals generated by

an idempotent and applying Prop. 15 repeatedly, we may express 9f, 2 as direct

sums

2 = Bui Θ Θ Bun
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with ι;v> u, such that v^B^e.B (Z?-right), Bu^Bβs, (ZMeft) by

u*J*-+βe*J, e^ being idempotents in B, and furthermore

Denote by 3ί*, 2:< the submodules v2B& Θ#«£, J5«20 * θ δ « » of 3f, 2.

The scalar product < , > on SR, 2 induces an (also (1, β) ) scalar product on

9i*, 2", which is also regular and which we denote also by < , >. For a sub-

module 3?o of 9ϊ we denote by 0f0* the intersection 3ϊ0 Π 3i*. Similarly we set

2o* = 2o Π S* for a submodule 2o of 2 Now, in order to prove our proposition by

induction, with respect to n, we assume that the assertion for 3t*,. 2* (and

their scalar product < , >), in place of S, 2, (and < , >), is valid. Then our

induction argument is divided into several steps.

1) Let u = bχUι + + bnιin ( ^ e S f e ) be an arbitrary element of 2.

Then (23) holds for 2Q = BU, i.e.

To prove this, let s i« i+ ••• Λ-snun^LRBu . (s , e Bj9ev). Then 0 = <5i«i +

••• 4- SnUny viXi> =siβ-Xι for every Xi^B with bιβxι=θ. Hence si^lrbi

-Bbu where /, r are left and right annihilator operations in the quasi-Fro-

benius ring B. So st = tbi with t^B. We may write

S\lh+ ' ' +SnUn — t(biUi-\- ' ' ' + bn Un^ = s'2 U\ + ' ' ' + s'nUn

(S[ZΞB). Since this element belongs to (LRBu)\ it belongs to L*R*B(b2uz +

• + bnUn\ as we readily see, and we can write

S2M2+ # +5ί;Wn = ί'(̂ 2W2 4- ' * Λ bnUn) (f G B)

in virtue of our induction assumption.

Now, for any element tυ = biZι = - ifazi -f +bnzn) («v ^ 5 ) common to

61Z? and the (not necessarily direct) sum &>£+ •• +bnBt we have evidently

£i2i+ * +^«2« = 0 and thus Viβ^Zi-^ * +υnβ~1znG RBu. Since t'(b2ti2

+ * +bnun) =s'2ui+ - + sΉun^LRBu, this entails ί'zt;= — ί'(fe22-h * * *

+ 6lf2rt) =<5{w2+ * * * +s'nun, Viβ^z^ +1;»β-1aί»> = 0. This shows

The right-hand side is equal to IbiB+l{b2B+ +bnB) and hence V=p +

with pzΞlbxB, q<Ξl(b2B-\ + δ n B ) . Therefore
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••• -f bnUn) =p(biUi -\-b2U2 + *•• +bnUn)=pUt

This proves LRBui c whence) = 2?w.

2) Next we show that if u is an element of 2 then R*(Bu)* = (RBu + '

For, L*{RBu+ViB)* QLRBu as we readily see. The right-hand side is Bu

by the step 1). Thus (Bu)*ΏL*(RBU+ VIB)*, and therefore R*(Bu)* is

contained in K*L*(RBu + ViB)* which is in turn (RBuΛ- ViB)* by our induction

assumption. This proves a half of our contension, and the other half, i.e. the

inclusion of the other direction, is evident.

3) Let So be a S-left submodule of 2. Then we wish to prove i?*So*

Again the inclusion c is evident, and so we have to prove 3, i.e. that for

any element v* of /?*2* there exists an element X\ of e\B such that

For this purpose, let

(24) «(p)=ftί l0fi,+ +bWun (»? )eBίίv).(p = l, . . . , r)

be a (finite) system of ZMeft generators of So Let s^r and assume that

there is an xίeβiB satisfying

(25) <u{?\ vixί + v*> = 0 for Q = 1, . . . , s - 1.

By the above step 1) there is xϊ^eiB satisfying

(26) <uis\ vixl' + v*> = 0.-

Now, let w=y{"b?>+ - + y s - 1 ) 5 ί β - 1 ) = y β ) ^ s ϊ ( y β ) e B ) be an element of
1 } + ••• +l»ίβ- | ))njBM s ). Then

Hence

In combination with (25), (26) this entails
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< y i } « ( 1 ) + + y s ~ υ « ( 8 - 1 } , vix*>-<y{a)uia\ v1x[l> = Ot i.e.

w/9*ί - wβxΐ = ιι;β(*ί -#{') = 0.

We have thus seen

Hence /?(#! - *{' ) = £ + q with

(27) ptEr(Bb[l)+ ••• +"£MS~1)), q

Put *ί" = *ί - jΓ1/*! =Λ:Γ + i3"1g). Then by (25), (26) and (27)

(28) <Vp), «;,*ί" + v*> = 0 for p = 1, . . . , 5.

(25)-»(28) makes s — l-+s and we reach to our contension by recursion of this

argument.

4) Let (24) be as in the preceding step, and u=yiUi+ +.v«w« (3>v

e B0e^) be any element of LR2o If ΛΓJ is an element of B such that b[?)βxi

= 0 for p = 1, , r, then I IΛΊ e # 2 0 and hence îβΛΓi = 0. Thus yι e /(r6ίυ Π

ί) i υ M ) 1) δίΓ>, whence

The element u'=p{1)uω+ - +p{r)u{r) of So has a form

jΊWi+^2«2 4- * +;y«ww (XeBj9β v ; , i; = 2, . . . , n).

We have u-u'<= (Zi?So)* and hence

for every ι;* e (/Ko + viB)*, whence, by the preceding step 3), for every

υ* e 7?*y%. S o w - «' G L* /?* So* and e So* by our induction assumption. Hence

w = u' + (w - w') e So + So* = So.

This completes our final step, proving thus Proposition 34. Now, as a

second application of Prop 34, Hall's theorem (in generalized formulation), we

combine it with Prop. 30 and Theorem 33 to obtain

THEOREM 35. Let A be a β Frobenius extension of a quasi-Froebenius ring

B and I be a {two-sided) ideal of A which is a left d-ideal of A and satisfies
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B Π B = 0. The residue-ring All is β-Frobenius over B if and only if there is

an element a in A such that rl = AaB = a A and rΛxya — xay) = 0 for all x e A,

v e JB, where π is as in Prop. 4.

If r3 = AΛB = aΛ, then, since rl = i?π3,3( = L^RJ) = L? AaB( =

= LΛtfA Hence the ''if" part of our theorem follows from Prop. 30. To

prove the "only if", we have merely to note that the condition 1-L^A.a- L^aA

of Theorem 33 entails Rrj( = rl) = R-L^aB = R^L^aA and to observe that

here R^L^AaB^ A.aB, R*LΛaA = aA in virtue of Prop. 34.

Remark. Our theorem fails to cover Satz 9 of Kasch [10] particulary,

our by-condition rλxya — xay) =0 is very strong. However, the writers fail to

convince themselves of the validity of the proof of [10], Satz 9.
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