A NOTE ON ANNIHILATOR RELATIONS

YUKITOSHI HINOHARA

In a Frobenius algebra A over a field K, there exists a linear function λ of A into K which does not map any proper ideal of A onto $0 .{ }^{1)}$ Then the map $\stackrel{c}{4}: x \rightarrow x^{\prime}$, where

$$
\lambda(x y)=\lambda\left(y x^{p}\right) \quad \text { for all } y \in A,
$$

defines an automorphism φ of A onto itself. This automorphism is called Nakayama's automorphism. Now the following result is well known.

Theorem 1. ${ }^{11}$ For any two-sided ideal is of a Frobenius algebra A, we have

$$
r(z)=l(z)^{p}=l\left(z^{p}\right),
$$

where $r(\hat{z})=\{x \mid z x=0\}$ and $l(z)=\{x \mid x\}=0\}$.
This result is written as follows:

$$
r^{2}(z)=z^{\prime}, \quad l^{2}(z)=z^{p^{-1}} .
$$

Therefore we have
Corollary. For any two-sided ideals $a_{1}, a_{2}, \ldots, a_{n}$ of a Frobenius algebra A, we have

$$
l^{2}\left(a_{1} a_{2} \cdots a_{n}\right)=l^{2}\left(a_{1}\right) l^{2}\left(a_{2}\right) \cdots l^{2}\left(\mathfrak{a}_{n}\right)
$$

and

$$
r^{2}\left(a_{1} a_{2} \cdots a_{n}\right)=r^{2}\left(a_{1}\right) r^{2}\left(a^{2}\right) \cdots r_{2}\left(a_{n}\right) .
$$

Our aim, in this note, is to analyse the above relation of annihilators.
Theorem 2. ${ }^{2)}$ Let A be a ring and $X_{i}, Y_{i}(i=1, \ldots, n)$ the sets of A satisfying the following relations

$$
r\left(X_{i}\right) \subseteq l\left(Y_{i}\right) \quad(i=1, \ldots, n)
$$

Then we have

Received February 1, 1960.
${ }^{1)}$ T. Nakayama, On Frobeniusean algebras II, Ann. of Math., 42 (1941), pp. 1-21.
${ }^{2)}$ This formulation of theorem is due to T. Nakayama. The writer's original theorem was more special.

$$
r\left(X_{1} \cdots X_{n}\right) \subseteq l\left(Y_{1} \cdots Y_{n}\right)^{3)}
$$

The proof of this theorem is as follows:

$$
\begin{aligned}
& x \in r\left(X_{1} \cdots X_{n}\right) \Leftrightarrow\left(X_{1} \cdots X_{n}\right) x=0 \\
\Rightarrow & \left(X_{2} \cdots X_{n}\right) x \subseteq r\left(X_{1}\right) \subseteq l\left(Y_{1}\right) \\
\Rightarrow & \left(X_{2} \cdots X_{n}\right) x Y_{1}=0 \Rightarrow \cdots \cdots \cdots \\
\Rightarrow & x\left(Y_{1} \cdots Y_{n}\right)=0 \Leftrightarrow x \in l\left(Y_{1} \cdots Y_{n}\right) .
\end{aligned}
$$

From this fundamental theorem, we deduce directly
Corollary 1. If the sets X_{1}, \ldots, X_{n} of a ring A satisfy the following relations

$$
r\left(l\left(X_{i}\right)\right) \subseteq l\left(r\left(X_{i}\right)\right) \quad \text { for } i=1, \ldots, n,
$$

then we have

$$
\begin{equation*}
r\left(l\left(X_{1}\right) \cdots l\left(X_{n}\right)\right) \subseteq l\left(r\left(X_{1}\right) \cdots r\left(X_{n}\right)\right) \tag{1}
\end{equation*}
$$

In particular, if there holds $r\left(l\left(X_{i}\right)\right)=l\left(r\left(X_{i}\right)\right)$ for each i, then we have $r\left(l\left(X_{1}\right)\right.$ $\left.\cdots l\left(X_{n}\right)\right)=l\left(r\left(X_{1}\right) \cdots r\left(X_{n}\right)\right)$. Therefore

$$
\begin{equation*}
l\left(r\left(l\left(X_{1}\right) \cdots l\left(X_{n}\right)\right)\right)=l^{2}\left(r\left(X_{1}\right) \cdots r\left(X_{n}\right)\right) \tag{2}
\end{equation*}
$$

Corollary 2. Let A be a ring satisfying the annihilator relation $r(l(a))$ $=a$ for all two-sided ideals \mathfrak{a} in A. Then we have

$$
\begin{equation*}
r\left(l\left(a_{1}\right) \cdots l\left(a_{n}\right)\right) \subseteq l\left(r\left(a_{1}\right) \cdots r\left(a_{n}\right)\right) \tag{3}
\end{equation*}
$$

for any two-sided ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ of A. Further if there hold $r(l(a))=a$ $=l(\boldsymbol{r}(\mathfrak{a}))^{4)}$ for all two-sided ideals \mathfrak{a} in A we have

$$
\begin{equation*}
l^{2}\left(\mathfrak{a}_{1}\right) \cdots l^{2}\left(\mathfrak{a}_{n}\right)=l^{2}\left(\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{2}\left(\mathfrak{a}_{1}\right) \cdots r^{2}\left(\mathfrak{a}_{n}\right)=r^{2}\left(a_{1} \cdots a_{n}\right) . \tag{5}
\end{equation*}
$$

Proof. Since we have $l(r(a)) \supseteq \mathfrak{a}$, for any ideal \mathfrak{a} of A, we deduce (3) from (1). The relation (4) follows from (2) if we put $\mathfrak{a}_{i}=\boldsymbol{r}\left(\mathfrak{b}_{i}\right)$ for suitable ideals \mathfrak{b}_{i}. Similarly we have (5).

Tokyo Metropolitan University

[^0]
[^0]: ${ }^{3)}$ This theorem is valid if A is a semi-group with zero.
 ${ }^{4)}$ It is well known that this relation holds in a quasi-Frobenius rin;

