A PROPERTY OF SOME POINCARÉ THETA-SERIES

TOHRU AKAZA

1. Consider circles $c_{\nu}(\nu = \pm 1, \pm 2, ...)$ with centers ξ_{ν} on the real axis of the z-plane such that they are disjoint from each other and cluster to infinity $z = \infty$ from the both sides of the real axis. Here, without loss of generality, we may assume that $\xi_{-\nu-1} < \xi_{-\nu} < 0 < \xi_{\nu} < \xi_{\nu+1}$ for every positive integer ν . Let B be the fundamental domain, bounded by $c_{\nu}(\nu = \pm 1, \pm 2, ...)$, of the properly discontinuous group Γ generated by the hyperbolic linear transformations with real coefficients

(1)
$$z' = S_{\nu}(z) = \frac{\alpha_{\nu} z + \beta_{\nu}}{\gamma_{\nu} z + \delta_{\nu}}, \qquad (\nu = \pm 1, \pm 2, \ldots),$$

each of which for every ν transforms the outside of $c_{-\nu}$ into the inside of c_{ν} .

Consider the Poincaré theta-series of (-2)-dimension

(2)
$$\Theta(z) = \sum_{\Gamma} H[S(z)] \frac{dS(z)}{dz},$$

where the kernelfunction H(z) is a real rational function whose poles are in the set $\overline{B} = B \cup (\bigcup_{\nu=-\infty}^{\infty} c_{\nu})$. It is well known that the series (2) converges absolutely and uniformly in the complement D of the set of singular points of Γ , with respect to the z-plane, and defines a function meromorphic in D. For each transformation of Γ , we have the well known differential invariant

(3)
$$\Theta(S(z)) \ dS(z) = \Theta(z) \ dz.$$

This invariant (3) is called an automorphic differential. The function

$$I(z) = \int_{z_0}^z \Theta(z) \, dz$$

is obtained by integrating the automorphic differential along an arbitrary path in D.

Now, if we choose as a kernelfunction

Received December 17, 1959.

TOHRU AKAZA

$$H(z) = \frac{1}{z-a} - \frac{1}{z-b} \qquad (a < b, \text{ real, } a, b \in \overline{B}),$$

then we obtain the following analytic representation of I(z):

(4)
$$I(z) = \sum_{\Gamma} \log \left[\frac{S(z) - a}{S(z) - b} : \frac{S(z_0) - a}{S(z_0) - b} \right] = \sum_{\Gamma} \log \left[\frac{z - S(a)}{z - S(b)} : \frac{z_0 - S(a)}{z_0 - S(b)} \right].$$

In what follows, we assume that z_0 is the origin z = 0 for convenience.

The following two cases (i) and (ii) occur according to the positions of a and b.

(i) The case where a and b are congruent with respect to some generator of I, that is, $b = S_{\nu}(a)$ for some ν . In this case, the poles of different terms of (4) are canceled each other in pairs and we obtain a finite integral in D. Moreover, we can easily see that I(z) depends on the pole $J_{\nu} = -\frac{\delta_{\nu}}{\gamma_{\nu}}$ of $S_{\nu}(z)$ but does not depend on a. If we denote such an I(z) by

$$\varphi_{\nu}(z)=\int \Theta(z, J_{\nu})\,dz,$$

then we have a sequence of functions $\{\varphi_{\nu}(z)\}$ ($\nu = 1, 2, 3, ...$). If $\xi_{\nu} = -\xi_{-\nu}$ and if the radius of c_{ν} equals that of $c_{-\nu}$, then the function $\varphi_{\nu}(z)$ is a real elementary normal integral of the first kind in the sense of L. Myrberg [2]. We call $\varphi_{\nu}(z)$ a real normal integral of the first kind.

By an easy computation (Burnside [1], P. J. Myrberg [4]) we obtain the relations

$$\int_{c_{\nu}} d\varphi_{\nu} = 2\pi i, \qquad \int_{c_{\mu}} d\varphi_{\nu} = 0 \qquad (\mu \neq \nu).$$

If γ_{ν} is a Jordan curve which joins two equivalent points on circles $c_{-\nu}$ and c_{ν} in the upper half of *B*, then the period

$$\tau_{\nu\mu}=\int_{\tau_{\mu}}d\varphi_{\nu}$$

of φ_{ν} along γ_{μ} is real.

(ii) The case where a and b are not congruent for any generator of Γ . The poles of different terms of (4) cannot be canceled each other. We denote such an intgeral I(z) by $\chi_{ab}(z)$ and call it a real normal integral of the third kind (P. J. Myrberg [3], [4], [5]). It has the following properties:

1° $\chi_{ab}(z)$ is regular in B except at a and b, where it has logarithmic poles

190

with residues -1 and 1 respectively.

2° The periods of $\chi_{ab}(z)$ along c_{ν} and γ_{ν} are

$$\int_{c_{\nu}} d\mathcal{I}_{ab}(z) = 0 \qquad (\nu = \pm 1, \pm 2, \ldots),$$

and

$$\int_{\mathbb{T}_{\nu}} d\chi_{ab}(z) = \varphi_{\nu}(b) - \varphi_{\nu}(a) \qquad (\nu = 1, 2, \ldots).$$

2. Let B_0 be the upper half of the fundamental domain B. Any branches of $\varphi_{\nu}(z)$ and $\chi_{ab}(z)$ are single-valued and regular in B_0 by the monodromy theorem. We take the branches of $\varphi_{\nu}(z)$ and $\chi_{ab}(z)$ such that $\varphi_{\nu}(0) = 0$ and $\chi_{ab}(0) = 0$ and denote them by $\varphi_{\nu}(z)$ and $\chi_{ab}(z)$ again. Let us consider the images of B_0 by them. The function $\varphi_{\nu}(z)$ is real on the intersection of \overline{B} with the part of the real axis between $c_{-\nu}$ and c_{ν} . The imaginary part of $\varphi_{\nu}(z)$ increases by π , when z describes the upper half circumference of c_{ν} or $c_{-\nu}$. According as the origin z = 0 is contained in the interval [a, b] or not, $\chi_{ab}(z)$ is real on the real axis in B inside or outside [a, b]. The imaginary part of $\chi_{ab}(z)$ increases by $-\pi$ or π in the former and by π or $-\pi$ in the latter respectively, when z passes through z = a or z = b in the positive direction.

We see that $w = \varphi_{\nu}(z) = u_{\nu}(z) + iv_{\nu}(z)$ maps B_0 conformally onto the rectangle $a_{\nu} < u_{\nu} < a_{\nu} + \tau_{\nu\nu}$, $0 < v_{\nu} < \pi$ with vertical slits starting from the upper and lower sides and corresponding to the upper halves of all c_{μ} except for $\mu = \nu$. And $w = \chi_{ab}(z) = u_{ab}(z) + iv_{ab}(z)$ maps B_0 conformally onto the strip domain $-\infty < u_{ab} < \infty$, $0 < v_{ab} < \pi$ with vertical slits starting from the upper and the lower sides and corresponding to the upper halves of $c_{\mu}(\mu = \pm 1, \pm 2, \ldots)$.

As to these slits, there are two cases: these slits cluster to a point from the both sides or not. In the former case we say that the type of $\varphi_{\nu}(z)$ or $\chi_{ab}(z)$ is parabolic.

In the following, we shall give some results concerning the type of $\varphi_{\nu}(z)$ or $\chi_{ab}(z)$. These results are analogues of theorems due to L. Myrberg [2].

3. Mapping the upper half plane $\operatorname{Im}(z) \ge 0$ onto the unit circle $|z_1| \le 1$ conformally, we use the notations S'_{ν} , Γ' , B'_{0} , $\{c'_{\nu}\}$ ($\nu = \pm 1, \pm 2, \ldots$), a' and b'for the corresponding ones in the z_1 -plane for simplicity and denote by $P^{(0)}_{\infty}$ the point on $|z_1| = 1$ corresponding to $z = \infty$. Let us denote by α the intersection of the boundary of B'_{0} and the circular arc $\widehat{a'b'}$ on $|z_1| = 1$ not containing $P^{(0)}_{\infty}$. Put

$$\alpha_{\nu} = S'_{\nu}(\alpha), \qquad (\nu = 0, \pm 1, \pm 2, \ldots)$$

where $S'_{-\nu}$ is the inverse of S'_{ν} and S'_{0} the identical transformation. Obviously, I' is a fuchsoid group with fundamental domain B'_{0} .

Construct a single-valued bounded harmonic function $r_{\alpha}(z_1)$ in $|z_1| < 1$ such that

$$r_{\alpha}(z_{1}) = \begin{cases} \pi \text{ on the set} \bigcup_{\nu=-\infty}^{\infty} \alpha_{\nu}, \\ 0 \text{ on the complementary set } \{|z_{1}|=1\} - \bigcup_{\nu=-\infty}^{\infty} \alpha_{\nu}. \end{cases}$$

Then $r_{\alpha}(z_1)$ is an automorphic function with respect to Γ' and $0 < r_{\alpha}(z_1) < \pi$ in B'_0 . We now prove the following

LEMMA. If for some α

$$\lim_{z_1\to \boldsymbol{P}_{\infty}^{(0)}} \boldsymbol{r}_{\alpha}(\boldsymbol{z}_1) = 0$$

along the radius, then also $\lim_{z_1 \to P_{\infty}^{(0)}} r_{\alpha}(z_1) = 0$ along the radius for any α .

It means that $\lim_{z_1 \to F_{\infty}^{(0)}} r_{\alpha}(z_1) = 0$ is independent of α .

Proof. We use a similar argument as in L. Myrberg [2]. Let $r_{\alpha}^{(\mu)}(z_1)$ be the multiple by π of the harmonic measure of α_{μ} with respect to $|z_1| < 1$. Then we obtain

$$\boldsymbol{r}_{\boldsymbol{\alpha}}(\boldsymbol{z}_1) = \sum_{\boldsymbol{\mu}=-\infty}^{\infty} \boldsymbol{r}_{\boldsymbol{\alpha}}^{(\boldsymbol{\mu})}(\boldsymbol{z}_1).$$

Let $R^{(0)}$ be the radius of $|z_1| < 1$ terminating in the point $P_{\infty}^{(0)}$. It is obvious that $R^{(0)}$ lies in B'_0 . Then the value $r_{\alpha}^{(\mu)}(P^{(0)})$ at a point $P^{(0)}$ on $R^{(0)}$ is equal to $r_{\alpha}^{(0)}(P^{(\mu)})$, where $P^{(\mu)} = S'_{\mu}(P^{(0)})$. If

(5)
$$z_2 = \frac{az_1 + b}{cz_1 + d}$$
, $(ad - bc = 1)$

is the linear transformation which makes $|z_1| < 1$ invariant and transforms $P^{(\mu)}$ into the origin, then $r_{\alpha}^{(0)}(z_1)$ is transformed into $r_{\alpha}^{(0)}(z_2)$, which assumes π on the image $\bar{\alpha}$ of α by (5) and zero in the complement of $\bar{\alpha}$ with respect to $|z_2| = 1$. Denote by \bar{l} and l the lengths of $\bar{\alpha}$ and α respectively. Then we obtain

$$r_{\overline{a}}^{(0)}(0) = \frac{1}{2} \overline{l}, (\overline{l} = \int_{\alpha} \frac{1}{|cz_1+d|^2} |dz_1|).$$

192

Whence follows

$$\frac{l}{2} \min_{z_1 \in a} \frac{1}{|cz_1+d|^2} \leq r_{\bar{a}}^{(0)}(0) \leq \frac{l}{2} \max_{z_1 \in a} \frac{1}{|cz_1+d|^2}.$$

Since $r_{\bar{a}}^{(0)}(0) = r_{a}^{(0)}(P^{(\mu)}) = r_{a}^{(\mu)}(P^{(0)})$, we obtain

(6)
$$\frac{l}{2|c|^2} \min_{z_1 \in a} \frac{1}{|z_1 + \frac{d}{c}|^2} \leq r_a^{(\mu)}(P^{(0)}) \leq \frac{l}{2|c|^2} \max_{z_1 \in a} \frac{1}{|z_1 + \frac{d}{c}|^2}.$$

If the symmetric point $P_1^{(\mu)} = -\frac{d}{c}$ of $P^{(\mu)}$ is sufficiently near $P_{\infty}^{(\mu)} = S'_{\mu}(P_{\infty}^{(0)})$ then the distance of $P_1^{(\mu)}$ from a point z_1 on α can be estimated as follows:

$$0 < d_{(\alpha)} < \left| z_1 + \frac{d}{c} \right| < 3,$$

where $d_{(\alpha)}$ is independent of μ . Hence, from (6), we obtain

$$\frac{l}{2|c|^2 3^2} \leq r_a^{(\mu)}(P^{(0)}) \leq \frac{l}{2|c|^2 d_a^2}.$$

For another α' , we can also get a similar inequality for $r_{\alpha'}^{(\mu)}(P^{(0)})$. Consequently,

$$c(\alpha, \alpha') \leq rac{r_{\alpha'}^{(\mu)}(P^{(0)})}{r_{\alpha}^{(\mu)}(P^{(0)})} \leq c'(\alpha, \alpha'),$$

where $c(\alpha, \alpha')$ and $c'(\alpha, \alpha')$ are constants independent of μ . Therefore

$$c(\alpha, \alpha') \sum_{\mu=-\infty}^{\infty} r_{\alpha}^{(\mu)}(P^{(0)}) \leq \sum_{\mu=-\infty}^{\infty} r_{\alpha'}^{(\mu)}(P^{(0)}) \leq c'(\alpha, \alpha') \sum_{\mu=-\infty}^{\infty} r_{\alpha}^{(\mu)}(P^{(0)});$$
$$c(\alpha, \alpha') r_{\alpha}(P^{(0)}) \leq r_{\alpha'}(P^{(0)}) \leq c'(\alpha, \alpha') r_{\alpha}(P^{(0)}).$$

i.e.

Hence we see that
$$r_{\alpha}(z_1)$$
 and $r_{\alpha'}(z_1)$ have simultaneously the radial limit zero along $R^{(0)}$. Thus our lemma is proved.

If we map $|z_1| \leq 1$ conformally onto the upper half plane $\operatorname{Im}(z) \geq 0$, then $r_{\alpha}(z_1)$ is transformed into a bounded harmonic function $r_{\widetilde{\alpha}}(z)$ which takes π on $\widetilde{\alpha}$ and 0 on its complement with respect to the real axis, where $\widetilde{\alpha}$ is the image of α . According as the origin z = 0 is contained in $\widetilde{\alpha}$ or not, the imaginary part $v_{ab}(z)$ of $\chi_{ab}(z) = u_{ab}(z) + iv_{ab}(z)$ in B_0 is equal to $\pi - r_{\widetilde{\alpha}}(z)$ or $r_{\widetilde{\alpha}}(z)$. The radius $R^{(0)}$ in the proof of Lemma is transformed into a part of the imaginary axis of the z-plane. Hence, if $\lim_{z_1 \to P_{\infty}^{(0)}} r_{\alpha}(z_1) = 0$ along $R^{(0)}$, then we obtain $\lim_{z \to \infty} z \to \infty$

TOHRU AKAZA

 $v_{ab}(z) = \pi$ or 0 along the imaginary axis. Since, by Lemma, the existence of the radial limit zero is independent of the parameters *a* and *b*, we get

THEOREM 1. If $\chi_{ab}(z)$ is parabolic with respect to some (a, b) $(-\infty < a < b < \infty)$, then $\chi_{ab}(z)$ is also parabolic with respect to any pair (a, b).

In the case where a and b are congruent with respect to some generator $S_{\nu}(z) \in \Gamma$, we can prove the following by the same method as above

THEOREM 2. Whether the type of $\varphi_{\nu}(z)$ is parabolic or not is independent of ν ; more precisely $\varphi_{\nu}(z)$, $(\nu = 1, 2, ...)$ are all parabolic or all not parabolic.

As an immediate consequence, we have

THEOREM 3. In order that the types of $\varphi_{\nu}(z)$ and $\chi_{ab}(z)$ be parabolic, it is necessary and sufficient that, for some α , $\lim_{P^{(0)} \to P_{\infty}^{(0)}} r_{\alpha}(P^{(0)}) = 0$ along the radius $R^{(0)}$

This contains Theorem 3 of L. Myrberg [2].

References

- [1] Burnside, W., On a class of automorphic functions, Proc. London Math. Soc., 23 (1891), 49-88.
- [2] Myrberg, L., Normalintegral auf zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Ann. Acad. Sci. Fenn., A-I, 71 (1950), 1-50.
- [3] Myrberg, P. J., Über analytische Funktionen auf transzendenten zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Acta Math., 76 (1944), 184-224.
- [4] Myrberg, P. J., Über Integrale auf transzendenten symmetrischen Riemannschen Flächen, Ann. Acad. Sci. Fenn., A-I, 31 (1945), 1-20.
- [5] Myrberg, P. J., Über analytische Funktionen auf transzendenten Riemannschen Flächen, X. Congr. Math. Scand., Copenhagen, (1946), 77-96.

Mathematical Institute Kanazawa University