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When we consider modules A over a ring R which is not a commutative

integral domain, the usual torsion theory becomes somewhat inadequate, since

zero-divisors of R are disregarded and since the torsion elements of A do not

in general form a submodule. In this paper we shall try to remedy such defects

by modifying the fundamental notions such as torsion modules, divisible modules,

etc.

We define in § 1 torsion-free modules and divisible modules. It turns out

that they are well maniable by using the functors Tori and Ext1. Torsion [resp.

reduced] modules are defined in § 4 by the property that they have no torsion-

free [resp. divisible] parts in a certain sense. Now two fundamental problems

arise: Is the torsion-freeness of a (right, say) module equivalent to the vanish-

ing of its torsion part ? Is it possible to divide any (right) module into torsion-

free and torsion parts? The main proposition of this paper (Prop. 13) states

that in order that either one of these problems be answered affirmatively it is

necessary and sufficient that all the principal (left) ideals be projective. A ring

satisfying this condition will be called a (left) PP ring in this paper. Integral

domains and semi-hereditary rings constitute two important classes of PP rings.

In §5 we show that our modified theory reduces to the usual theory in two

special types of PP rings, namely commutative, Noetherian, PP rings and non-

commutative integral domains which have full quotient rings.1}

It is true that the most properties concerning non-principal ideals can not

be touched by torsion theory in any sense, but only principal ideals have some

remarkable properties. For instance Tori (R/λR, ) and Ext1 (R/Rλ, ) are

put into relation in connection with the purity of module extensions, and this

fact yields a new approach to a theorem of Harada (§2).

Received April 4, 1960.
1} (Added in proof) See also a paper of S. Endo, to appear in this volume of this Journal.
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§ 1. Torsion-free modules and divisible modules

Let R be a ring with a unit element 1, A an iMeft module on which 1 acts

as the identity. If r(λ) denotes the right ideal of R consisting of right annihi-

lators of i e i ? , then the subset r(λ)A is so to speak a priori torsion with re-

spect to λ. Now we call A torsion-free if, for every λ e/?, we have a^r(λ)A

whenever λa - 0. Similarly we call A divisible if we have a^λA whenever l(λ )a

= 0, for every λ^R, where l(λ) is the left ideal of left annihilators of λ. We

define similarly a torsion-free right module and a divisible right module. Obvi-

ously our definitions coincide with the usual ones when R is an integral domain.

In the following, a module means a left i?-module unless otherwise stated.

We also omit the subscript R or the superscript R in Hom, ®, Ext, Tor.

Let us consider the sequence

λ I

R—>λR—>R

where the first arrow is the left multiplication by λ, the second the natural in-

jection. Tensoring with A over R, we have

£®1

λR®A—> A

where λ®l is an epimorphism with kernel r(λ)A, the kernel of *®1 is

Ton {R/λR, A) and the composed map (<®1)U®1) is identified with the left

multiplication by λ in A. So we see immediately that

Tori (R/λR, A)-Z{a<BA λa = 0)/rU)A9

hence

PROPOSITION 1. A is torsion-free if and only if Tori (R/λR, A) = 0 for every

Similarly we see that

Ext1 (R/Rλ, A)^

and we have

PROPOSITION V. A is divisible if and only if Ext1 (R/Rλ, A) =0 for every

λ<aR.

PROPOSITION 2. A flat module is always torsion-free if every finitely gener-

ated right ideal of R is principal, then a torsion-free module is flat.
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An injective module is always divisible if every left ideal of R is principal,

then a divisible module is injective.

Proof. The first assertion is a simple corollary of Prop. 1. To prove the

second, let A be torsion-free. Since Tori is half exact and commutes with direct

limits, we have only to show that Tori(i?/v, A) - 0 for all right ideals r (see

Cartan-Eilenberg [3] VI, Exerc. 6). By a similar argument we may restrict

ourselves to finitely generated r. On assuming that such an r be principal, we

have Tori(i?/r, A)=Q by Prop. 1. Assertions concerning the divisibility are

proved similarly and more simply.

§2. Connections with purity of extensions

An extension of /^-modules

(*) 0—>A-^>B —>C — >0 (exact)

is said to be pure if it has one of the following two equivalent properties:

(i) AΠλB = λA for every λ e R.

(ii) If λc = 0 for a c e C, then there exists b^B satisfying βb = c and λb = 0.

(In (i) A is identified with a A C B.) It is easy to see that these are equiva-

lent respectively to

(i') R/λR(& A -* R/λR® B is a monomorphism for every λ e R.

(ii') Horn (i?/i?Λ, B) -» Hom(/?/i?Λ, C) is an epimorphism for every i e i ? .

Now we have

PROPOSITION 3. C is torsion-free if and only if every extension (*) with C

as the factor module is pure. A is divisible if and only if every extension (*)

with A as the kernel is pure.

Proof for the first statement. Consider the exact sequence

Ton {R/λR9 B) -* Ton (R/λR, C) -> R/λR® A -> RlλR^B.

Then the 'only if part is clear, and the ' if part is seen, taking especially B

to be projective. Proof for the second statement is quite similar.

As a corollary we have the equivalence of the following three statements

(a) Every extension (*) is pure.

(b) Every module is torsion-free.

(c) Every module is divisible.
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Now (c) is equivalent to the statement that every R/Rλ (λ^R) is pro-

jective. But this last property characterizes the regular rings in the sense of

J. von Neumann, as is easily seen. Similarly (b) is equivalent to that every

R/λR (λ<=R) is flat. If w. gl. dim R = 0, namely if every module is flat, then so

is R/λR, and we see that R is regular from the equivalence of (b) and (c).

Conversely let R be regular. Then a finitely generated right ideal is principal

(see Neumann [10] or Nakayama-Azumaya [9] p. 90). Hence a torsion-free

module is flat by Prop. 2, and so (b) states that w. gl. dim R = 0. Accordingly

we can reformulate the equivalence of (a), (b), (c) as follows:

PROPOSITION 4. The following three statements on R are equivalent:

(a) Every extension (*) is pure.

W) w.gl.dim/?=0.

( c) R is a regular ring.

Thus we have obtained a new approach to Harada's theorem [4] which

states the equivalence of (b') and (c).

Notice also that (bθ and (c) are left-right symmetrical.

§3. Fundamental Properties

In this section we study submodules, factor modules etc. of torsion free or

divisible modules.

PROPOSITION 5. An extension of a torsion-free module by a torsion free

module yields always a torsion-free module. Similarly for divisible modules.

This is clear from the half-exactness of Tor and Ext.

If C [resp. A] is a factor [resp. sub] module of B, we have an exact

sequence of type (*), with a the natural injection, β the natural projection and

A the kernel of a [resp. C the cokernel of #]. Such a sequence will be called

associated with B -> C [resp. A -> Bl.

PROPOSITION 6. A factor module C of a torsion-free module B is torsion-free

if and only if the associated exact sequence (*) is pure. Similarly\ a submodule

A of a divisible module B is divisible if and only if the associated sequence (*)

is pure.

This follows immediately from the exactness of the sequence appeared in

the proof of Prop. 3, as well as its counterpart for Ext.



TORSION THEORY FOR MODULES OVER GENERAL RINGS 151

We shall call a ring R a left PP [resp. PF~] ring if every principal left

ideal of R is projective [resp. flat]. A right PP [resp. PF] ring is defined

similarly. Obviously a PP ring is a PF ring. Main examples of PP rings are

furnished by (not necessarily commutative) integral domains and semi-hereditary

rings.

PROPOSITION 7. In order that any submodule of a torsion-free left module

be again torsion-free, it is necessary and sufficient that R be a right PF-ring.

In order that any factor module of a divisible left module be again divisible, it

is necessary and sufficient that R be a left PP-ring.

Proof. Let B be torsion-free, and A its submodule. Consider the exact

sequence

Tor2(R/λR, B) -> Tor2 {R/λR, C) -*ΎorΛR/λR, A) ~>ΎoYi(R/λR, B) - 0

belonging to the associated exact sequence (*). If every λR is flat, we have

ToniRlλR, C) ~ ToriUtf, C) = 0, whence Ton (R/λR, A) = 0, namely A is

torsion-free. Conversely, for an arbitrary module C, there exists an exact

sequence (*) with B projective, for which obviously Tor-iiR/λR, B)—Q. Hence

Ton (R/λR, A) = 0 implies Tor, (λR, C) = Ton (R/λR, C) - 0. C being arbitrary,

λR is flat. Proof for the divisibility is given similarly.

PROPOSITION 8. i) A direct sum of torsion-free modules is torsion free.

ii) In order that a direct product of torsion-free modules be ahvays torsion-

free, it is necessary and sufficient that for every λ e R the right annihilator r(λ)

be finitely generated.

Proof, i) is clear from the fact that Tor commutes with a direct sum.

ii) Let {A*} be torsion-free modules, and A = ΠA* its direct product. For

β = ( β α ) e A (βαSAί), λa = 0 means λa* = 0 for every a. If r(λ) is generated

by a finite number of elements, say μu . . . , μry then there exist fl, β ε Λ such

that aa-'Σμiaia. Put α/= (<z, tf) e A, then we have a^^Σμiai. Hence A is

torsion-free. To prove the converse, we take, for every λ, the direct product

Ax^ Yl Ra of isomorphic copies Ra of R over the index set r(λ). Let ax be
*Er(λ)

the 'diagonal' element of Aλ having the αr-th component a for every ίrGf(J).

Then λax ~ 0. Hence, if Ax is torsion-free, there exist a finite number of ele-

ments μi of R and en - (aιa) of Aχ U"= 1, . . . , r) such that a\ - Σ/i/β/, namely



152 AKIRA HATTORΪ

«/#/« for every a^r(λ). Hence r(λ) is finitely generated.

The corresponding proposition for divisible modules is simpler, namely:

- PROPOSITION 8'. A direct product as ivell as a direct sum of divisible modules

is divisible.

PROPOSITION 9. If R is a left PP-ring, then every right R-module possesses

the largest torsion-free factor module, and every left R-module possesses the largest

divisible submodule.

Proof. The assertion concerning the divisible submodule is an immediate

consequence of Prop. 7 and 8', while the assertion concerning the torsion-free

factor module follows from (the mirror statements of) Prop. 7 and 8, if one

observes the elementary fact that l(λ) is finitely generated when the principal

left ideal Rλ is projective. For the sake of the later use we shall prove in this

occasion the following more general Lemma: We call a module A to be of

finite relations if there exists an epimorphism π : P -> A with P free such that

the kernel of π is finitely generated. Then we have

LEMMA 1. A finitely generated module A is projective if and only if A is

flat and is of finite relations.

Proof. A may be expressed as the factor module of a free module F on

finite basis by the relation module B. If A is projective, B is a direct summand

of F and therefore is finitely generated. Conversely, let π '• Po -* A be an epi-

morphism with a finitely generated kernel, say B, where Po is free. Then Po

is likewise finitely generated. B admits an epimorphism m : Pi -* B from a

finitely generated free module P :. Applying the standard arguments to the

sequence -> P2 -* Pi -» Po -» A -» 0, we have the isomorphism

Tori(Hom2(.Y, C), A) = Uomz (Ext1 (A, X), C)

for any P-module X and any injective Z-module C, where Z denotes the ring

of rational integers. It follows from this isomorphism that A is flat if and only

if A is projective (cf. Cartan-Eilenberg [3], VI, §5 and Exerc. 3). This proves

our Lemma.

It is an open question whether the converse of Prop. 9 holds or not. Cf.

Prop. 13 below.

When R is a PP ring we may have actually more explicit treatment in
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virtue of

LEMMA 2. A principal left ideal Rλ is protective if and only if there exists

an idempotent eλ such that λ = eι λ and /(λ) = I(eχ) = Rel, ivhere eλ + e[ = 1.

Proof. If i?Λ is projective, the sequence 0 - > / U ) - » i ? - » / ? Λ - * 0 splits. Hence

there exists β\^R such that e\λ = λ and l(ex) = l(λ). As the former identity

implies (1 — £Λ)Λ - 0, the latter shows (1 — eλ)eχ — 0, i.e. eχ is an idempotent. T h e

converse is clear.

F r o m the definition of torsion-free resp. divisible modules follows

PROPOSITION 10. Let R be a left PP ring. A right module A is torsion-free

if and only if λr Aeχ -» A, induced by the right operation of λ, is monomorphic

for every λ^R) ivhile a left module A is divisible if and only if λj : A -* eλA,

induced by the left operation of λ> is epimorphic for every i e £

Both mappings λr> h indicated above are not i?-homomorphisms in general.

But if S is another operator domain of A commuting with R, they are S-homo-

morphisms. Examples of such S that may be taken universally for all i?-modules

are the ring of rational integers Z, the center of R and, in case R is commuta-

tive, R itself. Now, we have

PROPOSITION 11. Let R be a left PP ring.

i) In case (RAs, SC), if A is R-diυisible, then A®$C is also R-divisible.

ii) In case (RAS, CS), if A is R-divisible, then HornsiA, C) is R-torsion-free

and in case UA, SCR), if C is R-torsion-free, then Homs(A, C) is R-torsion-free.

We omit the simple proof, and instead, remark that it is a special case of

a proposition concerning additive functors of S-modules (cf. Cartan-Eilenberg

[3] VII, §1).

This proposition will be utilized later to study a problem which involves

only an operator ring R (Prop. 14).

§ 4. Torsion modules and reduced modules

A left module A will be called a torsion module if Hom (A, C) = 0 for every

torsion-free module C. From the standard properties of Hom we deduce readily

PROPOSITION 12. i) The direct sum Σ ^ a is a torsion module if and only if

every surnmand Aa is torsion module.

ii) If A is a torsion module, then so is any homomorphic image of A,
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iii) Any extension of a torsion module by a torsion module yields again a

torsion module.

COROLLARY. A module A has the largest torsion submodule.

We call the largest torsion submodule of A the torsion submodule of A, and

denote it by T(A).

A reduced module C is defined by the property that Horn (A, C ) = 0 for

every divisible module A. We have similarly as above

PROPOSITION 12'. i) The direct product TIC* is reduced if and only if every

Ca is reduced.

ii) If C is reduced, then so is any submodule of C.

iii) Any extension of a reduced module by a reduced module yields again

a reduced module.

COROLLARY. Among submodules B of A with divisible factor modules there

exists the smallest one, which ive denote by D(A).

If R is a PF ring, A is a torsion module if and only if it has only the trivial

torsion-free factor A/A (Prop. 7). Similarly, if R is a PP ring, C is reduced

if and only if it has only the trivial divisible submodule 0.

If R is a commutative integral domain, our definitions of torsion modules

and reduced modules coincide with the usual ones. Now, in this case, A is

torsion-free if and only if T(A) = 0. In our general setting, the 'only if part

still holds evidently, but not necessarily the * if' part. So we shall call A weakly

torsion-free when T(A) = Q. Similarly we call A iveakly divisible when D(A)

= A. Then a divisible module is weakly divisible. A fundamental question

asking when the weak torsion-freeness [resp. weak divisibility] reduces to the

torsion-freeness [resp. divisibility] hitherto considered is answered by the

following

PROPOSITION 13. The folloiving statements for a ring R are equivalent:

i) R is a left PP ring.

ii) For every right module B, B/T{B) is torsion-free.

iii) Any weakly torsion-free right module is torsion-free.

iv) If Horn (A, C) = 0 for all torsion right modules A, then C is torsion-free.

ii') For every left module B> D(B) is divisible.

iii') Any weakly divisible left module is divisible,
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ivO If Horn (A, O =0 for all reduced left modules C, then A is divisible.

Proof, i) =* ii) By Prop. 9, B has the smallest submodule A such that B/A

is torsion-free. Since A can not have a non-trivial torsion-free factor by Prop.

5, A is a torsion module. Hence ACT(B). But it is then clear that A=T(B),

and hence B/T(B) is torsion-free.

ii) =Φ iii) Evident.

iii)=*iv) Putting A^T(C), we have 7\C) = 0.

Assume iv), then submodules and direct products of torsion-free modules

are always torsion-free. Hence Prop. 7 and 8 together with Lemma 1 following

the Prop. 9 show us that R is in fact a PP-ring.

i) •=* ii') ==? iii') =* iv') =*> i) can be proved similarly.

PROPOSITION 14. If A is a torsion right module and B a divisible left module,

we have

Proof. For any Z-module C we have a natural isomorphism

Homz (A0B, O^HOIΏJΛA, Homz (5, C)).

Since, by Prop. 11, Horn {B, C) is R-torsion-free, the right hand side reduces to

0. C being arbitrary, we have A ® B = 0.

Concerning submodules of a torsion module we have not so large information.

Let B be a torsion module and A its submodule. Then it is clear that A is also

a torsion module if and only if Ext1 {A', C) -> Ext] (B, C) is monomorphic for

every torsion-free module C, where A1 - B/A. This is certainly the case if C

admits a monomorphism into an injective, torsion-free module Q, since then we

have Horn (By Q)=0 as well as Ext1 (A\ Q) = 0. Hence

PROPOSITION 15. If every torsion-free module admits a monomorphism into

an injective, torsion-free module, then any submodule of a torsion module is a

torsion module.

The condition of the Proposition is certainly satisfied by a (not necessarily

commutative) integral domain R possessing the full ring of quotients. In this

case, however, our torsion theory reduces to the usual one (see Prop. 18).

Beyond this trivial case we have no examples of R satisfying that condition.

PROPOSITION 16. In case (A*} sB{i), if B is a torsion R-module, then so is
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Proof. For every torsion-free i?-module C, we have Horn/? (A &^B, C)

= Homs(A, ΉomR(B, C))=0.

COROLLARY. Under the assumptions of Prop, 15, Tor3

n(A, B), n = 0, 1, 2,

. . . , <zre torsion modules whenever B is a torsion module. (As, SBR).

Indeed, with a suitable S-module A' we have ΎoύiA, B) ^TorJ(Λ', B),

the right hand side in turn is a submodule of certain 7?-torsion module A" 0<B.

§ 5. Comparison with the usual torsion theory

a) Commutative ring R.

LEMMA 3. A commutative ring satisfying the maximum condition for ring

direct summands is a PP ring if and only if it is a direct sum of a finite number

of integral domains.

Proof. For a commutative ring R, an idempotent e^-1 yields a ring direct

sum decomposition R^ Re^)R(l - e). Hence a PP ring is indecomposable if and

only if it is an integral domain by Lemma 2. This being said, our Lemma is

easily proved by familiar arguments.

Let in general R = Rι® QRr be a ring direct sum (r < ™). Then an

iv?-module A is decomposed into the direct sum A = .AiΘ * Θ Ar, Ai = RtA.

In particular for λ = *Σλi, λi&Ri, R/Rλ = Rι/Riλι® ' * * ®RrlRrλr On the

other hand we have

Torf (A, B) - ΣTor? (Ai, Bi),

ExtS (A, B) = ΣExtΐ , (Λ , Bi).

It follows readily that the torsion theory for 7?-modules can be reduced com-

pletely to those for /^-modules.

Applying this to our case, we have immediately

PROPOSITION 17. The torsion theory for modules over a commutative PP

ring satisfying the ascending chain condition for ring direct summands coincides

with the usual torsion theory.

Remark. As another simple consequence of the above Lemma 3, we have

a theorem of Auslander-Buchsbaum [2] stating that a commutative Noetherian

ring is hereditary, if and only if it is a direct sum of a finite number of Dedekind
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domains.

b) Non-commutative integral domain R.

For a moment let R be arbitrary. Denote the semigroup of regular elements

(i.e. non zero-divisors) of R by /?*. We call as usual an element a of an R-

module A to be a torsion element if there exists i e i ? * such that λa = 0. We

denote the set of torsion elements of A by t(A). We see easily t(A) C T(A).

Now we know that R has the left full ring of quotients, which we shall

call simply the left quotient ring and denote by Qι, if and only if for any λ^R*

and /iGi? there exist a e /?* and β (Ξ R such that a/t = βλ similarly for the

existence of the right quotient ring Qr (see Asano [1] or Jacobson [6]).

LEMMA 4. If R has the left quotient ring Qι, t(A) is a submodule of A and

coincides with the kernel of the natural mapping A -» Qι0 A.

Proof is easy and we omit it.

PROPOSITION 18. For a (not necessarily commutative) integral domain R, the

folloiving statements are equivalent:

i) R has the left quotient ring Qι.

ii) For any left module A, we have T(A) -f(A).

iii) For any λ^O, every element of R/Rλ is a torsion element.

Proof. i)=^ii) By Lemma 4, t(A) is a submodule of T(A). On the other

hand A/t(A) is torsion-free in the usual sense, hence also in our sense since

R has no zero-divisor. Hence t(A) = T(A).

ii) —s iii) It is clear that Horn iR/Rλ, C) = 0 for λ e i?* and for any torsion-

free C, i.e. R/Rλ is a torsion module. Hence iii) follows from ii) taking

Finally iii) states the necessary and sufficient condition above mentioned for

the existence of Qι.
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