MODULE OF ANNULUS

TOHRU AKAZA and TADASHI KURODA

1. Let C and C' be two simple closed curves in the complex z-plane which have no point in common and surround the origin. Denote by D the annulus bounded by C and C'. Consider a family $\{r\}$ of rectifiable curves r in D and the family P of all non-negative lower semi-continuous functions $\rho = \rho(z)$ in D. Put

$$L_{\rho}\{\gamma\} = \inf_{\gamma \in (\gamma)} \int_{\gamma} \rho |dz|.$$

Understanding $\frac{0}{0} = \frac{\infty}{\infty} = 0$, we call the quantity

$$\lambda\{\gamma\} = \sup_{\rho \in P} \frac{(L_{\rho}\{\gamma\})^2}{\iint_{D} \rho^2 d\sigma}$$

the extremal length of the family $\{\gamma\}$, where $d\sigma$ denotes the

 $\{r'\}$ be the family of all rectifiable curves r' in D joining C with C' and let $\{r''\}$ be that of all rectifiable curves r'' in D separating C from C'. Then it is known that

(1)
$$\lambda\{\gamma'\} = \frac{1}{\lambda\{\gamma''\}}$$

and that the quantity

(2) $\mu = 2 \pi \lambda \{\gamma'\}$

is the module of D. In this note, we give some estimates of μ .

2. Let D be an annulus stated in §1. We denote by l_0 the intersection of the half straight line arg $z = \theta (0 \le \theta \le 2\pi)$ with D and by $l(\theta)$ the logarithmic length of l_0 , that is,

$$l(\theta) = \int_{l_0} \frac{dr}{r}, \qquad z = r e^{i\theta}.$$

Received October 17, 1960.

The following was proved by Rengel [3].

THEOREM. The module μ of D satisfies the inequality

(3)
$$\mu \leq \frac{1}{2\pi} \int_0^{2\pi} l(\theta) \, d\theta.$$

Now we shall prove the following which implies Rengel's theorem stated above.

THEOREM 1. For the module μ of D, the inequality

(4)
$$\mu \leq \frac{2\pi}{\int_{0}^{2\pi} \frac{d\theta}{l(\theta)}}$$

holds.

Proof. Let $\{\gamma'\}$ be the family of all rectifiable curves γ' joining C with C' in D. Then it is obvious that

$$L_{\rho}\{\gamma'\} \leq \int_{l_{\theta}} \rho \, dr$$

for any $\rho \in P$ and for any $\theta (0 \leq \theta \leq 2\pi)$. By the Schwarz inequality, we have

$$(L_{\rho}\{\gamma'\})^{2} \leq \left(\int_{l_{\theta}} \rho \, dr\right)^{2}$$
$$\leq \int_{l_{\theta}} \frac{dr}{r} \int_{l_{\theta}} \rho^{2} r \, dr = l(\theta) \int_{l_{\theta}} \rho^{2} r \, dr,$$

or

$$(L_{\mathsf{P}}\{\gamma'\})^2 \frac{1}{l(\theta)} \leq \int_{l_0} \rho^2 r \, dr$$

Integrating both sides with respect to θ , we get

$$\frac{(L_{\mathsf{P}}\{\gamma'\})^{2}}{\iint_{D}\rho^{2}d\sigma} \leq \frac{1}{\int_{0}^{2\pi} \frac{d\theta}{l(\theta)}},$$

which gives

$$\lambda\{\gamma'\} \leq \frac{1}{\int_0^{2\pi} \frac{d\theta}{l(\theta)}}.$$

From (2), we obtain our theorem,

Remark. The Schwarz inequality yields

(5)
$$(2\pi)^2 = \left(\int_0^{2\pi} d\theta\right)^2 \leq \int_0^{2\pi} \frac{d\theta}{l(\theta)} \int_0^{2\pi} l(\theta) d\theta,$$

from which Rengel's theorem is obtained immediately by using Theorem 1. In (5), the equality holds if and only if $l(\theta)$ is a constant. In this case, the curve C' is obtained as a set of points $\alpha z(z \in C)$, where α is a positive constant, and Rengel's inequality (3) and ours (4) are identical.

3. Here we give an estimate, from below, of the module of an annulus of a special type.

Let C be a simple closed curve in the z-plane surrounding the origin and let (C) be a domain bounded by C and containing the origin. If, for any point $z \in C$ and for any $t(0 \le t < 1)$, the point tz lies in (C), then we say that C is *strictly star-like* with respect to the origin.

Consider a curve C strictly star-like with respect to the origin. We assume that C consists of a finite number of arcs $C^k : r = r_k(\theta)$, $\theta_{k-1} \leq \theta \leq \theta_k$ $(k = 1, 2, \ldots, n)$, where $\theta_0 = 0$, $\theta_n = 2\pi$ and each $r_k(\theta)$ has a continuous derivative $r'_k(\theta)$ in $\theta_{k-1} \leq \theta \leq \theta_k$. The expression $r = r(\theta)$ $(0 \leq \theta \leq 2\pi)$ defined by putting $r(\theta) = r_k(\theta)$ for $\theta_{k-1} \leq \theta \leq \theta_k$ is a representation of C in the polar form. In such a case, we say that the curve C is *piecewise smooth*.

Denote by C' the curve defined by $r = \alpha r(\theta)$, where α is a real constant such that $0 < \alpha < 1$.

We can prove

THEOREM 2. Let C and C' be defined as above. Then the module μ of the annulus D bounded by C and C' is estimated from below as follows:

$$\mu \geq \frac{1}{K(C)} \log \frac{1}{\alpha},$$

where $K(C) = \frac{1}{2\pi} \int_0^{2\pi} \left\{ 1 + \left(\frac{r'(\theta)}{r(\theta)}\right)^2 \right\} d\theta$ is a constant depending only on the curve C.

Proof. Let $C_t (0 \le t \le 1)$ be a curve having a representation in the polar form

$$C_t: r = R(\theta, t) = r(\theta) \{ \alpha + (1 - \alpha)t \}.$$

The curves C_1 and C_0 are identical with C and C' respectively. Consider the family $\{r''\}$ of all rectifiable curves r'' separating C from C' in D and the family P in §1. It is easy to see that

$$ds = \sqrt{(R(\theta, t))^2 + \left(\frac{\partial R(\theta, t)}{\partial \theta}\right)^2}$$
$$= r(\theta) \left\{ \alpha + (1 - \alpha)t \right\} \sqrt{1 + \left(\frac{r'(\theta)}{r(\theta)}\right)^2} \ d\theta$$

is the line-element along $C_t(0 < t < 1)$ and that

$$d\sigma = (r(\theta))^2 (1-\alpha) \{ \alpha + (1-\alpha)t \} d\theta dt$$

is the area-element. It is evident that

$$L_{\rho}\{\gamma''\} \leq \int_{C_t} \rho \, ds$$

for 0 < t < 1. Hence, by the Schwarz inequality, we have

$$(L_{p}\lbrace \gamma^{\prime\prime}\rbrace)^{2} \leq \left(\int_{c_{t}} \rho \, ds\right)^{2}$$

$$\leq \frac{\alpha + (1-\alpha)t}{1-\alpha} \int_{0}^{2\pi} \left\{1 + \left(\frac{r^{\prime}(\theta)}{r(\theta)}\right)^{2}\right\} d\theta \int_{0}^{2\pi} \rho^{2}(r(\theta))^{2}(1-\alpha)\lbrace \alpha + (1-\alpha)t\rbrace d\theta.$$

Therefore, using the same argument as in the proof of Theorem 1 and noting (1) and (2), we get

$$\frac{(L_{\rho}\{\gamma''\})^2}{\iint_{D} \rho^2 d\sigma} \leq K_0(C) \frac{1}{\log \frac{1}{\alpha}},$$

where $K_0(C) = \int_0^{2\pi} \left\{ 1 + \left(\frac{r'(\theta)}{r(\theta)} \right)^2 \right\} d\theta$. Putting $K(C) = \frac{1}{2\pi} K_0(C)$, we have our theorem.

EXAMPLE. Let Π_n be a regular polygon of center at the origin and with n sides of equal length and let Π'_n be another regular polygon obtained from Π_n by a transformation $z = \alpha z' (z' \in \Pi_n)$, where $0 < \alpha < 1$. If we denote by μ the module of the annulus bounded by Π_n and Π'_n , then, using Theorems 1 and 2, we get

$$\frac{1}{K(\Pi_n)} \log \frac{1}{\alpha} \leq \mu \leq \log \frac{1}{\alpha},$$

where

$$K(\Pi_n)=\frac{n}{\pi}\tan\frac{\pi}{n}.$$

4. Applying Theorem 2, we prove the following

THEOREM 3. Let Δ be a domain in the z-plane whose boundary consists of the origin and of an enumerable number of sets E_k (k = 1, 2, ...), where E_k lies on a simple closed curve C^k strictly star-like with respect to the origin and may consist of arcs and points. If there exists a simple closed curve C which is piecewise smooth in the sense stated in § 3 and surrounds the origin and if, for each k, there exists a positive number α_k such that the set of points α_{kz} $(z \in C)$ is contained in C_k and such that $\alpha_k > \alpha_{k+1}$, $\lim_{k \to \infty} \alpha_k = 0$, then the origin is a weak boundary component of Δ .

Proof. Let us denote by D_k the annulus bounded by C^k and C^{k+1} . Then D_k is contained in Δ . Denoting by μ_k the module of D_k , we see by Theorem 2 that there exists a constant K(C) depending only on C such that

$$\mu_k \geq \frac{1}{K(C)} \log \frac{\alpha_k}{\alpha_{k+1}}.$$

Hence we get

$$\sum_{k=1}^{\infty} \mu_k \geq \frac{1}{K(C)} \sum_{k=1}^{\infty} \log \frac{\alpha_k}{\alpha_{k+1}},$$

whose right hand side diverges. By Grötzsch's theorem [2] (Cf. Savage [4]), we have our assertion.

Remark. This theorem implies Theorem 1 in [1].

References

- T. Akaza: On the weakness of some boundary component, Nagoya Math. Journ., 17 (1960), 219-223.
- [2] H. Grötzsch: Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip, Berichte Verl. Sächs. Akad. Wiss. Leipzig Math. Nat., Kl. 87 (1935), 319-324.
- [3] E. Rengel: Über einige Schlichttheoreme der konformer Abbildung, Schrif. d. Math. Sem. u. Inst. f. angew. Math., Univ. Berlin, 1 (1932-33), 141-162.
- [4] N. Savage: Weak boundary components of an open Riemann surface, Duke Math. Journ., 24 (1957), 79-95.

Kanazawa University and