MODULE OF ANNULUS

TOHRU AKAZA and TADASHI KURODA

1. Let C and C^{\prime} be two simple closed curves in the complex z-plane which have no point in common and surround the origin. Denote by D the annulus bounded by C and C^{\prime}. Consider a family $\{\gamma\}$ of rectifiable curves γ in D and the family P of all non-negative lower semi-continuous functions $\rho=\rho(z)$ in D. Put

$$
L_{\rho}\{r\}=\inf _{r \in(\tau)} \int_{\gamma} \rho|d z| .
$$

Understanding $\frac{0}{0}=\frac{\infty}{\infty}=0$, we call the quantity

$$
\lambda\{r\}=\sup _{\rho \in P} \frac{\left(L_{\rho}\{r\}\right)^{2}}{\iint_{D} \rho^{2} d \sigma}
$$

the extremal length of the family $\{r\}$, where $d \sigma$ denotes the $\left\{r^{\prime}\right\}$ be the family of all rectifiable curves γ^{\prime} in D joining C with C^{\prime} and let $\left\{\gamma^{\prime \prime}\right\}$ be that of all rectifiable curves $\gamma^{\prime \prime}$ in D separating C from C^{\prime}. Then it is known that

$$
\begin{equation*}
\lambda\left\{r^{\prime}\right\}=\frac{1}{\lambda\left\{\gamma^{\prime \prime}\right\}} \tag{1}
\end{equation*}
$$

and that the quantity

$$
\begin{equation*}
\mu=2 \pi \lambda\left\{\gamma^{\prime}\right\} \tag{2}
\end{equation*}
$$

is the module of D. In this note, we give some estimates of μ.
2. Let D be an annulus stated in \S 1. We denote by l_{0} the intersection of the half straight line $\arg z=\theta(0 \leqq \theta \leqq 2 \pi)$ with D and by $l(\theta)$ the logarithmic length of l_{0}, that is,

$$
l(\theta)=\int_{l_{0}} \frac{d r}{r}, \quad z=r e^{i \theta} .
$$

The following was proved by Rengel [3].
Theorem. The module μ of D satisfies the inequality

$$
\begin{equation*}
\mu \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} l(\theta) d \theta . \tag{3}
\end{equation*}
$$

Now we shall prove the following which implies Rengel's theorem stated above.

Theorem 1. For the module μ of D, the inequality
(4)

$$
\mu \leqq-\frac{2 \pi}{\int_{0}^{2 \pi} \frac{d \theta}{l(\theta)}}
$$

holds.
Proof. Let $\left\{r^{\prime}\right\}$ be the family of all rectifiable curves γ^{\prime} joining C with C^{\prime} in D. Then it is obvious that

$$
L_{\rho}\left\{\gamma^{\prime}\right\} \leqq \int_{l_{\theta}} \rho d r
$$

for any $\rho \in P$ and for any $\theta(0 \leqq \theta \leqq 2 \pi)$. By the Schwarz inequality, we have

$$
\begin{aligned}
\left(L_{\rho}\left\{r^{\prime}\right\}\right)^{2} & \leqq\left(\int_{l_{0}} \rho d r\right)^{2} \\
& \leqq \int_{l_{\theta}} d r \int_{l_{\theta}} \rho^{2} r d r=l(\theta) \int_{l_{\theta}} \rho^{2} r d r
\end{aligned}
$$

or

$$
\left(L_{\rho}\left\{r^{\prime}\right\}\right)^{2} \frac{1}{l(\theta)} \leqq \int_{t_{0}} \rho^{2} r d r
$$

Integrating both sides with respect to θ, we get

$$
\frac{\left(L_{\mathrm{p}}\left\{\gamma^{\prime}\right\}\right)^{2}}{\iint_{D} \rho^{2} d \sigma} \leqq \frac{1}{\int_{0}^{2 \pi} \frac{d \theta}{l(\theta)}}
$$

which gives

$$
\lambda\left\{r^{\prime}\right\} \leqq \frac{1}{\int_{0}^{2 \pi} \frac{d \theta}{l(\theta)}}
$$

From (2), we obtain our theorem.

Remark. The Schwarz inequality yields

$$
\begin{equation*}
(2 \pi)^{2}=\left(\int_{0}^{2 \pi} d \theta\right)^{2} \leqq \int_{0}^{2 \pi} \frac{d \theta}{l(\theta)} \int_{0}^{2 \pi} l(\theta) d \theta \tag{5}
\end{equation*}
$$

from which Rengel's theorem is obtained immediately by using Theorem 1. In (5), the equality holds if and only if $l(\theta)$ is a constant. In this case, the curve C^{\prime} is obtained as a set of points $\alpha z(z \in C)$, where α is a positive constant, and Rengel's inequality (3) and ours (4) are identical.
3. Here we give an estimate, from below, of the module of an annulus of a special type.

Let C be a simple closed curve in the z-plane surrounding the origin and let (C) be a domain bounded by C and containing the origin. If, for any point $z \in C$ and for any $t(0 \leqq t<1)$, the point $t z$ lies in (C), then we say that C is strictly star-like with respect to the origin.

Consider a curve C strictly star-like with respect to the origin. We assume that C consists of a finite number of $\operatorname{arcs} C^{k}: r=r_{k}(\theta), \theta_{k-1} \leqq \theta \leqq \theta_{k}(k=1,2$, \ldots, n), where $\theta_{0}=0, \theta_{n}=2 \pi$ and each $r_{k}(\theta)$ has a continuous derivative $r_{k}^{\prime}(\theta)$ in $\theta_{k-1} \leqq \theta \leqq \theta_{k}$. The expression $r=r(\theta)(0 \leqq \theta \leqq 2 \pi)$ defined by putting $r(\theta)=r_{k}(\theta)$ for $\theta_{k-1} \leqq \theta \leqq \theta_{k}$ is a representation of C in the polar form. In such a case, we say that the curve C is piecewise smooth.

Denote by C^{\prime} the curve defined by $r=\alpha r(\theta)$, where α is a real constant such that $0<\alpha<1$.

We can prove
Theorem 2. Let C and C^{\prime} be defined as above. Then the module μ of the annulus D bounded by C and C^{\prime} is estimated from below as follows:

$$
\mu \geqq \frac{1}{K(C)} \log \frac{1}{\alpha}
$$

where $K(C)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+\left(\frac{r^{\prime}(\theta)}{r(\theta)}\right)^{2}\right\} d \theta$ is a constant depending only on the curve C.

Proof. Let $C_{t}(0 \leqq t \leqq 1)$ be a curve having a representation in the polar form

$$
C_{t}: r=R(\theta, t)=r(\theta)\{\alpha+(1-\alpha) t\} .
$$

The curves C_{1} and C_{0} are identical with C and C^{\prime} respectively. Consider the family $\left\{r^{\prime \prime}\right\}$ of all rectifiable curves $r^{\prime \prime}$ separating C from C^{\prime} in D and the family P in §1. It is easy to see that

$$
\begin{aligned}
d s & =\sqrt{(R(\theta, t))^{2}+\left(\frac{\partial R(\theta, t)}{\partial \theta}\right)^{2}} \\
& =r(\theta)\{\alpha+(1-\alpha) t\} \sqrt{1+\left(\frac{r^{\prime}(\theta)}{r(\theta)}\right)^{2}} d \theta
\end{aligned}
$$

is the line-element along $C_{t}(0<t<1)$ and that

$$
d_{\sigma}=(\boldsymbol{r}(\theta))^{2}(1-\alpha)\{\alpha+(1-\alpha) t\} d \theta d t
$$

is the area-element. It is evident that

$$
L_{\mathrm{p}}\left\{r^{\prime \prime}\right\} \leqq \int_{C_{t}} \rho d s
$$

for $0<t<1$. Hence, by the Schwarz inequality, we have

$$
\begin{aligned}
& \left(L_{\mathrm{P}}\left\{r^{\prime \prime}\right\}\right)^{2} \leqq\left(\int_{c_{t}} \rho d s\right)^{2} \\
& \quad \leqq \frac{\alpha+(1-\alpha) t}{1-\alpha} \int_{0}^{2 \pi}\left\{1+\left(\frac{r^{\prime}(\theta)}{r(\theta)}\right)^{2}\right\} d \theta \int_{0}^{2 \pi} \rho^{2}(r(\theta))^{2}(1-\alpha)\{\alpha+(1-\alpha) t\rangle d \theta .
\end{aligned}
$$

Therefore, using the same argument as in the proof of Theorem 1 and noting (1) and (2), we get

$$
\frac{\left(L_{\rho}\left\{r^{\prime \prime}\right\}\right)^{2}}{\iint_{D} \rho^{2} d \sigma} \leqq K_{0}(C) \frac{1}{\log \frac{1}{\alpha}},
$$

where $K_{0}(C)=\int_{0}^{2 \pi}\left\{1+\left(\frac{r^{\prime}(\theta)}{r(\theta)}\right)^{2}\right\} d \theta$. Putting $K(C)=\frac{1}{2 \pi} K_{0}(C)$, we have our theorem.

Example. Let Π_{n} be a regular polygon of center at the origin and with n sides of equal length and let Π_{n}^{\prime} be another regular polygon obtained from Π_{n} by a transformation $z=\alpha z^{\prime}\left(z^{\prime} \in \Pi_{n}\right)$, where $0<\alpha<1$. If we denote by μ the module of the annulus bounded by Π_{n} and Π_{n}^{\prime}, then, using Theorems 1 and 2 , we get

$$
\frac{1}{K\left(\Pi_{n}\right)} \log \frac{1}{\alpha} \leqq \mu \leqq \log \frac{1}{\alpha},
$$

where

$$
K\left(\Pi_{n}\right)=\frac{n}{\pi} \tan \frac{\pi}{n}
$$

4. Applying Theorem 2, we prove the following

Theorem 3. Let Δ be a domain in the z-plane whose boundary consists of the origin and of an enumerable number of sets $E_{k}(k=1,2, \ldots)$, where E_{k} lies on a simple closed curve C^{k} strictly star-like with respect to the origin and may consist of arcs and points. If there exists a simple closed curve C which is piecewise smooth in the sense stated in §3 and surrounds the origin and if, for each k, there exists a positive number α_{k} such that the set of points $\alpha_{k} z$ $(z \in C)$ is contained in C_{k} and such that $\alpha_{k}>\alpha_{k+1}, \lim _{k \rightarrow \infty} \alpha_{k}=0$, then the origin is a weak boundary component of Δ.

Proof. Let us denote by D_{k} the annulus bounded by C^{k} and C^{k+1}. Then D_{k} is contained in Δ. Denoting by μ_{k} the module of D_{k}, we see by. Theorem 2 that there exists a constant $K(C)$ depending only on C such that

$$
\mu_{k} \geqq \frac{1}{K(C)} \log \frac{\alpha_{k}}{\alpha_{k+1}} .
$$

Hence we get

$$
\sum_{k=1}^{\infty} \mu_{k} \geqq \frac{1}{K(C)} \sum_{k=1}^{\infty} \log \frac{\alpha_{k}}{\alpha_{k+1}},
$$

whose right hand side diverges. By Grötzsch's theorem [2] (Cf. Savage [4]), we have our assertion.

Remark. This theorem implies Theorem 1 in [1].

References

[1] T. Akaza: On the weakness of some boundary component, Nagoya Math. Journ., 17 (1960), 219-223.
[2] H. Grötzsch: Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip, Berichte Verl. Sächs. Akad. Wiss. Leipzig Math. Nat., Kl. 87 (1935), 319-324.
[3] E. Rengel: Über einige Schlichttheoreme der konformer Abbildung, Schrif. d. Math. Sem. u. Inst. f. angew. Math., Univ. Berlin, 1 (1932-33), 141-162.
[4] N. Savage: Weak boundary components of an open Riemann surface, Duke Math. Journ., 24 (1957), 79-95.

Kanazawa University

and
Nagoya University

