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1. Introduction
Let R be a ring with unit, and e be an idem potent in R such that

(1 - e)Re = 0. In this note we shall explore the relationships between homological

properties of R and those of its subring eRe.

Examples of such rings are abundant, the most common being perhaps

the ring R of all two-by-two upper triangular matrices over a field, where—

\ 0 0 /

In fact, it is easy to see that every ring of the type described above is in

some sense a ring of upper triangular matrices, an observation which justifies

the title of this paper.

We exhibit two applications of our results. First, we construct an example

of a left semi hereditary ring which is not right semi-hereditary, thus providing

a negative answer to a question of Cartan and Eilenberg ([2], p. 15). Our

second application is related to the work of Jans and Nakayama ([5]) and

Nakano ([6]) on a class of semi-primary rings which is a special case of the

type of ring considered here (recall that a ring R is semi-primary if its Jacobson

radical N is nilpotent and R/N satisfies minimum condition on left ideals).

Our systematic treatment of the more general situation described above enables

us to easily derive- and in some cases strengthen-several of the results of these

authors.

Throughout this note every ring will be assumed to have a unit which

acts as the identity on all modules. A ring R will be called semi-simple if it

has global dimension zero, or, equivalently, it satisfies minimum condition on

left ideals and has trivial Jacobson radical ([2], p. 11). R will be called regular

Received August 20, 1960.

13



14 STEPHEN U. CHASE

if it has weak global dimension zero ([2], p. 122).

2. The Triangular Matrix Construction

Let e be an idempotent in a ring R with the property that e'Re = 0, where

e' = l-e. Set S = eRe, S' = e'Re'.

PROPOSITION 2.1. The mapping f: R-*S defined by f(a) = eae is a ringepi-

morphism.

Proof, f is clearly onto, and preserves addition. If a, b<BR, then f{ab) =

e(ab)e- (ea) (e -f- e') (be) = (eae) (ebe) = f(a)f(b), since e is an idempotent, e-h

e' = 1, and *'£* = 0.

Now let A be a left S-module. The epimorphism / : Zv?-> S defines in the

usual way a left ^-module structure on A; we shall denote this it?-module,

constructed from A, by T(A). On the other hand, if B is a left i?-module,

then U(B) = eB is, in the usual way, a left S-module. We have thus defined

functors T: tf(S)-» tf(R), U: tf (/?)-> ^(S), where ^(Λ) and ^(S) are

the categories of all left modules over R and S, respectively.

THEOREM 2.1. 7w ί/z£ situation described above, the functors T and U are

additive and exact, and UT is naturally equivalent to the identity functor on

'(o'(S). Furthermore, if A is a left S-module, then hdRT(A) = hdsA.

Proof That T and U are additive is clear from the definitions. It is also

easy to see that T is exact and UT is naturally equivalent to the identity
a β

functor on "€(S). Let A—>B—>C be an exact sequence of left /^-modules,
a* β*

and set α:* = U(a), 0* = U(β). We have the sequence U(A)—>U(B)—>U(C),

which we must show is exact. Recall that U(A) =• eA and a*iea) = ea(a) for

a<=A; U(B), U(C) and 0* are similarly defined. If ea e= U(A), then β*a*(ea) =

β*{ea(a)} = e(βa)ia)-0, since βa - 0. On the other hand, suppose that

β'(eb) = O, where eb^U(B), b^B. Then 0 = β*(eb) = eβ(b) = β(eb), and so

eb = a(a) for some α E A , since ker(β) = a(A). Then e# e C7(Λ), and oc(ea) =

ea{a) =e(eb) =eb. Hence the sequence £/(A)—>U{B)—>U(C) is exact, com-

pleting the proof that U is an exact functor.

We claim now that, if A is a left S-module, then T(A) is Z?-projective if*

and only if A is S-projective. For observe that i? = ReQRe' = eRe © Re' ^ T( S) 0

Z&; as a left ^-module, since ^ ' ^ = 0 i.e., S, viewed as a left i?-module, is a
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direct summand of R. It then follows by a direct sum argument that T(A)

is i?-projective if A is S-projective, since it is easily seen that T preserves

arbitrary direct sums. Conversely, suppose that T( A) is i?-pro jective. Consider

a diagram of the following type—

T
A

where B and B" are left S-modules, and the row is exact. Applying Γ, we

get the following diagram of i?-modules—

T(A)

The row is exact, since T is an exact functor. Since T(A) is /?-projective,

there exists an iMiomomorphism θ: T{A) -» T(B) which, when inserted in the

above diagram, renders it commutative. Then, applying U and using the fact

that UT is naturally equivalent to the identity functor on ^(S), we get a

commutative diagram-

B ~^> B" —> 0

U(θ)\ \a

A

from which it follows that A is S-projective.

Now let A be any left S-module, and 0 -> K -> P -* A -> 0 be exact, where

P is a projective left S-module. We then get the exact sequence 0-+ T(K) -+

TiP) -* T(^4) -> 0 of left i?-modules. We have from our previous remarks that

T(P) is P-projective, and one sequence splits if and only if the other splits.

It then follows by an easy induction argument that hdRT(A) = hdsA, completing

the proof of the theorem.

There are analogous statements describing the relationship between R and

S'. We state these without proof.

PROPOSITION 2.2. The mapping f: R-* 9 defined by f(a) -e'ae' is a ring

epimorphism.
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THEOREM 2.2. Let &f(R) and ^'(S) be the categories of all right modules

over R and S\ respectively. Define functors T: &'(S') -* tf'(R) and U1 :

tf'(R)-* &'(&) in entirely similar fashion to the definitions of T and U on

tf(S) and &(R). Then V and Uf are additive and exact, and U'V is naturally

equivalent to the identity functor on ^'(Sf). Furthermore, if A is a right S-

module, then hdRT'(A) = hdsΆ.

Now, changing our point of view, let S and Sf be arbitrary rings with unit,

and M be an (S, SO-bimodule. Let R be the ring of all two-by-two matrices

of the form—

ί* 1
\0 bj

« ε S , 6 e S',

where addition is defined to be component-wise, and multiplication is defined

by the rule—

/ a u\{ a' u'\ f aa'

\ 0 b)\0 b')~\ 0

au1 + ub1

bb'

It is easy to verify that R is an associative ring with unit. Set—

_ / l 0\

\o oj
0 0

0 1

e and ef are idempotents in R, and efRe = 0. Furthermore, S ^ eRe, S' ^ e'Ref

y

and Λf- eRe1 as an (S, SO-bimodule. We shall write R = ̂ (S, S', M). R, S,

and S' satisfy the conditions of Theorems 2.1 and 2.2. Finally, we have the

following result.

THEOREM 2.3. Let R be a ring, and e be an idempotent in R such that

e'Re = 0, where e' = l-e. Let S = eRe, Sf = e'Re', and M= eRe'. Then the map-

ping g: R^J^(S,Sf, M) defined by—

I eae eae*
g(a) =\

\ 0 e*ae'

is an isomorphism.

Proof. Routine computation.
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3. A Left Semi-Hereditary Ring which is Not Right Semi-hereditary

We are now ready to construct the previously mentioned example of a

left semi-hereditary ring which is not right semi-hereditary. Let S' be any

commutative ring which is regular but not semi-simple (e.g., the direct product

of an infinite number of copies of a field). Let I be an ideal in S' which is

not a direct summand of S' such an ideal exists, since S' is not semi-simple.

Set S = S'/I. S is a regular ring, since it is a residue class ring of the regular

ring Sf. We may view S as an (S, S')-bimodule. Observe that S is not pro-

jective as a right S'-module, since / is not a direct summand of S'. Set R =

S'iS, S\ S).

PROPOSITION 3.1. R is left semi-hereditary but not right semi-hereditary.

Proof. Define tf(R)t #(S), T, U, etc., as in Theorems 2.1 and 2.2. Let

/' be the set of all elements of R of the form—

0 u\

0 0

It is easy to see that /' is a right ideal in R, and the mapping ψ: Tf(S) ->/'

defined by—

/ 0 u\

\0 0/

is an ^-isomorphism. Here we are viewing S as an element of ^ '(S') i.e.,

as a right S'-module. Since S is finitely generated (even cyclic) over S', it

follows from the definition of V that TiS) is finitely #-generated, and so /'

is a finitely generated right ideal in R. But, by Theorem 2.2, we have that

hdnj' = hdnT(S) = hds'S > 0. It then follows that R is not right semi-hereditary.

We now show that R is left semi-hereditary. Let / = (au - - - > ccn) be a

finitely generated left ideal in R, where—

( di Ui \
en e S, m e S, bi e S.

0 bi)

Since S' is regular, it follows that S'bi + . . . + S'bn = S'̂  for some idempotent e

in S'. Write hbλ + . . . + ΛnδΛ = β, where ;, e S' then—
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0 0 \ / 0 0\f en Ui\ / 0 0

0 λφi I \ 0 λil\0 bi I \ 0 λi i0Cl C

Hence, setting—

0 0

we get that e is in /, and so RεQj. Observe that Rε consists of all elements

of R of the form—

0 ue

0 be

S i n c e bi = biβ for al l / = = ! , . . . , n, w e t h e n g e t t h a t —

en mil -e)\ I ai m \ / 0 we\ U i Ui\

I \ o h I <=./.- ( * * )
0 0 / \ 0 bi j \ 0 biβ '

Let L be the left S-submodule of S®S generated by the elements («,-,mil - e)),

/ = 1, . . . , n. Define a mapping h : T(L) (BRε~* R by—

( u v \ I u

0 0/ \ 0
be

where—

a e S, j tεS,

It is easily verified that h is a left /^-module homomorphism, and Image ih) Q

J Also—

ί ai Ui(l-e)\

\0. 0 /
hidi, Ui(l — e

and so, since Rε Q Image (h), it follows from (*) and ( * * ) above that Image

Suppose now that h{(u, υ) + aε} = 0, where (u, v) ^ L and

It follows from the definition of L that t; = # ( ! - £ ) , and so we have—
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( u v\ (u v(l~e)-hxe\

) + aε = = 0.
. 0 0 / I 0 be )

Then it = be = v(l — e) -f #£ = 0, from which it follows immediately that υ —

v(l — e) = 0 and xe = Q, since £ is an idempotent in S'. Therefore {u, v) = 0,

and—

)(
\ )0 ej \0 be

Hence (u, #) + #ε = 0. It then follows that h is an isomorphism i.e., / ^

i?e as a left 7?-module. Now, Z is a finitely generated submodule of the free

left S-module S(& S', thus, since S is regular and therefore left semi-hereditary,

we have that L is S-projective. Then, since Rε is a direct summand of R (e

being an idempotent), it follows from Theorem 2.1 that hdnj' = hdnT(L) -

hdsL = 0. Therefore every finitely generated left ideal in R is projective, and

so R is left semMiereditary. This completes the proof of the proposition.

4. Applications to Semi-Primary Rings

In general it seems to be difficult to express the global dimension of R~

' J?(R', S, A) in terms of the homological invariants of R1, S, and A. However,

it is easy to obtain complete information for the special case in which R is

semi-primary and S is semi-simple this information will play a key role in

our later results on semi-primary rings.

LEMMA 4.1. Let R' be a semi-primary ring with radical Nf, S be a semi-

simple ring, and A be an (R\ S)-bimodule. Set R=^~(R'y S, A). Then R is

a semi-primary ring with radical N consisting of all elements of R of the form—

0 0

Furthermore, gl. dim. R = max{gl. dim. R', l-\-hdR,A).

Proof. Let f':R'-» R'/Nr be the canonical homomorphism, and define a

mapping f:R-*(R'/N') ® S by—
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It is easily verified that / is an epimorphism with kernel N. Another routine

computation establishes the fact that, if (N'Y = 0, then Λ/rfl = 0. Since (R'/Nf)

® S is semi-simple, it then follows that R is a semi-primary ring with radical

N.

Now let ^(R') and ζ€ (R) be the categories of left i?'-modules and left

i?-modules, respectively, and define the functors T: C€(R') -* tf(R) and U:

'€{R) -» tf(R') as in Theorem 2.1. Define a mapping £ : iV-> T(N') φ T(A)

b y -

= (a\ x) a'(ΞR', χ<=A.

It is easy to see that g is a left R-module isomorphism. Hence, using Theorem

2.1, we get that AΛJV= max{M*Γ(iV'), hdRT(A)} = max{hdR.N', hdR,A). But,

since i? and R' are semi-primary rings, we have that gl. dim. R = 1 + AcfeΛΓ and

gl. dim. i?' = 1 + hdpjN' (see [1]). We then get that gl. dim. R = l + hdBN= 1 +

maxihdn'N', hdR>A) = max{l + hdR.N', 1 + Aώ/Λ> = max{gl.dim.R', 1 + hdR,A),

completing the proof of the lemma.

Remark. It will be noted that in the statement and proof of the above

lemma we have made no distinction between the left and right global dimensions

of R. This is permissible in view of the fact that, since R is a semi-primary

ring, both the left and right global dimensions of R are equal to the weak

global dimension of R, and are hence equal to each other (see [1]).

LEMMA 4.2. Let R be a semi-primary ring with radical N, and ei9 . . . , er

be a complete set of mutually orthogonal primitive idempotents of R. Suppose

that there exists s < r such that eiN = 0 for i> s but ejN # 0 for j < s. Set e -

es+ι + - - - +er, e' = l~ e, Rf = e'Re', S = eRe, and A = e'Re. Then eRe' = 0, and

RzzjT'iR', S, A). Furthermore, S is semi-simple.

Proof Clearly eNe^eN = Q, and so S=eRe is semi-simple. If j<$ and

i> s, then etN-O, ejN * 0, and so eiR^ejR as right i?-modules. Since βiR^

HomB(/te/, R) and ejR^UomR{Rej, R), it then follows that Rei^Rej, and

thus ReiiNe&RβjlNβj. We then obtain that eiRβjQN, since R/N is semi-

simple. Hence eRe'^ N, and so eRe' QeN=0. We then get from Theorem 2.3

that R^J^iR', S, A), completing the proof of the lemma.
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DEFINITION 4.1. Let R be a semi-primary ring with radical N. R will be

called triangular if any complete set eu . . . , er of mutually orthogonal pri-

mitive idempotents of R can be indexed so that eiArej~0 whenever i>j.

Our principal results concerning triangular rings, which parallel the work

of Jans and Nakayama ([5]), are summarized in the theorems which follow.

THEOREM 4.1. Let R be a semi-primary ring ivith radical N. Then the

following statements are equivalent—

(a) R is triangular.

(b) There exists a complete set ely . . - , en of mutually orthogonal primitive

idempotents of R such that eiNej = 0 if i> j .

(c) gl. dim. (R/I) < oo for any two-sided ideal I in R.

(d) gl dim. (R/N2) < oo.

If any {and hence all) of these conditions holdy then gl. dim. R < r, ivhere r is

the number of isomorphism classes of simple left R- modules.

Proof, (a) =*(b): Obvious.

(b) =Φ(c): Let R satisfy (b). It is then clear that (b) also holds for any

epimorphic image of R\ hence to establish (c) we need only show that R

itself has finite global dimension. We shall show that gl. dim. R < r. If r = 1,

it follows easily from (b) that JV = 0, in which case R is semi-simple and so

gl. dim. i? = 0. Proceed by induction on r; assume the statement true for r1 < r.

By hypothesis, there exists a complete set eu - . . , en of mutually orthogonal

primitive idempotents of R such that eiNej^O if i>j. Then clearly enN=0.

We may assume that, for some integer k < n, ekriN-ek+2N= =£«iV=0,

but βiN * 0 for i< k. Let e = ek+ι + ' -f en and e' = 1 - e. It then follows

from Lemma 4.2 that eRef = 0, S^eRe is semi-simple, and R^^(Rf, S, A),

where Rf -e'Re' and A~e'Re. Observe now that R1 also satisfies (b) and has

fewer than r simple components hence, by the induction assumption, R' is a

semi-primary ring and gl. dim. Rf <r-l. That gl.dim. R< r then follows im-

mediately from Lemma 4.1.

(c) = K d ) : Obvious.

(d) =*(a) : Assume that glάimΛR/N2) < oo. We first prove that R is

triangular on the hypothesis that JV2 = 0, Let eu - . , en be any complete set

of mutually orthogonal primitive idempotents of R, and set A\ - Rej/Nei. Ai
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is a simple left R-module. Nei is the kernel of the obvious epimorphism of

Rβi onto Ai, and is a semi-simple left i?-module, since iV2 = 0. If βiNej^O,

then Ai is a direct summand of Nej, and so hds(Ai) <hdR{Aj), since both

numbers must be finite. We may assume that the {βi) are indexed so that

hdn(Ai)>hdR{Aj) if />/. It is then clear that eiNej = 0 if *>/, and hence i?

is triangular in this case. This part of the proof is essentially the same as

in [5].

Suppose now that N2 is not necessarily zero. We have from the above

paragraph that any complete set eu . . , en of mutually orthogonal primitive

idempotents of R may be indexed so that eiNejQN2 if i>j. Assume that

eiNβj £ Ns whenever i>j, where s is an integer greater than one. Then βiNej =

eiNsej, and we have—

eiNej = eiN'ej = U/TV*'1) ( Σ « ) I Nej) = Σ (eiN^ek) (ekNej).
fc = l fc=l

But if />:&, then eiNs~ιek^N\ On the other hand, if * > ί , then also k>j,

and then βkNej^N2. It then follows that eiNejQ Ns+1. Hence, by induction,

we see that, if i>jy then etNej is contained in every power of +N, and hence

eiNβj = 0, since iV is nilpotent. Therefore /? is triangular.

The final contention of the theorem follows immediately from inspection

of the above arguments. Thus the proof of the theorem is complete.

Remarks. 1. Let R satisfy the conditions of Theorem 4.1. By a somewhat

more careful analysis of the situation described in that theorem, utilizing the

basic properties of the triangular matrix construction, it is possible to derive

the inequality gl. dim. R< gl. dim. {R/N2) < r, thus improving the estimate of

the theorem on the global dimension of R. Furthermore, if gl. dim. (R/N2) = tn,

then iVm+1 = 0 ([3], p. 55). These results were proved by Eilenberg, Nagao,

and Nakayama ([4]) for residue class rings of hereditary semi-primary rings.

2. Theorem 4.1 was essentially proved, using somewhat different methods,

by Jans and Nakayama ([5]) for rings which, in addition to being semi-primary,

satisfy a sort of "splitting" condition tatamount to separability of the residue

class ring modulo the radical. Their proofs utilized the above-mentioned results

of Eilenberg, Nagao, and Nakayama concerning residue class rings of hereditary

semi-primary rings, and were based upon their very interesting observation
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that a triangular ring satisfying the above-described splitting condition is a

residue class ring, in a particularly nice way, of a unique hereditary semi-pri-

mary ring. The existence of this hereditary "covering" ring is, of course, the

most important result of the theory however, it seems to be the only result

for which the extra splitting hypothesis is really necessary.

Next we discuss semi-primary rings with the property that every principal

right ideal is projective. Our observations will culminate in the theorem that

such rings are triangular, a result which was essentially proved by Nakano

([6]). First, a couple of almost obvious lemmas.

LEMMA 4.3. Let R be any ring, and x e R. Then the following conditions

are equivalent—

(a) The right ideal xR is projective.

(b) The right annihilator of x is a direct summand of R.

(c) There exists an idempotent e in R such that xe = x, and if xa = 0 then

ea = 0.

Proof. The lemma may be established by routine computations, which we

omit.

LEMMA 4. 4. Let R be a ring, and suppose that every principal right ideal

in R is projective. If e is an idempotent in R, then every principal right ideal

in S = eRe is projective.

Proof. We have from our hypotheses and Lemma 4.3 that the right an-

nihilator of every element of R is a direct summand of R. It is then a straight-

forward matter to verify that the same condition holds in S. Hence, by Lemma

4.3, every principal right ideal in S is projective. This completes the proof.

THEOREM 4.2. Let R be a semi-primary ring with the property that every

principal right ideal in R is projective. Then R is triangular.

Proof. Let N be the radical of R, and r be the number of isomorphism

classes of simple left i?-modules. If r = 1, then R/N is isomorphic as a right

/vNmodule to a direct sum of simple right ideals in R, each of which is neces-

sarily principal hence, by our hypothesis, R/N is a projective right i?-module.
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Thus N, viewed as a right ideal in R, is a direct summand of R, which is im-

possible unless JV=0. Therefore ΛΓ=0, in which case R is a simple ring and

the theorem is trivially true.

Proceed by induction on r assume the theorem true for r' < r. If R is

semi-simple we are done; otherwise N^vO and there exists an element x&R

such that xN = 0. By hypothesis xR is projective, and so, by Lemma 4.3, there

exists an idempotent e0 e R such that xeQ = #, and if xa = 0 then £Otf = 0. Then

#iV= 0, and so £OiV = 0. We may write eo = (? + ei, where e and βi are orthogonal

idempotents and ~e is primitive. Then ~e~ee0, and so e'N = ΈeoN = O.

Since # is semi-primary, there exists a complete set βι, . . . , en of mutually

orthogonal primitive idempotents of i? such that g« = e. Since enN='eN=0f

we may assume that, for some integer k < n, βk+ιN= ek+2N= =enN~0,

but β/iV̂ F 0 for ί< ^. Let β = ek+i + * * + en, e1 = 1 - e we then get from

Lemma 4.2 that S^eRe is semi-simple and R^^(R\ S, A), where R'^e'Re'

and A = £'ite. Observe that 7?' has less than r isomorphism classes of simple

left modules. By Lemma 4.4, every principal right ideal in R1 is projective

hence, by the induction assumption, R' is a triangular semi-primary ring. It

then follows immediately that R itself is triangular, completing the proof of

the theorem.

Nakano ([6]) has proved a result which is essentially equivalent to

Theorem 4.2, although he replaced the hypothesis that R be semi-primary by

the following assumption: i?= Λ© ©/«, where h is a left ideal in R and

Homijί/jfe, Ik) is a sfield. However, it is easy to see that such a ring is actually

semi-primary; hence Nakano's result is contained in (and is, in fact, equivalent

to) Theorem 4.2. Nakano proved also a sort of converse of Theorem 4.2,

which we shall not consider here.
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