A PROPERTY OF SOME POINCARÉ THETA-SERIES

TOHRU AKAZA

1. Consider circles $c_{\nu}(\nu= \pm 1, \pm 2, \ldots)$ with centers ξ_{ν} on the real axis of the z-plane such that they are disjoint from each other and cluster to infinity $z=\infty$ from the both sides of the real axis. Here, without loss of generality, we may assume that $\xi_{-\nu-1}<\xi_{-\nu}<0<\xi_{\nu}<\xi_{\nu+1}$ for every positive integer ν. Let B be the fundamental domain, bounded by $c_{\nu}(\nu= \pm 1, \pm 2, \ldots)$, of the properly discontinuous group Γ generated by the hyperbolic linear transformations with real coefficients

$$
\begin{equation*}
z^{\prime}=S_{\nu}(z)=\frac{\alpha_{\nu} z+\beta_{v}}{\gamma_{\nu} z+\delta_{v}}, \quad(\nu= \pm 1, \pm 2, \ldots) \tag{1}
\end{equation*}
$$

each of which for every ν transforms the outside of $c_{-\nu}$ into the inside of c_{ν}.
Consider the Poincare theta-series of (-2)-dimension

$$
\begin{equation*}
\theta(z)=\sum_{\Gamma} H[S(z)] \frac{d S(z)}{d z}, \tag{2}
\end{equation*}
$$

where the kernelfunction $H(z)$ is a real rational function whose poles are in the set $\bar{B}=B \cup\left(\bigcup_{\nu=-\infty}^{\infty} c_{\nu}\right)$. It is well known that the series (2) converges absolutely and uniformly in the complement D of the set of singular points of Γ, with respect to the z-plane, and defines a function meromorphic in D. For each transformation of Γ, we have the well known differential invariant

$$
\begin{equation*}
\Theta(S(z)) d S(z)=\Theta(z) d z \tag{3}
\end{equation*}
$$

This invariant (3) is called an automorphic differential. The function

$$
I(z)=\int_{z_{0}}^{z} \Theta(z) d z
$$

is obtained by integrating the automorphic differential along an arbitrary path in D.

Now. if we choose as a kernelfunction

$$
H(z)=\underset{z-a}{1}-\underset{z-b}{1} \quad(a<b, \text { real, } a, b \in \widetilde{B})
$$

then we obtain the following analytic representation of $I(z)$:

$$
\begin{equation*}
I(z)=\sum_{\Gamma} \log \left[\frac{S(z)-a}{S(z)-b}: \frac{S\left(z_{0}\right)-a}{S\left(z_{0}\right)-b}\right]=\sum_{i} \log \left[\frac{z-S(a)}{z-S(b)}: \frac{z_{0}-S(a)}{z_{0}-S(b)}\right] . \tag{4}
\end{equation*}
$$

In what follows, we assume that z_{0} is the origin $z=0$ for convenience.
The following two cases (i) and (ii) occur according to the positions of a and b.
(i) The case where a and b are congruent with respect to some generator of I, that is, $b=S_{\nu}(a)$ for some $\%$. In this case, the poles of different terms of (4) are canceled each other in pairs and we obtain a finite integral in D. Moreover, we can easily see that $I(z)$ depends on the pole $J_{\nu}=-\frac{\delta_{\nu}}{\gamma_{\nu}}$ of $S_{\imath}(z)$ but does not depend on a. If we denote such an $I(z)$ by

$$
\varphi_{v}(z)=\int \Theta\left(z, J_{v}\right) d z,
$$

then we have a sequence of functions $\left\{\varphi_{\nu}(z)\right\}(\nu=1,2,3, \ldots)$. If $\xi_{\nu}=-\xi_{-\nu}$ and if the radius of c_{ν} equals that of $c_{-\nu}$, then the function $\varphi_{\nu}(z)$ is a real elementary normal integral of the first kind in the sense of L. Myrberg [2]. We call $\varphi_{\nu}(z)$ a real normal integral of the first kind.

By an easy computation (Burnside [1], P. J. Myrberg [4]) we obtain the relations

$$
\int_{c_{\nu}} d \varphi_{\nu}=2 \pi i, \quad \int_{c_{\mu}} d \varphi_{\nu}=0 \quad(\mu \neq \nu)
$$

If r, is a Jordan curve which joins two equivalent points on circles $c_{-\nu}$ and $c_{,}$ in the upper half of B, then the period

$$
\tau_{v i l}=\int_{r_{\mu}} d \varphi_{v}
$$

of φ_{ν} along γ_{μ} is real.
(ii) The case where a and b are not congruent for any generator of Γ. The poles of different terms of (4) cannot be canceled each other. We denote such an intgeral $I(z)$ by $\%_{a b}(z)$ and call it a real normal integral of the third kind (P. J. Myrberg [3], [4], [5]). It has the following properties:
$1^{\circ} \% a b(z)$ is regular in B except at a and b, where it has logarithmic poles
with residues -1 and 1 respectively.
2° The periods of $\chi_{a b}(z)$ along c_{ν} and τ_{2} are

$$
\int_{c_{i}} d \%_{a b}(z)=0 \quad(\mu= \pm 1, \pm 2, \ldots)
$$

and

$$
\int_{\because,} d \chi_{a b}(z)=\varphi_{\nu}(b)-\varphi_{\nu}(a) \quad(\nu=1,2, \ldots) .
$$

2. Let B_{0} be the upper half of the fundamental domain B. Any branches of $\varphi_{\nu}(z)$ and $\chi_{a b}(z)$ are single-valued and regular in B_{0} by the monodromy theorem. We take the branches of $\varphi_{\nu}(z)$ and $\chi_{a b}(z)$ such that $\varphi_{\nu}(0)=0$ and $\chi_{a b}(0)=0$ and denote them by $\varphi_{\nu}(z)$ and $\chi_{a b}(z)$ again. Let us consider the images of B_{0} by them. The function $\varphi_{2}(z)$ is real on the intersection of \bar{B} with the part of the real axis between $c_{-\nu}$ and c_{ν}. The imaginary part of $\varphi_{\nu}(z)$ increases by π, when z describes the upper half circumference of c_{\imath} or $c_{-\%}$. According as the origin $z=0$ is contained in the interval $[a, b]$ or not, $\chi_{a b}(z)$ is real on the real axis in B inside or outside $[a, b]$. The imaginary part of $\chi_{a b}(z)$ increases by $-\pi$ or π in the former and by π or $-\pi$ in the latter respectively, when z passes through $z=a$ or $z=b$ in the positive direction.

We see that $w=\varphi_{\nu}(z)=u_{\nu}(z)+i v_{\nu}(z)$ maps B_{0} conformally onto the rectangle $a_{\nu}<u_{\nu}<a_{\nu}+\tau_{\nu \nu}, 0<v_{\nu}<\pi$ with vertical slits starting from the upper and lower sides and corresponding to the upper halves of all c_{μ} except for $\mu=\nu$. And $w=\%_{a b}(z)=u_{a b}(z)+i v_{a b}(z)$ maps B_{0} conformally onto the strip domain $-\infty<u_{a b}<\infty, 0<v_{a b}<\pi$ with vertical slits starting from the upper and the lower sides and corresponding to the upper halves of $c_{; i}(\mu= \pm 1, \pm 2, \ldots)$.

As to these slits, there are two cases: these slits cluster to a point from the both sides or not. In the former case we say that the type of $\varphi_{\nu}(z)$ or $\chi_{a b}(z)$ is parabolic.

In the following, we shall give some results concerning the type of $\mathcal{c}_{,}(z)$ or \%ab (z). These results are analogues of theorems due to L. Myrberg [2].
3. Mapping the upper half plane $\operatorname{Im}(z) \geqq 0$ onto the unit circle $\left|z_{1}\right| \leqq 1$ conformally, we use the notations $S_{\nu}^{\prime}, \Gamma^{\prime}, B_{0}^{\prime},\left\{c_{\nu}^{\prime}\right\}\left(\nu= \pm 1\right.$, i $2, \ldots$), a^{\prime} and b^{\prime} for the corresponding ones in the z_{1}-plane for simplicity and denote by $P_{\infty}^{(0)}$ the point on $\left|z_{1}\right|=1$ corresponding to $z=\infty$. Let us denote by α the intersection of the boundary of B_{0}^{\prime} and the circular arc $\widehat{a^{\prime} b^{\prime}}$ on $z_{1}^{\prime}=1$ not containing $P_{0}^{\left(0^{\prime}\right.}$.

Put

$$
\alpha_{\nu}=S_{\nu}^{\prime}(\alpha), \quad(\nu=0, \pm 1, \pm 2, \ldots)
$$

where S_{-v}^{\prime} is the inverse of S_{v}^{\prime} and S_{0}^{\prime} the identical transformation. Obviously, I^{\prime} is a fuchsoid group with fundamental domain B_{0}^{\prime}.

Construct a single-valued bounded harmonic function $r_{\alpha}\left(z_{1}\right)$ in $\left|z_{1}\right|<1$ such that

$$
r_{\alpha}\left(z_{1}\right)=\left\{\begin{array}{l}
\pi \text { on the set } \bigcup_{\nu=-\infty}^{\infty} \alpha_{\nu}, \\
0 \text { on the complementary set }\left\{\left|z_{1}\right|=1\right\}-\bigcup_{\nu=-\infty}^{\infty} \alpha_{\nu} .
\end{array}\right.
$$

Then $r_{\alpha}\left(z_{1}\right)$ is an automorphic function with respect to Γ^{\prime} and $0<r_{\alpha}\left(z_{1}\right)<\pi$ in B_{0}^{\prime}. We now prove the following

Lemma. If for some α

$$
\lim _{z_{1} \rightarrow P_{\infty}^{(0)}} r_{a}\left(z_{1}\right)=0
$$

along the radius, then also $\lim _{z_{1} \rightarrow P_{\infty}^{(0)}} r_{\alpha}\left(z_{1}\right)=0$ along the radius for any α.
It means that $\lim _{r^{(0)}} \boldsymbol{r}_{\alpha}\left(z_{1}\right)=0$ is independent of α.

$$
{ }_{21 \rightarrow P_{\infty}^{(0)}}
$$

Proof. We use a similar argument as in L. Myrberg [2]. Let $\boldsymbol{r}_{d}^{(\mu)}\left(z_{1}\right)$ be the multiple by π of the harmonic measure of α_{μ} with respect to $\left|z_{1}\right|<1$. Then we obtain

$$
r_{a}\left(z_{1}\right)=\sum_{\mu=-\infty}^{\infty} r_{a}^{(\mu)}\left(z_{1}\right) .
$$

Let $R^{(0)}$ be the radius of $\left|z_{1}\right|<1$ terminating in the point $P_{\infty}^{(0)}$. It is obvious that $R^{(0)}$ lies in B_{0}^{\prime}. Then the value $r_{\alpha}^{(\mu)}\left(P^{(0)}\right)$ at a point $P^{(0)}$ on $R^{(0)}$ is equal to $\boldsymbol{r}_{\alpha}^{(0)}\left(P^{(\mu)}\right)$, where $P^{(\mu)}=S_{\mu}^{\prime}\left(P^{(0)}\right)$. If

$$
\begin{equation*}
z_{2}=\frac{a z_{1}+b}{c z_{1}+d}, \quad(a d-b c=1) \tag{5}
\end{equation*}
$$

is the linear transformation which makes $\left|z_{1}\right|<1$ invariant and transforms $P^{(\mu)}$ into the origin, then $r_{\alpha}^{(0)}\left(z_{1}\right)$ is transformed into $r_{\alpha}^{(0)}\left(z_{2}\right)$, which assumes π on the image $\bar{\alpha}$ of α by (5) and zero in the complement of $\bar{\alpha}$ with respect to $\left|z_{2}\right|=1$. Denote by \bar{l} and l the lengths of $\bar{\alpha}$ and α respectively. Then we obtain

$$
r_{\dot{x}}^{(0)}(0)=\frac{1}{2} \bar{l},\left(\bar{l}=\int_{\alpha} \frac{1}{\left|c z_{1}+d\right|^{2}}\left|d z_{1}\right|\right) .
$$

Whence follows

$$
\frac{l}{2} \min _{z_{1} \in a} \frac{1}{\left|c z_{1}+d\right|^{2}} \leqq r_{\bar{a}}^{(0)}(0) \leqq \frac{l}{2} \max _{z_{1} \in a} \frac{1}{\left|c z_{1}+d\right|^{2}}
$$

Since $r_{\bar{\alpha}}^{(0)}(0)=\gamma_{\Delta}^{(0)}\left(P^{(\mu)}\right)=r_{\alpha}^{(\mu)}\left(P^{(0)}\right)$, we obtain

$$
\begin{equation*}
\frac{l}{2|c|^{2}} \min _{z_{1} \in \infty} \frac{1}{\left\lvert\, z_{1}+\frac{d}{c}\right.}{ }^{2} \leqq r_{\alpha}^{(\mu)}\left(P^{(0)}\right) \leqq \frac{l}{2|c|^{2}} \max _{z_{1} \in \infty} \frac{1}{\left|z_{1}+\frac{d}{c}\right|^{2}} . \tag{6}
\end{equation*}
$$

If the symmetric point $P_{1}^{(\mu)}=-\frac{d}{c}$ of $P^{(\mu)}$ is sufficiently near $P_{\infty}^{(\mu)}=S_{p}^{\prime}\left(P_{\infty}^{(0)}\right)$ then the distance of $P_{1}^{(\mu)}$ from a point z_{1} on α can be estimated as follows:

$$
0<d_{(x)}<\left|z_{1}+\frac{d}{c}\right|<3
$$

where $d_{(\alpha)}$ is independent of μ. Hence, from (6), we obtain

$$
\frac{l}{2|c|^{2} 3^{2}} \leqq r_{\alpha}^{(\mu)}\left(P^{(0)}\right) \leqq \frac{l}{2|c|^{2} d_{a}^{2}}
$$

For another α^{\prime}, we can also get a similar inequality for $r_{a^{\prime}}^{(\mu)}\left(P^{(0)}\right)$. Consequently,

$$
c\left(\alpha, \alpha^{\prime}\right) \leqq \frac{r_{\alpha^{(\alpha)}}^{(\alpha)}\left(P^{(0)}\right)}{r_{\alpha}^{(\lambda)}\left(P^{(0)}\right)} \leqq c^{\prime}\left(\alpha, \alpha^{\prime}\right),
$$

where $c\left(\alpha, \alpha^{\prime}\right)$ and $c^{\prime}\left(\alpha, \alpha^{\prime}\right)$ are constants independent of μ. Therefore

$$
c\left(\alpha, \alpha^{\prime}\right) \sum_{\mu=-\infty}^{\infty} r_{\alpha}^{(\mu)}\left(\boldsymbol{P}^{(0)}\right) \leqq \sum_{\mu=-\infty}^{\infty} \boldsymbol{r}_{\alpha^{\prime}}^{(\mu)}\left(P^{(0)}\right) \leqq \boldsymbol{c}^{\prime}\left(\alpha, \alpha^{\prime}\right) \sum_{\mu=-\infty}^{\infty} \boldsymbol{r}_{\alpha}^{(\mu)}\left(\boldsymbol{P}^{(0)}\right) ;
$$

i.e.

$$
c\left(\alpha, \alpha^{\prime}\right) \boldsymbol{r}_{\alpha}\left(P^{(0)}\right) \leqq \boldsymbol{r}_{\alpha^{\prime}}\left(P^{(0)}\right) \leqq c^{\prime}\left(\alpha, \alpha^{\prime}\right) \boldsymbol{r}_{\alpha}\left(P^{(0)}\right)
$$

Hence we see that $\gamma_{\alpha}\left(z_{1}\right)$ and $\gamma_{\alpha^{\prime}}\left(z_{1}\right)$ have simultaneously the radial limit zero along $R^{(0)}$. Thus our lemma is proved.

If we map $\left|z_{1}\right| \leqq 1$ conformally onto the upper half plane $\operatorname{Im}(z) \geqq 0$, then $r_{\alpha}\left(z_{1}\right)$ is transformed into a bounded harmonic function $r_{\widetilde{\alpha}}(z)$ which takes π on $\widetilde{\alpha}$ and 0 on its complement with respect to the real axis, where $\tilde{\alpha}$ is the image of α. According as the origin $z=0$ is contained in $\tilde{\alpha}$ or not, the imaginary part $v_{a b}(z)$ of $\chi_{a b}(z)=u_{a b}(z)+i v_{a b}(z)$ in B_{0} is equal to $\pi-r_{\widetilde{\alpha}}(z)$ or $r_{\widetilde{\alpha}}(z)$. The radius $R^{(0)}$ in the proof of Lemma is transformed into a part of the imaginary axis of the z-plane. Hence, if $\lim _{z_{1} \rightarrow P_{\infty}^{(0)}} \gamma_{\alpha}\left(z_{1}\right)=0$ along $R^{(0)}$, then we obtain $\lim _{z \rightarrow \infty}$
$v_{a b}(z)=\pi$ or 0 along the imaginary axis. Since, by Lemma, the existence of the radial limit zero is independent of the parameters a and b, we get

Theorem 1. If $\chi_{a b}(z)$ is parabolic with respect to some $(a, b)(-\infty<a$ $<b<\infty)$, then $\chi_{a b}(z)$ is also parabolic with respect to any pair (a, b).

In the case where a and b are congruent with respect to some generator $S_{v}(z) \in \Gamma$, we can prove the following by the same method as above

Theorem 2. Whether the type of $\varphi_{\nu}(z)$ is parabolic or not is independent of ν; more precisely $\varphi_{\nu}(z),(\nu=1,2, \ldots)$ are all parabolic or all not parabolic.

As an immediate consequence, we have
Theorem 3. In order that the types of $\varphi_{\nu}(z)$ and $\chi_{a b}(z)$ be parabolic, it is necessary and sufficient that, for some $\alpha, \lim _{P^{(0)} \rightarrow P_{\infty}^{(0)}} r_{\alpha}\left(P^{(0)}\right)=0$ along the radius $R^{(0)}$

This contains Theorem 3 of L. Myrberg [2].

References

[1] Burnside, W., On a class of automorphic functions, Proc. London Math. Soc., 23 (1891), 49-88.
[2] Myrberg, L., Normalintegral auf zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Ann. Acad. Sci. Fenn., A-I, 71 (1950), 1-50.
[3] Myrberg, P. J., Über analytische Funktionen auf transzendenten zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Acta Math., 76 (1944), 184-224.
[4] Myrberg, P. J., Über Integrale auf transzendenten symmetrischen Riemannschen Flächen, Ann. Acad. Sci. Fenn., A-I, 31 (1945), 1-20.
[5] Myrberg, P. J., Über analytische Funktionen auf transzendenten Riemannschen Flächen, X. Congr. Math. Scand., Copenhagen, (1946), 77-96.

Mathematical Institute

Kanazawa University

