CAPACITABILITY OF ANALYTIC SETS
MASANORI KISHI

Introduction
Let 2 be a locally compact separable metric space and let ® be a positive
symmetric kernel. Then the inner and outer capacities of subsets of £ are
defined by means of @-potentials of positive measures in the following manner.
We define the capacity ¢(K) of a compact set K in a certain manner by means
of @-potentials. By this set function we define the inner and outer capacities of
a subset X of £ as follows:

cap; (X) =sup ¢(K) for all compact K contained in X,
cape (X) =inf cap; (K) for all open G containing X.

A subset whose inner capacity coincides with its outer capacity is said to be
capacitable. In this paper we discuss whether or not every analytic set is
capacitable, where an analytic set is, by definition, the continuous image of a
K,s set in a compact space.

As for the classical capacities, for example, the a-capacities (0 < a £2) in
the m-dimensional euclidean space R™ (m = 3), the problem of the capacitability
was solved affirmatively by Choquet [3]. This result was extended by Aronszajn
and Smith [1] as follows: every analytic set in R™ is capacitable with respect
to the a-capacities for all a, 0 < « < m. Here the a-capacities are defined by
the set function
(1) UK =inf__ (Uidp,

ve€r

where U% denotes the «-potential of a positive measure p, that is,
" 1 m
Ua(x):: Wd,u(y), x and yER »

and €k denotes the family of positive measures 2 such that the a-potential U%

=1 on K with a possible exception of a set £ which is of measure zero with
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respect to any positive measure with finite a-energy. The a-capacities may be

defined by the set function
(2) ¢(K) = sup w(K),
nEQ@x

where ©x denotes the family of positive measures 2 such that the carriers S,
are contained in K and the a-potential Uy =<1 everywhere in R”. For every
a, 0 < a £ 2, the above two a-capacities are identical.

The capacitability of analytic sets contained in a compact set in a locally
compact separable metric space is also assured if @ satisfies Frostman's maxi-
mum principle [7]. In this case the capacities are understood in the sense
of (2).

Recently Fuglede [5] studied consistent kernels @ in a locally compact
space £ and he proved the @-capacitability of analytic sets under the assumption
that every closed subset of £ possesses a countable fundamental system of
neighborhoods each of which is closed.

In §1 the definition of a capacity is given. A capacity is defined by a
functional which fulfills four postulates. It is shown that every compact set is
capacitable with respect to any capacity. In §2 we define and study admissible
capacities, and in § 3 we prove that every analytic set is capacitable with respect
to any admissible capacity, provided that the kernel @ satisfies a condition
(*) stated in §2.3. In §84 and 5 we study capacities defined by functions
given in terms of total measures and energy integrals, respectively. It is shown
that the former capacity is admissible if the kernel satisfies the condition (*)
and the continuity principle and that every analytic set is capacitable with
respect to this capacity. The condition (*) is related to the behavior of the
kernel near the point at infinity and the continuity principle is related to the
behavior of the kernel in the neighborhood of the diagonal set of 2x 2. This
principle is equivalent to the local boundedness principle, from which the conti-
nuity principle may be regarded as the weakest one in the potential theory
from the viewpoint of the maximum principle. The capacity in § 5 is admissible
if the kernel is regular and of type positive and if it satisfies the continuity
principle and the condition (*). The results in §4 are announced in [8].

§1. Definitions

1, Let 2 be a locally compact separable metric space. The space M (2)
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of positive measures” on £ is defined as follows: let §(2) be the vector space
of real-valued (finite) continuous functions vanishing outside compact sets. For

every function s of €(2) we put
lfl=sup | F(P)].
PEQ

A linear functional ;. on ((Q) is called a positive measure if it has the follow-
ing properties:

(1) 2(f) =0 for every f =0,

(2) for any compact set K, there is a finite number My =0 such that
[n( )] £ Mgl £ for every function f of €(2) which vanishes outside X, i.e., the
carrier Sy of f is contained in K, where My depends on x and K, but not on f.

It is shown that every positive linear functional is a positive measure. In
what follows we write ffd/z instead of n(f).

We say that a sequence {u.} of M (Q) converges vaguely to s of M (2)
if Sfd/t:linmjfd/.a,. for every function f of €(2). The following selection

theorem is well known.

SeLecTioN THEOREM. Let {us) be a sequence of W' (2) such that i
measures of every compact set K, u.(K)”, are bounded by a finite number M(K)
which depends only on K. Then we can choose a subsequence {tn,} of {un} twhich

converges vaguely to a positive measure p.

We say that a positive measure x is carried by a closed set F if p(2~F)
=0, that is, S fdr =0 for every function f of €(82) such that S;C 2~F. We
call the intersection of all closed sets which carries u the carrier of u#, and we
denote it by S.. We denote by M (2) the subspace of M (L), consisting of

measures whose carriers are compact.

2. Now let ® be a positive symmetric kernel, that is, a real-valued con-
tinuous function defined on the product space @2 x 2 such that
1 0<O(P, Q)= + o,

2 0(P, @) is finite except at most at the points of diagonal set of 2 x @,
3 0P Q) =0(Q, P).

1 As to the theory of measures and integrals in a locally compact space, see Bour-
baki [2].

2 ‘lt:z(K):jZKd/lu, where Zx denotes the characteristic function of K.
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The potential U*(P) of a measure <M (L) is defined by
U*(P) = [0(P, @) du(@).

Then U"(P) is lower semi-continuous in £ and continuous in 2-S,. We
denote by I, the set of points P at which U*(P) = + . This is a G; set. It
may happen that I, = or I, = ¢.

3. Now we shall define the inner and outer capacities of subsets of £.
The capacities are defined by means of a functional on the space M"(2).

Let ¢ be a functional defined on M*(2) for which the following four postu-
lates are fulfilled:

(c.1) 0=ce(p) < + o, ¢(0) =0,

(c.2) elp+v)<clu)+c(p),

(c.3) ¢ is lower semi-continuous with respect to the vague convergence,
that is, c(p) < 1171‘_1'1 c(ptn) if pn > p vaguely,

(c.4) for any positive number ¢, c¢(¢p) =1t c(p).

By means of this functional ¢ the inner and outer capacities are defined.
Let i be the family of all positive measures x such that ¢(x) is finite, and let
B be the class of all subsets F of £ which is contained in some [, z€ 7.
Each element of  is called a polar set. For any subset X of 2 we put”

F,={red; U*=1on X except E€ P},

where the statement, U* =1 on X except E € %, means that the set E={Pe X;
U*(P) <1} is a polar set. We define the following set functions:

‘ inqug-YC(/l)
+ o if . is empty,

c(X)=

cap; (X) = supc(K) where K ranges over the class of all compact sets
contained in X,

cape (X) = inf cap: (G) where G ranges over the class of all open sets con-
taining X.

These set functions are increasing and the following inequalities are valid:

cap; (X) = e(X) and cap; (X) < cape (X).

3 We put %¢=<;§.
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The set functions cap; (X) and cape (X) are called the inner and outer capaci-
ties of X, respecfively. When these set functions are defined by means of a
function ¢ which fulfills the four postulates, we say that a capacity is defined
in 2. A set X is said to be capacitable when its inner capacity cap;(X) coin-
cides with its outer capacity cape.(X), and we denote by cap (X) the common
value. Evidently every open set is capacitable. In §1.7 we shall show the
capacitability of compact sets.

4. By simple examples we can show that the four postulates are inde-
pendent of each other.

Example 1. c(p) = — u(K), where K is a fixed compact subset of 2. This
functional fulfills all the postulates but (c.1).

Example 2. Let £ be the 1-dimensional euclidean space and @(x, y)
=|x—y|+1, and let

c(p) = ,/ﬁm(x, ) du(x) dul(y).
Then this functional fulfills all the postulates but (c.2).
Example 3. Let P, be a fixed point in 2, and let

[u(2) if S, contains P

cluy) =

lo if S, does not contain P,.

Then this functional fulfills all the postulates but (c.3).
Example 4. Let o be a fixed open set in £, and let

1 f SSNwxe¢

clp) = { .
0 if S,Nw=9¢.
Then this functional fulfills all the postulates but (c.4).

5. The following lemma is a direct consequence of our postulates.

LemMa 1. If c(un) (n=1,2,...) tends to zero and if n= > utx is a posi-

tive measure, then there is a subsequence {/t,) such that c(p') is finite, where

o =2 g
k=1

An important property of the class R of polar sets is stated in
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TueoreM 1. The class B of polar sets is countably additive, that is, if Ex
(n=1,2,...) is polar sets, then E= \JE, is also a polar set.
1

Proof. First we remark that E=FE; U E;, is a polar set if each E; (i=1, 2)
is a polar set. In fact, let E; be contained in I, €@ (=1, 2). Then
c(s1+ 112) is finite by (c.2) and E is contained in I,,+,,, and hence it is a polar set.

Now suppose that E, (n=1, 2, ...) are contained in I,,, #»=7%. By the
above remark we may suppose that the sequence {E,} is increasing. By the
familiar diagonal method we can choose suitable positive numbers £, so that
Stnsn is a positive measure. We may suppose that c(¢,u,) tends to zero by
(c.4). Then by Lemma 1 there is a subsequence {fx, us,} such that c(n) is
finite, where g = ’itnk /tn,. At each point P of E= U E,= U E,, the potential
U*(P) is infinite, because U*(P) = tn, U*(P). Hence E is a polar set.

TureoreM 2. Every polar set E is of outer capacity zero.
Proof. Suppose that E is contained in I, z€ §. For every »n we put
G.={Pc2; U*P)>n).

Then the open set G, contains E and :z 1 belongs to the family §, . Hence

cape (E)= cap (Gn) < C(Gn)g(:(‘;lz'/.l)'

Therefore by the postulate (c.4), cap. (E) =0.

6. Now we shall prove that the outer capacity is a countably sub-additive

set function. First we prove

LemMma 2. For any finite family {Gn} (n=1,2,..., N) of open sets
N RY

cap (U Gn) = > cap (Gn).
1 1

Proof. 1t is sufficient to verify the inequality for the case N=2. Suppose
that cap (G;UG:) is finite. Then for any positive number ¢ there exists a
compact set K C GiU G: such that cap(GiUG;) —e=<cap;(K). It is easily
verified that there exist two compact sets K; and K. such that K= K; U K. and
K,C G, (n=1,2). For each K, we have a measure ,u,,e%K" such that ¢(st,)
< cap; (Kx) +¢/2. Then the measure x =+ 1, belongs to 7, and

capi (K) < clp) < c(p) + ()
< capi (Ky) + cap; (K») + .
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Therefore we obtain that

cap (G, U Gs) < cap; (K1) + cap; (K») +2¢
= cap (Gy) + cap (G2) + 2¢,
so that
cap (G1U Gz) = cap (Gy) + cap (G»).

In the case that cap (G;U G:) = 4 «, we can show the inequality in the same
way.

Using this lemma we prove

TueoreM 3. For any sequence {X,} (n=1,2,...) of arbitrary sets

cape ( L‘J Xn) < ; cape ( Xn).
Proof. First we prove the inequality in the case that all X, are open sets.
If cap (U X..) is finite, there exists, for any positive number ¢ a compact set
1

K C U X, such that cap (U X,) — ¢ < cap; (K). Since K is compact, it is covered
1 1
by a finite subfamily {X.} (#=1,2,..., N). Then by Lemma 2 we have

cap(CIJ Xn) éicap (Xn).
Therefore
cap ( \? Xn)—¢ éil“,cap (Xn) _S_Zjlcap (Xn)
and hence

cap (LIJXn) égcap(Xn).

If cap(L?Xn) is infinite, we can show the inequality in the same way.

Next let {X.} be an arbitrary sequence of subsets of 2. We may suppose
that each cap.(X.) is finite. Then for any positive number ¢, there are open
sets G» O X» such that

cape (X)) + ;n =cap (Gy).
Then the open set G= \UG, contains \U X, and we obtain by the preceding
1 1
argument that
cap. (U X») =cap (G) £D)cap (Gn) = S]capg (Xn) + ¢
1 1

and hence
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Cape ( L]j Xn) §$cape (Xn).

7. We close this section by showing the capacitability of compact sets.

First we prove
LemMmA 3. For every set X, cap.(X) < ¢(X).

Proof. We may suppose that ¢(X) is finite. Then for any positive number
¢ there is a positive measure z such that U* =1 on X except E€ P and ¢(X)

+e¢=c¢(u). For every n we put

Go={Peg; vmp) > 2oL,

Then open sets G contain X — E and hence

cap. (X — E) < cape (G») gc( ”fl_ I /t)-

Therefore by Theorems 2 and 3 and the postulate (c.4) we obtain

cape (X)Ze(X)+e
and hence
cape (X) £¢(X).

TueoreM 4. Every compact set is capacitable.

Proof. Since cap;(K) =c(K) for every compact set, our assertion follows

immediately from Lemma 3.

§2. Admissible capacities

1. We say that a capacity is admissible if it fulfills the following postu-
lates :

(a.1) Every compact set X does not belong to  provided that there is a
positive measure g % 0 such that S, is contained in K and U"* is continuous
in £,

(a.2) Every compact set is a polar set or the converse of (a.1) is valid.

(a.3) Every potential is quasi continuous in £, that is, for any positive
number ¢, there is an open set G: such that cap(G:) <¢ and the restriction of
U" to 2 — G: is finite and continuous,

(@.4) If ¢(X,) <M for n=1,2,..., then for each X, there exists
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/‘"ng,, such that ¢(u.) is sufficiently near ¢(X,) and the total measure u.(2)

is bounded by a constant depending only on M.

2. By simple examples we can show that any of these postulates does not
follow from the postulates in §1.

Example 5. Let 2 =R" and let ¢ be a positive symmetric and continuous
function defined on R' such that ¢(0) is finite and jmsﬂ(x)dx =+ . We put
0%, ) =¢(x—y) and c(u) =0 for every =M (2). Then every finite closed
interval is a polar set and the potential of a positive measure of Mg (2) is
finite and continuous in £2. Thus the capacity induced by the functional ¢
fulfills the postulates (a.2) and (a.3) but neither (a.1) nor (a.4).

Example 6. Let P, be a fixed point of 2 and let &(P;, P) = + . We put
c(u) = U*(Py) for every measure z of M (2). Then every polar set does not
contain the point P, and hence the compact set {P,} is not a polar set. Thus
the capacity induced by this functional ¢ fulfills neither (a.2) nor (a.3).

3. Now we assume that the kernel @ satisfies the condition
(%) for any compact set K and for any positive number ¢, there is a com-
pact set L such that
O(P,Q)<e on Kx(Q-1L).

For the later use we prove several lemmas.
LemMA 4. Suppose that a potential U" of a positive measure v of M (2)

s continuous in £ and positive measures pn converge vaguely to p. If the total

measures un(2) are bounded, then fUTdu = liij Tdutn.

Proof. Since un - p vaguely, U*(P) < lim U*(P) at every point P of 2,

and hence 5 U'dy = jUTdr < liij“"dr = limS U'dun. Therefore it is sufficient

to show that {U"du > lim} U'dpn. For any positive number ¢ there is a com-

pact set L, by the condition (*), such that &(P, @) <e¢ on Sr x (2 —=L). Then

~
‘\ Q-L

Urdpn = | § (P, Q) dr(Q) dun( P)
Q-rYs,
< 5#71(!_2 - L) ° T(ST) <eM

for every n. We put
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. U onlL
h { 0 on 2—-1L,

then / is upper semi-continuous in £ and we have

lim jL U dyy = lim { 7dun < § ran = SLUTdu.
Therefore
(Urau= SLUTd/.e = lim SLU*du,,

> lii'njU"du,, ~lim SQ U'dp

= lim | U dun — M.
Consequently we obtain [U Tdy = lim f U dun.

Remark. When all S,, are contained in a fixed compact set, this propo-
sition follows immediately from the definition of the vague convergence. In
general, this does not hold unless @ satisfies the condition (*).

Lemma 5. If a set E belongs to B, then v(E) =0 for any positive measure

v whose potential is continuous in 2.

Proof. Contrary to the assertion we suppose that »(E) > 0 and the potential
U" is continuous in £. Then there is a compact set KX C E such that »(K)>0.
Let »' be the restriction of » to K. Then U™ is continuous in £, since U’ is
continuous in 2. Thus there exists a positive measure »' = 0 carried by a
compact polar set whose potential is continuous in 2. This contradicts the

postulate (a.1).

LemMA 6. Let {K.} be an increasing sequence of compact sets and X be
the union U Kn. If positive measures unE%Kn converges vaguely to u and the

total measures 1.(2) are bounded, then U* =1 on X except E< .

Proof. For any positive integers 2 and m we put
Ep={pPek; v"P)<1- L1
L4 b = m

Since U* is lower semi-continuous, E%' is compact. We shall show that there

is not any positive measure y £ 0 such that S, is contained in E}' and U’ is
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continuous in 2. Contrary suppose that there is such a measure y carried by
E?. Then by Lemma 4

(1- LyrEm) z[vrar =tim oeay > 1(ED),

where the last inequality follows from Lemma 5. This is impossible. Therefore
there is not any positive measure r = 0 on E} whose potential is continuous in
2. Hence by the postulate (a.2), E¥' is a polar set.

Now we put

En={Pex; v"P)<1- L}

E={PeX; U*P)<1}.
Then E=UE™=UUE}. Aseach EY is a polar set, E is also a polar set
by Theorem 1. Consequently U* =1 on X except Ec .
4. LemmA 7. For every K, set X, ¢(X) = cap; (X).

Proof. By virtue of the inequality ¢(X) = cap;(X) stated in §1.3 it is
sufficient to prove the inequality ¢(X) < cap; (X) under the assumption that the
right hand side is finite. Let {K,) be an increasing sequence of compact sets
and X= U Ky, and let ¢ be an arbitrary positive number. Then by the postu-
late (a.4) there is a measure un €T, such that c(un) < c(Kyn) + 2 and pa(Q) is
bounded by a constant depending only on cap; (X). Then by Selection theorem
there is a subsequence {ux,} which converges vaguely to a positive measure p.
This measure u belongs to §F, by Lemma 6. Hence by the lower semi-continuity

of the functional ¢ we have
c(X) < e(p) élikfg c(ttn,) + ¢ < cap; (X) +e.

Consequently ¢(X) < cap; (X).
CoroLLARY 1. For every open set G, c(G) = cap (G).
CoroLLARY 2. Every K, set is capacitable.

Proof. By Lemma 3, ¢(X) =cap.(X) and hence cap; (X) =cape (X) for
every K, set X.

CoroLLARY 3. For arbitrary set X, c(X) = cap. (X).

Proof. By virtue of Lemma 3 it is sufficient to show that ¢(X) = cape (X).
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For every open set G containing X it holds by Corollary 2 that

c(X) = ¢(G) =cap (G)
and hence ¢(X) < cape (X).

5. TueEOREM 5. Every set of outer capacity zero is a polar set.

Proof. Let a set X be of outer capacity zero. Then there is a sequence
{Gn} of open sets such that G, D X and cap (G,) < 111, and hence by Corollary
1 of the preceding lemma there is a sequence {u.} of positive measures such

that U** =1 in G, except E,P and c(ux) < 7‘3 - Then by the postulates

(c.2) and (c.4) we can choose a subsequence {un,} SO that g = k%—lunk is a posi-

tive measure belonging to the family . The potential U* is inf_inite at every

point X— U E,, and hence X— U E,, is a polar set. Hence X is a polar set.
Summing up Theorems 2 and 5 we have

TuEOREM 6. Suppose that O satisfies the condition (*) and the capacity is
admissible. Then a set X is of outer capacity zero if and only if it is a polar

set.

§3. Capacitability of analytic sets with respect to admissible capacities

1. In this section we assume that the kernel @ satisfies the condition (*)

and the capacity is admissible. First we prove

TueoreM 7. Suppose that a sequence {.n} of positive measures of § con-
verges vaguely to p and that the total measures pn(2) are bounded. Then
U*=lim U¥s in 9 except E< .

Proof. By the postulate (a.3) and Theorem 3 there is an open set G., for
any positive number ¢, such that cap (G:¢) <e and the restrictions of U"* to

£ — G: are finite and continuous. We put

Vn — lnf (UHH, Ul‘-/H—l’ L. )’
V=lim V, = lim g,

Then the functions V, are upper semi-continuous as functions on 2 — G., and
V. converges increasingly to V at every point of 2. Since u. - x vaguely,
U*(P) < V(P) at every point P of £. Hence it is sufficient to prove that

4 Cf [6].
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E={Peg2; U"P)<V(P)} is a polar set. We put

EP() ={PeQ-G.i UNP)+ < Va(P)} (=12 ...)

En(e) ={P€R2—G:; UXP) < VulP)} (n=1,2,...)
E,={PcQ; U*(P) < Va(P)} (n=1,2...).

Then each EP(e) is a closed set and En(e) = ,QIE(”M(S) and E= QEn. We
shall prove that all Ex(¢) are polar sets. Contrary to the assertion we suppose
that En,(¢) is not a polar set. Then there exists E$(¢) which is not a polar
set and hence a compact subset K of E%(¢) which is not a polar set. Then
by the postulate (a.2) there exists a positive measure 7 =0 such that Sy is
contained in K and the potential U" is continuous in 2. Then by Lemma 4

0< F(ES () 2 [ (Va—UMar
0
< [(v-omar<tim [ venar - (Urar =0,
which is absurd. Thus we obtain that each E.(¢) is a polar set. Hence
cape (En(¢)) =0 by Theorem 6, and cape (E,) =0, since
Cape (En) = Cape (En(é‘)) + cap (G)=e
by Theorem 3. Consequently by Theorem 6, E, is a polar set and hence E is

a polar set.

TueoreMm 8. Let {X.} be an tncreasing sequence of arbitrary sets and
X=UX, Then cap.(X) =1lim cap. (X,).

Proof. By virtue of Corollary 3 of Lemma 7 it is sufficient to prove that
c(X) =limc(X,). Since ¢(Xn) = ¢(Xn+1) £ ¢(X) and hence limc(Xa) < c(X),
it is sufficient to prove ¢(X) = lim¢(X») under the assumption that lim c(Xx)

is finite. By the postulate (a.4), for any positive integer », there is a measure
pnEy, such that c(z) < ¢(X,)+ & S lime(X) +1 and (@) is bounded,
Then by Selection Theorem a subsequence {;,} converges vaguely to a posi-

tive measure z.  This measure s belongs to 7, by Theorem 7. Consequently
c(X) €eclp) £ lim c(rn,) = lim e(X).
k

This completes the proof.
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2. By virtue of Theorems 4 and 8 we can apply Choquet’s method [3] to

prove the capacitability of analytic sets and we obtain

THEOREM 9. Suppose that O satisfies the condition (*) and the capacity is
admissible. Then every analytic set is capacilable.

§4. The continuity principle and admissible capacities

1. We say that a kernel @ satisfies the continuity principle® provided that
the following statement is valid for every measure u of My (RQ): if a potential
U" is finite and continuous as a function on the carrier S,, then it is continuous
in 2. From the viewpoint of the maximum principle, the continuity principle
is equivalent to the local boundedness principle, that is, the following propo-

sition is valid.

TueoreM 10.° @ satisfies the continuity principle if and only if it has the
Sfollowing property: if a potential U" of a measure pn of M; () is bounded on
S., then for any mneighborhood w of S, with compact closure there is a finite
number M= M(u, w) > 0 such that

sup _ U (P)< M- sup _ U*(P).
w W

By this theorem the continuity principle may be regarded as the weakest

one in the potential theory from the viewpoint of the maximum principle.

2. Now we put c(u) = u(R) for every measure x of M (2). It is easily
seen that the functional ¢ fulfills the four postulates in §1, and it defines a
capacity. We shall examine the four postulates in §2. The postulate (a.4) is
obviously fulfilled.

LemMA 8. If @ satisfies the condition (*), then the capacity fulfills (a.1).

Proof. Let a compact set K be contained in I,, #(2) < + o, and suppose
that there is a positive measure » % 0 such that S, C K and U" is continuous
in 2. Since 0 satisfies the condition (*) and »(2) is finite, U*(P) is bounded
from above by a finite number M. Hence

+ o= Uy = [Udu < M- w(@) < + =,

5) @ is called regular by Choquet [4] if it satisfies the continuity principle.
6) Cf. Ohtsuka [9].
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which is a contradiction.

LemMmAa 9. If © satisfies the continuity principle, then the capacily fulfills
(a.2).

Proof. Let K be a compact set, and suppose that there is not any positive
measure » £ 0 such that S, is contained in K and U is continuous in £. Then
by the continuity principle there is an Evans-Selberg potential U" on K,” that

is S, is contained in K and I, =K. Thus K is a polar set.

Lemma 10. If @ satisfies the continuity principle, then every potential U™

of a measure 11 of F is quasi continuous. Namely (a.3) is fulfilled.
This is shown in the same way as in the proof of Theorem 2.1 in [7].

3. From the above considerations we obtain that the capacity is admissible
and hence by Theorem 9 every analytic set is capacitable.

TueoreM 11. If @ satisfies the condition (*) and the continuily principle,
then every analytic sel is capacitable with respect to the capacity induced by the
Sunctional

c(@)=p(2)  for all peM (2).

4. In the classical potential theory the capacity is defined as follows: for
every compact set X we put

Gx={peM(Q); S.CK and U*<1 in 9},
g(K) =sup w(K),
nEWGK

and for an arbitrary set X we put

cap; (X) =sup g(K), where K ranges over the class of all compact sets
contained in X,
cape (X) = inf cap; (G), where G ranges over the class of all open sets con-

taining X.

This capacity coincides with the capacity defined in §4.2, provided that @
satisfies Frostman’s maximum principle” This is verified, for example, by
Theorem 3.3 in [7]. From Theorem 11 follows

" Cf. Ugaheri [10].
8 We say that @ satisfies Frostman’s maximum principle, if a potential U* of a
measure g of IS (Q) is not greater than 1 on Sy, then U* <1 everywhere in ),
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TueoreM 12. Suppose that O satisfies the condition (x) and the continuity
principle. If an analytic set X is of inmer capacity zero with respect to the

above capacity, then it is of outer capacity zero.

Proof. 1t is sufficient to prove that if X is of inner capacity zero with re-
spect to the above capacity, then it is of inner capacity zero with respect to
the capacity defined in §4.2. Let K be a compact set such that g(X) =0.
Then there is not any positive measure » % 0 such that S, is contained in K
and U" is continuous in £ since @ satisfies the condition (*). Hence by Lemma
9, K is a polar set and hence K is of outer capacity zero with respect to the
capacity defined in §4.2 by Theorem 2. This completes the proof.

§5. Capacity defined in connection with energy

1. In this section we discuss the capacitability with respect to the capacity
induced by a functional defined by the square root of energy, that is,

—
() =JjU"dy, for every ue M (Q).

This functional fulfills the postulates (c.1), (c.3) and (c.4). We assume that
@ is of type positive, that is, for any pair of positives measures z and v the
inequality (jU"dy)zng“du - {rdy holds. Then the functional fulfills (c.2)
and it defines a capacity. Moreover we assume that @ satisfies the condition
(*) and the continuity principle and that it is regular. Here @ is said to be
regular, when for any point P, and for any neighborhood w(FP) of P, there
exist a positive constant A, depending only on P, and a positive measure i
such that

S, Cw(P), MolP))=1, ju*dx<+oo
(%)

and UNP)<A-0(P, P) in Q.
It is well known that the kernel of the «-potential (0 < a« < m) in the m-dimen-

sional euclidean space is regular.

First we prove

Lemma 11. Suppose that @ is regular. If U* =1 nearly everywhere® on X,

%) We say that a property holds nearly everywhere on X, if the set of points of X
where the property fails to hold is of measure zero with respect to every positive measure .
with finite energy.
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then U" =1 at every inner point of X.

Proof. Let P, be an inner point of X, and let {w.(P,;)} be a fundamental
base of neighborhoods of P,. Then by the properties (**) we obtain easily
that U“(Po):lime“d/l,. and hence U*(F,) =1, since every a is of finite

energy.

2. Let K be a compact set, on which a measure M (L2) with finite
energy is carried. Then we can find a measure ux which minimizes SU“du
—2u(K) among all measures u <My (2) carried by K. The potential U"¥ of

this measure has the following properties :

U*® =1 nearly everywhere on K,
UK =1 pux—ae.

The measure ux is called a capacitary measure of K. We put e(K) =SU“Kdux
= pux(K). When there is not any measure with finite energy on K, we put
e(K)=0. Since @ is of type positive, e(K) equals inf 5U”dp taken over all
measures 7€ M (2) with finite energy such that U” =1 nearly everywhere on

K. Using this functional e we put for an arbitrary set X

ei(X) =supe(K) over all compact sets KC X
e(X) =infe;(G) over all open sets GD X.

3. Lemma 12. For every open set G, c(G)’=ei(G) = e(G).

Proof. The equality ¢;(G) = e,(G) is obvious. We write e(G) instead of
ei(G) or e(G). First we prove ¢(G)*=e(G). For any positive number ¢ there
exists a measure x of M (Q) such that SU”d,u <c(Gl¥+e¢and U*=1in G ex-
cept E= P, where P is the class of polar sets with respect to the functional c.
Since E is of measure zero with respect to every positive measure with finite
energy, U* =1 everywhere in G by Lemma 11. Now let X be an arbitrary
compact set contained in G. Then we obtain e(K) éj' U*dp<c(G)*+e Hence
e(G) £¢(G)’. Next we prove e(G) =¢(G)® Let ¢(G) be finite and {K,} be an
increasing sequence of compact sets and G= U K,, and let u. be a capacitary
measure of K,. Since the total measures p,(K,) are bounded, a subsequence
(ﬂnk} converges vaguely to a positive measure u. It is easily seen that U*=1

nearly everywhere in G, because @ satisfies the continuity principle, and hence
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by Lemma 11, U* =1 everywhere in G and x belongs to 5(;. Thus we obtain
¢(G) < [U*ds < lim [ UPmedp,, < e(G).

From this lemma follows

LeEmMa 13. For any set X, c¢(X)*=e(X).

Proof. The inequality ¢(X)* =< e)(X) is immediate. We prove the converse.
Let X be a set such that ¢(X)? < + «. Then for any positive member ¢ there

~

is a measure z =M (2) such that 5U”du <c(X)’4¢ and U*=1 on X except

E =B, where E is contained in some I, _YU “dy < + ., For any positive inte-

ger » we put

G.={P=g; uxp) > 2|

Gn={Pe@; U (P)>nj.

Then G, D X—E, GLDE and hence GnU G4 D X. Since 2

long to %Gn and %a',. respectively, we have by Lemma 12 that

© and %‘-v be-

e(X) < ¢(GnU G4)*< the energy of = ;; L n+ %v

— 2 —
%TI—L(C(X)M e} + ;}QSU“dwr ﬂﬁn,—ll\/jmdﬂ fvra.

A

Here we make # tend to infinity and we obtain &(X) < ¢(X)*+¢ and hence
el X) = e(X)%

4. Now we can prove

LemMmA 14. The capacity induced by the functional c fulfills the postulate
(a. 4).

Proof. Let X be a set such that ¢(X) < + o and ¢ be an arbitrary posi-
tive number. Since e,(X) is finite, there is an open set G O X such that ¢(G)
<efX)+e=c(X)’+e Let u be a capacitary measure of G. Then e(G)
:SU“d/Jz:ﬂ(,@) and U*=1 in G. Consequently . belongs to §, and SU”du
<e(X)+¢ and p(R) <c(X)*+e Therefore we conclude that the .capacity
induced by the functional ¢ fulfills the postulate (a.4).

10) 4 is called a capacitary measure of G.
) Cf. Aronszajn-Smith [1].
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LemMa 15. The capacity induced by the functional ¢ fulfills the postulates
(a.1), (a.2) and (a.3).

Proof. Suppose that there is a positive measure ;% 0 carried by a compact
set K such that U" is continuous in €. Then ¢(K) is positive and by Theorem
2, K is not a polar set, and hence the capacity fulfills (a.1). Now suppose that

a compact set K is not a polar set. Then it is shown that there is a positive
measure u« = 0 carried by K such that jU*‘dy is finite. Then by the continuity
principle there is a positive measure » % 0 carried by K such that U” is con-
tinuous in £2. Hence the capacity fulfills (a.2). We can prove by the same
argument as in the proof of Theorem 2.1 in [7] that the capacity fulfills (a.3).

From this lemma and Theorem 9 we obtain

THEOREM 13. Suppose that a regular kernel ® is of type positive and satis-
fies the condition (*) and the continuity principle. Then every analytic set is
capacitable with respect to the capacity induced by the functional ¢ in §6.1.
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