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Introduction

Let Ω be a locally compact separable metric space and let Φ be a positive

symmetric kernel. Then the inner and outer capacities of subsets of Ω are

defined by means of (^-potentials of positive measures in the following manner.

We define the capacity c(K) of a compact set K in a certain manner by means

of ^-potentials. By this set function we define the inner and outer capacities of

a subset X of Ω as follows:

cap,AX) =sup c(K) for all compact K contained in X,

cape(X) = inf cap/(if) for all open G containing X.

A subset whose inner capacity coincides with its outer capacity is said to be

capacitable. In this paper we discuss whether or not every analytic set is

capacitable, where an analytic set is, by definition, the continuous image of a

Kσδ set in a compact space.

As for the classical capacities, for example, the incapacities (0 < a ^ 2) in

the ra-dimensional euclidean space Rm (m>3), the problem of the capacitability

was solved affirmatively by Choquet [3]. This result was extended by Aronszajn

and Smith [1] as follows: every analytic set in Rm is capacitable with respect

to the αr-capacities for all a, 0 < a < m. Here the ^-capacities are defined by

the set function

(1) c(

where U* denotes the <*-potential of a positive measure μ, that is,

and $κ denotes the family of positive measures μ such that the α:-potential C/S

> 1 on K with a possible exception of a set E which is of measure zero with
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respect to any positive measure with finite ^-energy. The ^-capacities may be

defined by the set function

(2) c(Λ)(/Π = sup μ(K),

where ©* denotes the family of positive measures μ such that the carriers Sμ

are contained in K and the ^-potential £75 ̂  1 everywhere in Rm. For every

a, 0 < a ^ 2, the above two #-capacities are identical.

The capacitability of analytic sets contained in a compact set in a locally

compact separable metric space is also assured if Φ satisfies Frostman's maxi-

mum principle [7]. In this case the capacities are understood in the sense

of (2).

Recently Fuglede [5] studied consistent kernels Φ in a locally compact

space Ω and he proved the Φ-capacitability of analytic sets under the assumption

that every closed subset of Ω possesses a countable fundamental system of

neighborhoods each of which is closed.

In §1 the definition of a capacity is given. A capacity is defined by a

functional which fulfills four postulates. It is shown that every compact set is

capacitabie with respect to any capacity. In § 2 we define and study admissible

capacities, and in § 3 we prove that every analytic set is capacitable with respect

to any admissible capacity, provided that the kernel Φ satisfies a condition

(*) stated in §2.3. In §§4 and 5 we study capacities defined by functions

given in terms of total measures and energy integrals, respectively. It is shown

that the former capacity is admissible if the kernel satisfies the condition (*)

and the continuity principle and that every analytic set is capacitable with

respect to this capacity. The condition (*) is related to the behavior of the

kernel near the point at infinity and the continuity principle is related to the

behavior of the kernel in the neighborhood of the diagonal set of Ω x Ω. This

principle is equivalent to the local boundedness principle, from which the conti-

nuity principle may be regarded as the weakest one in the potential theory

from the viewpoint of the maximum principle. The capacity in § 5 is admissible

if the kernel is regular and of type positive and if it satisfies the continuity

principle and the condition (*). The results in §4 are announced in [8].

§ 1. Definitions

1, Let Ω be a locally compact separable metric space. The space 9Jίv(i?)
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of positive measures1* on Ω is defined as follows: let (UΩ) be the vector space

of real-valued (finite) continuous functions vanishing outside compact sets. For

every function /of S(i2) we put

\f(P)\.

A linear functional μ on (Γ(i2) is called a positive measure if it has the follow-

ing properties:

(1) M / ) ^ 0 for every/^0,

(2) for any compact set K, there is a finite number MA-SO such that

Iμ(f)\ ^Λfκll/!i for every function / of S(j?) which vanishes outside K, i.e., the

carrier S/ of / is contained in K, where Mκ depends on μ and K, but not on /.

It is shown that every positive linear functional is a positive measure. In

what follows we write \fdμ instead of μ(f).

We say that a sequence {μn) of Wl+(Ω) converges vaguely to μ of %R+(Ω)

if \fd/t~lim\fdμn for every function / of ®,(Ω). The following selection

theorem is well known.

SELECTION THEOREM. Let {μn) be a sequence of W^ (Ω) such that μn

measures of every compact set Kf μn(K)2), are bounded by a finite number M(K)

ivhich depends only on K. Then we can choose a subsequence {μnk) of {μn) which

converges vaguely to a positive measure μ.

We say that a positive measure μ is carried by a closed set F if μ(Ω-F)

= 0, that is, §fdμ = 0 for every function /of 6(0) such that S/CΩ-F. We

call the intersection of all closed sets which carries μ the carrier of μ, and we

denote it by Sμ. We denote by ^Ro(Ω) the subspace of 9)ΐ+(J2), consisting of

measures whose carriers are compact.

2. Now let Φ be a positive symmetric kernel, that is, a real-valued con-

tinuous function defined on the product space Ω x Ω such that

2 Φ(P, Q) is finite except at most at the points of diagonal set of Ω x Ω,

3 Q

α> As to the theory of measures and integrals in a locally compact space, see Bour-
baki [2].

2) fίn(K)=--\Xκdf/u, where lκ denotes the characteristic function of K.
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The potential Uμ(P) of a measure μ^Wv{Ω) is defined by

, Q)dμ(Q).

Then Uμ(P) is lower semi-continuous in Ω and continuous in Ω - Sμ. We

denote by 7μ the set of points P at which £/μ(P) = + °°. This is a G* set. It

may happen that 7μ = i2 or 7μ = 0.

3. Now we shall define the inner and outer capacities of subsets of Ω.

The capacities are defined by means of a functional on the space Wl+(Ω).

Let c be a functional defined on W+(Ω) for which the following four postu-

lates are fulfilled:

(c.l) 0£c(μ)^ -f- «,, £(0) =0,

(c.2) c(,u + * ) ^ c ( ^ ) + c U ) ,

(c. 3) e is lower semi-continuous with respect to the vague convergence,

that is, c(μ) ^ lim c(μn) if μn -* μ vaguely,
n

(c. 4) for any positive number t, c(tμ) = t c(μ).

By means of this functional c the inner and outer capacities are defined.

Let g be the family of all positive measures μ such that c(μ) is finite, and let

$ be the class of all subsets E of Ω which is contained in some 7μ, μe£y.

Each element of $ is called a ^o/αr seί. For any subset X of i2 we put3)

8^ = {**€= 8?; C7 μ ^l on X except ^ e f t

where the statement, Uμ ^ 1 on JY except £ ε $ , means that the set E = { P G X

Uμ(P) < 1} is a polar set. We define the following set functions:

I -f oo if ĝ γ is empty,

cap/(X) =-supc(/iΓ) where K ranges over the class of all compact sets

contained in X,

capβ (X) = inf capί (G) where G ranges over the class of all open sets con-

taining X.

These set functions are increasing and the following inequalities are valid:

cap/(Z)^c(Z) and cap; (X) ^ cap* (X).

3> We put 8̂  = ft.
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The set functions cap,(Z) and cape(X) are called the inner and outer capaci-

ties of X, respectively. When these set functions are defined by means of a

function c which fulfills the four postulates, we say that a capacity is defined

in Ω. A set X is said to be capacitable when its inner capacity capί(X) coin-

cides with its outer capacity cape(X), and we denote by caρ(X) the common

value. Evidently every open set is capacitable. In §1.7 we shall show the

capacitability of compact sets.

4. By simple examples we can show that the four postulates are inde-

pendent of each other.

Example 1. c(μ) = - μ(K), where K is a fixed compact subset of Ω. This

functional fulfills all the postulates but (c. 1).

Example 2. Let Ω be the 1-dimensional euclidean space and Φ(x, y)

= \x-y\ + l, and let

c(μ) =1/ \\Φ(x, y)dμ(x)dμiy).

Then this functional fulfills all the postulates but (c.2).

Example 3. Let PQ be a fixed point in Ω> and let

ί μ{Ω) if Sμ contains Po
c(μ) = <

10 if o μ does not contain Po.

Then this functional fulfills all the postulates but (c.3).

Example 4. Let ω be a fixed open set in Ω, and let

I 1 if Sμ Π ω * φ

I 0 if Sμ Π ω = ψ.

Then this functional fulfills all the postulates but (c. 4).

5. The following lemma is a direct consequence of our postulates.

LEMMA 1. If c(μn) (n = 1, 2, . . . ) tends to zero and if μ = Σ/̂ w is a posi-

tive measure, then there is a subsequence {μnk) such that c(μ() is finite, where
00

An important property of the class p̂ of polar sets is stated in
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THEOREM 1. The class s$ of polar sets is countably additive, that is, if En

(n = 1, 2, . . . ) is polar sets, then E-\JEn is also a polar set.
1

Proof. First we remark that E- EiU E2 is a polar set if each Ei (i = l, 2)

is a polar set. In fact, let Ei be contained in IHt A < Ξ $ (I = 1, 2). Then

c(/n -f /it) is finite by (c.2) and E is contained in 7μi+μ2, and hence it is a polar set.

Now suppose that En (n = 1, 2, . . .) are contained in Jμjι, /Λ«<Ξ$. By the

above remark we may suppose that the sequence {En) is increasing. By the

familiar diagonal method we can choose suitable positive numbers tn so that

*Σtnβn is a positive measure. We may suppose that c(tnβn) tends to zero by

(c. 4). Then by Lemma 1 there is a subsequence {tnkμnk} such that c(μ) is

finite, where μ = Σ *»*/•*»*• At each point P of E-\J En=U Enk the potential

t/μ(P) is infinite, because U'L(P)^tnkU
μnHP). Hence £ is a polar set.

THEOREM 2. ϋfe ery _/>0/#r set E is of outer capacity zero.

Proof. Suppose that E is contained in Iμ, μ e §. For every « we put

Gn = {Pei2; £/μ(P) > n).

Then the open set Gn contains E and --μ belongs to the family 3 ^ . Hence

cap* (E)t^ cap (G«) ^ c(G«) ̂  c ( * /<)•

Therefore by the postulate (c.4), cape(£1)=O.

6. Now we shall prove that the outer capacity is a countably sub-additive

set function. First we prove

LEMMA 2. For any finite family {Gn} (n = 1, 2, . . . , N) of open sets

Proof It is sufficient to verify the inequality for the case N-2> Suppose

that cap(GiUG2) is finite. Then for any positive number e there exists a

compact set KCG1KJG2 such that cap (Gι U G2) - e ̂  cap/ (K). It is easily

verified that there exist two compact sets Kι and K2 such that K= KiU K-> and

Kn CGn (n = l, 2). For each Kn we have a measure μn^ι$κ such that c(/ert)

< cap/ (iΓw) + ε/2. Then the measure μ = μι + μ% belongs to %κ and

cap/ (K) ^ c(/i) ^ c(^i) + c(μ2)

S cap/ (/ίj) + cap/ (ϋΓ2) + e.
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Therefore we obtain that

cap (Gi U G2) ^ cap/ {Kx) + cap* (/£>) + 2e

so that

cap (Gi U G2) ^ cap (Gi) + cap (G2).

In the case that cap (Gi U G2) = + ^ , we can show the inequality in the same

way.

Using this lemma we prove

T H E O R E M S . For any sequence {Xn) ( w = l , 2, . . . ) of arbitrary sets

1 1

Proof. First we prove the inequality in the case that all Xn are open sets.

If cap (U Xn) is finite, there exists, for any positive number e, a compact set
11

K C U Xn such that cap ( U X J - s i cap/ (K). Since K is compact, it is covered
1 1

by a finite subfamily {Xn} (n = 1, 2, . . . , ΛO. Then by Lemma 2 we have

Therefore

cap (U Xn) - ε ̂ Σ c a p (Xn) ^ Σ c a p (X,)
1 1 1

and hence

If cap(UXι) is infinite, we can show the inequality in the same way.

Next let {Xn} be an arbitrary sequence of subsets of Ω. We may suppose

that each cap*? (Xn) is finite. Then for any positive number e, there are open

sets Gn D Xn such that

capβ(Xι)+ Λ ^cap(G;Z).

CO CO

Then the open set G = U Gn contains U Xn and we obtain by the preceding
1 1

argument that

cap, ( U Xn) ^ cap (G) g Σ c a p (Gn) ^ Σ c a p 5 KXn) + s,
1 1

and hence
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7. We close this section by showing the capacitability of compact sets.

First we prove

LEMMA 3. For every set X, cape (X) ^ c(X).

Proof. We may suppose that c{X) is finite. Then for any positive number

ε there is a positive measure μ such that C7μ > 1 on X except £ e $ and c(X)

-f e^c(μ). For every n we put

Then open sets Gn contain X - E and hence

cap* (X-E)^ cap* (G«) ^

Therefore by Theorems 2 and 3 and the postulate (c. 4) we obtain

and hence

THEOREM 4. Every compact set is capacitable.

Proof. Since capj(ϋf) =c(K) for every compact set, our assertion follows

immediately from Lemma 3.

§2. Admissible capacities

1. We say that a capacity is admissible if it fulfills the following postu-

lates :

(a. 1) Every compact set K does not belong to $ provided that there is a

positive measure μ * 0 such that Sμ is contained in K and Uμ is continuous

in i2,

(a.2) Every compact set is a polar set or the converse of (a. 1) is valid.

(a. 3) Every potential is quasi continuous in Ωy that is, for any positive

number ε, there is an open set G= such that cap(G ε )^ε and the restriction of

£/μ to Ω - Gz is finite and continuous,

(a. 4) If c(Xn) ^ M for ?i = 1, 2, . . . , then for each Xn, there exists
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μn<Ξ$χ such that c(μn) is sufficiently near c(Xn) and the total measure μn(Ω)

is bounded by a constant depending only on M.

2. By simple examples we can show that any of these postulates does not

follow from the postulates in § 1.

Example 5. Let Ω ~ Rι and let ψ be a positive symmetric and continuous

ί+co

φ(x)dx= + oo. We put

Φ(xy y) = ψ{χ-y) and c(μ) = 0 for every μ&ΊR+(Ω). Then every finite closed

interval is a polar set and the potential of a positive measure of 9JΪ0

+(i2) is

finite and continuous in Ω. Thus the capacity induced by the functional c

fulfills the postulates (a.2) and (a.3) but neither (a. 1) nor (a.4).

Example 6. Let Po be a fixed point of Ω and let 0(PO, A) = + °o. We put

c{μ) = Z7μ(P0) for every measure μ of TO+(i2). Then every polar set does not

contain the point Po and hence the compact set {Po} is not a polar set. Thus

the capacity induced by this functional c fulfills neither (a. 2) nor (a. 3).

3. Now we assume that the kernel Φ satisfies the condition

(*) for any compact set K and for any positive number ε, there is a com-

pact set L such that

Φ(PyQ)<ε on Kx{Ω-L).

For the later use we prove several lemmas.

LEMMA 4. Suppose that a potential Ur of a positive measure γ of ΉtiΩ)

is continuous in Ω and positive measures μn converge vaguely to μ. If the total

measures μn(Ω) are bounded, then \Urdμ = lim I Urdμn.

Proof Since μn -* μ vaguely, £/μ(P) ^ lim £/μ"(P) at every point P of Ω,
71

and hence j Urdμ = )UΎdγ g limj Uμndγ = lim j UΎdμn. Therefore it is sufficient

to show that j ί/1 dμ ^ lim \ Urdμn. For any positive number ε there is a com-

pact set L, by the condition (*), such that Φ(P, Q) < ε on Sr x (Ω-L). Then

\ Urdμ»=[ \ Φ(P, Q)dγ{Q)dμn{P)

εμn(Ω~L) γ(Sτ) < εM

for every n. We put
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j UΎ on L

~ ~~ \ 0 on Ω - L,

then / is upper semi-continuous in Ω and we have

lim f ί/rίfo« = lίώ f fdμn ^ f/* = ί Urdμ.

Therefore

\rdμ^[ Urdμ ^ l i m ί £/τφ«

> lim ί ί / v ^ « - lim f Urdμn
n J n Jβ-L

Consequently we obtain UΎdμ ̂  lim UΎdμn.

Remark. When all SμM are contained in a fixed compact set, this propo-

sition follows immediately from the definition of the vague convergence. In

general, this does not hold unless Φ satisfies the condition (*).

LEMMA 5. If a set E belongs to % then viE) =0 for any positive measure

v whose potential is continuous in Ω.

Proof. Contrary to the assertion v/e suppose that v(E) > 0 and the potential

W is continuous in Ω. Then there is a compact set K <Z E such that v(K)>0.

Let v1 be the restriction of v to K, Then Uv is continuous in Ω, since Uv is

continuous in Ω. Thus there exists a positive measure v1 ^ 0 carried by a

compact polar set whose potential is continuous in Ω. This contradicts the

postulate (a. 1).

LEMMA 6. Let {Kn} be an increasing sequence of compact sets and X be

the union U Kn. If positive measures μnG.%κ converges vaguely to μ and the

total measures μn(Ω) are bounded, then C7 μ ^l on X except

Proof For any positive integers k and m we put

Since £/μ is lower semi-continuous, Ef is compact. We shall show that there

is not any positive measure r ΐ O such that Sr is contained in Ef and Uγ is
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continuous in Ω. Contrary suppose that there is such a measure γ carried by

Ef. Then by Lemma 4

where the last inequality follows from Lemma 5. This is impossible. Therefore

there is not any positive measure γ $ 0 on E™ whose potential is continuous in

Ω. Hence by the postulate (a.2), E™ is a polar set.

Now we put

( ; Uμ(P)<l- —m

Then E = U Em = U U Ef. As each Ef is a polar set, E is also a polar set

by Theorem 1. Consequently £7μ ̂  1 on X except E e φ.

4. LEMMA 7. Fo/ £##ry ϋΓσ S£f -X", c(Z) = cap,-

Proof. By virtue of the inequality c(X) > cap,(Z) stated in §1.3 it is

sufficient to prove the inequality c(X) <̂  cap,- (X) under the assumption that the

right hand side is finite. Let {Kn) be an increasing sequence of compact sets

and X- U Knt and let ε be an arbitrary positive number. Then by the postu-

late (a. 4) there is a measure ^ e ^ such that c(μn) £ c{Kn) 4- ε and μn(Ω) is

bounded by a constant depending only on cap, (Z). Then by Selection theorem

there is a subsequence {μnk} which converges vaguely to a positive measure μ.

This measure μ belongs to ^x by Lemma 6. Hence by the lower semi-continuity

of the functional c we have

c{X) ^ c(μ) ̂  lim c(μnk) + e ̂  cap,- (X) + β.

Consequently c(X) ^ cap/ (Z).

COROLLARY 1. For every open set G, c(G) = c a p ( G ) .

COROLLARY 2. Every Kσ set is capacitable.

Proof. By Lemma 3, c(X) > caρe (X) and hence cap,(Z) = cap e(Z) for

every Kσ set X.

COROLLARY 3. For arbitrary set X, c(X) = c a p e ( ^ ) .

Proof By virtue of Lemma 3 it is sufficient to show that c{X) ^ cape (X).
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For every open set G containing X it holds by Corollary 2 that

and hence c(X) ^ cape (X).

5. THEOREM 5. Every set of outer capacity zero is a polar set.

Proof. Let a set X be of outer capacity zero. Then there is a sequence

{Gn) of open sets such that Gn 3 X and cap (Gn) < —» and hence by Corollary

1 of the preceding lemma there is a sequence {μn) of positive measures such

that C/^S1 in Gn except & E ? and c(μn)<^ Then by the postulates

(c. 2) and (c. 4) we can choose a subsequence {μnk} so that μ = Σ μ » Λ is a posi-

tive measure belonging to the family §\ The potential Uμ is infinite at every

point X- U Enk and hence X- U Enjc is a polar set. Hence X is a polar set.

Summing up Theorems 2 and 5 we have

THEOREM 6. Suppose that Φ satisfies the condition (*) and the capacity is

admissible. Then a set X is of outer capacity zero if and only if it is a polar

set.

§3. Capacitability of analytic sets with respect to admissible capacities

1. In this section we assume that the kernel Φ satisfies the condition (*)

and the capacity is admissible. First we prove

THEOREM 7.4) Suppose that a sequence {μn) of positive measures of $ con-

verges vaguely to μ and that the total measures μn(Ω) are bounded. Then

Uμ = lim ip-n i n Ω except £ e φ.

Proof. By the postulate (a. 3) and Theorem 3 there is an open set Gε, for

any positive number e, such that c a p ( G ε ) ^ e and the restrictions of Uμn to

Ω - Gz are finite and continuous. We put

Fn = inf {Uμn, ir-«\ . . . ) ,

F=lim 7n = l_im£/^.

Then the functions Vn are upper semi-continuous as functions on Ω-Gs, and

Vn converges increasingly to V at every point of Ω. Since μn -*• μ vaguely,

Uμ(P) ^ V(P) at every point P of Ω. Hence it is sufficient to prove that

v Cf [6].
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= {Pe # ; U*(P)< V(P)} is a polar set. We put

E{

n

k)(e) = { P e i 2 - G ε ; Γ7μ(P) + | - g V«(P)} (A, Λ = 1,.2, . . .

£n(ε) = { P e j 2 - G ε ; Uμ(P)<Vn(P)} (Λ = 1, 2, . . . )

(*ι = 1, 2, . . . ) .

Then each E(

n

k)(ε) is a closed set and £»(e) = U £ί,*}(e) and E= Ό En. We
fc = l 1

shall prove that all En(ε) are polar sets. Contrary to the assertion we suppose

that EnD(ε) is not a polar set. Then there exists Eno

o)(ε) which is not a polar

set and hence a compact subset K of En

k

o

o)(ε) which is not a polar set. Then

by the postulate (a.2) there exists a positive measure r 3= 0 such that Sr is

contained in K and the potential U' is continuous in Ω. Then by Lemma 4

o < -ί-(£#>(£)) ^ J{Vnΰ- undr

^ j (V -Uμ)dγ< lim J £7μn Jr - j C/μ r̂ = 0,

which is absurd. Thus we obtain that each i?«(ε) is a polar set. Hence

cape (En(ε)) =0 by Theorem 6, and cape (En) =0, since

cap* (En) ^ cape (En(ε)) -h cap (G8) ̂  e

by Theorem 3. Consequently by Theorem 6, En is a polar set and hence E is

a polar set.

THEOREM 8. Let {Xn) be an increasing sequence of arbitrary sets and

X^UXn. Then cape(Z) = limcap* (X,).

Proof. By virtue of Corollary 3 of Lemma 7 it is sufficient to prove that

c(X) ^limc(Xn). Since c(Xn) ^ c(Xn+1) £ c(X) and hence \imc(Xn) <c{X).

it is sufficient to prove c{X) ^ limc(Xn) under the assumption that \imc(X?t)

is finite. By the postulate (a. 4), for any positive integer n, there is a measure

μn^%Xn such that c(μn)^c{Xn)Λ ^limc(X«) + l and μn(Ω) is bounded.

Then by Selection Theorem a subsequence {μnk) converges vaguely to a posi-

tive measure μ. This measure μ belongs to g γ by Theorem 7. Consequently

c(X) ^c(μ) ^ Urn c(μnk) < \\τnc(Xn}.
k

This completes the proof.
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2. By virtue of Theorems 4 and 8 we can apply Choquet's method [3] to

prove the capacitability of analytic sets and we obtain

THEOREM 9. Suppose that Φ satisfies the condition (*) and the capacity is

admissible. Then every analytic set is capacitable.

§ 4. The continuity principle and admissible capacities

1. We say that a kernel Φ satisfies the continuity principle^ provided that

the following statement is valid for every measure μ of Ίflt(Ω): if a potential

ί/μ is finite and continuous as a function on the carrier Sμ, then it is continuous

in Ω. From the viewpoint of the maximum principle, the continuity principle

is equivalent to the local boundedness principle, that is, the following propo-

sition is valid.

THEOREM 10.6) Φ satisfies the continuity principle if and only if it has the

following propei ty: if a potential Uμ of a measure μ of yjlt(Ω) is bounded on

Sμ, then for any neighborhood ω of Sμ with compact closure there is a finite

number M= M(μ, ω) > 0 such that

sup Uμ(P)^M-sup UΠP).
PGui P&8μ

By this theorem the continuity principle may be regarded as the weakest

one in the potential theory from the viewpoint of the maximum principle.

2. Now we put c(μ)~μ(Ω) for every measure μ of 2Jί+(J2). It is easily

seen that the functional c fulfills the four postulates in § 1, and it defines a

capacity. We shall examine the four postulates in §2. The postulate (a. 4) is

obviously fulfilled.

LEMMA 8. If Φ satisfies the condition (*), then the capacity fulfills (a.l).

Proof. Let a compact set K be contained in Jμ, μ(Ω) < -f- °°, and suppose

that there is a positive measure v $ 0 such that Sv C K and W is continuous

in Ω. Since Φ satisfies the condition (*) and v(Ω) is finite, UV(P) is bounded

from above by a finite number M. Hence

*dμ<M- μ{Ω) < + oo,

Φ is called regular by Choquet [4] if it satisfies the continuity principle.
Cf. Ohtsuka [9].
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which is a contradiction.

LEMMA 9. If Φ satisfies the continuity principle, then the capacity fulfills

(a.2).

Proof. Let K be a compact set, and suppose that there is not any positive

measure v $ 0 such that Sv is contained in K and W is continuous in Ω. Then

by the continuity principle there is an Evans-Selberg potential Uμ on Kp that

is Sμ. is contained in K and /μ = K. Thus K is a polar set.

LEMMA 10. If Φ satisfies the continuity principle, then every potential Uμ

of a measure μ of $ is quasi continuous. Namely (a. 3) is fulfilled.

This is shown in the same way as in the proof of Theorem 2.1 in [7].

3. From the above considerations we obtain that the capacity is admissible

and hence by Theorem 9 every analytic set is capacitable.

THEOREM 11. If Φ satisfies the condition (*) and the continuity principle,

then every analytic set is capacitable with respect to the capacity induced by the

functional

c(μ)=μ(Ω) for all μ^m+(Ω).

4. In the classical potential theory the capacity is defined as follows: for

every compact set K we put

Uμ^l in Ω),

μ(K),

and for an arbitrary set X we put

capι(Z) =sup£(iΠ, where K ranges over the class of all compact sets

contained in X,

cape (X) = inf cap/(G), where G ranges over the class of all open sets con-

taining X.

This capacity coincides with the capacity defined in §4.2, provided that Φ

satisfies Frostman's maximum principle.33 This is verified, for example, by

Theorem 3.3 in [7], From Theorem 11 follows

7> Cf. Ugaheri [10].
8 ) We say that Φ satisfies Frostman's maximum principle, if a potential Uμ of a

measure μ of 9ΉQ

f(Ω) is not greater than 1 on Sμ.} then I 7 μ ^ l everywhere in ίϊ,



106 MASANORI. KISHI

THEOREM 12. Suppose that Φ satisfies the condition (*) and the continuity

principle. If an analytic set X is of inner capacity zero with respect to the

above capacity, then it is of outer capacity zero.

Proof. It is sufficient to prove that if X is of inner capacity zero with re-

spect to the above capacity, then it is of inner capacity zero with respect to

the capacity defined in §4.2. Let K be a compact set such that g(K)-0.

Then there is not any positive measure v $ 0 such that Sv is contained in K

and £/v is continuous in Ω since Φ satisfies the condition (*). Hence by Lemma

9, K is a polar set and hence K is of outer capacity zero with respect to the

capacity defined in § 4 2 by Theorem 2. This completes the proof.

§ 5. Capacity defined in connection with energy

1. In this section we discuss the capacitability with respect to the capacity

induced by a functional defined by the square root of energy, that is,

c(μ) = / J Uμdμ> for every

This functional fulfills the postulates (c. 1), (c.3) and (c. 4). We assume that

Φ is of type positive, that is, for any pair of positives measures μ and v the

inequality (JVμcfo) ^ jVμrfμ \ϋ^dv holds. Then the functional fulfills (c.2)

and it defines a capacity. Moreover we assume that Φ satisfies the condition

O) and the continuity principle and that it is regular. Here Φ is said to be

regular, when for any point Po and for any neighborhood ω{P0) of POi there

exist a positive constant A, depending only on PQ} and a positive measure λ

such that

;(ω(P0)) = l,
(* *)

and UHP) £ A Φ(P, Po) in Ω.

It is well known that the kernel of the ^-potential (0 < a < m) in the w-dimen-

sional euclidean space is regular.

First we prove

LEMMA 11. Suppose that Φ is regular. If Uμ > 1 nearly everywhere^ on X,

9> We say that a property holds nearly everywhere on X, if the set of points of X
where the property fails to hold is of measure zero with respect to every positive measure
with finite energy.
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then Uμ > 1 at every inner point of X.

Proof. Let P o be an inner point of Xy and let {ωn(Po)} be a fundamental

base of neighborhoods of P o . Then by the properties (**) we obtain easily

that £7μ(P0) =lim [uμdλn and hence £/ μ (Λ)Sl> since every λn is of finite
n *

energy.

2. Let K be a compact set, on which a measure ^ e W(. ί2) with finite

energy is carried. Then we can find a measure μκ which minimizes j Uμdμ

-2μ{K) among all measures / i G l ί U ) carried by K. The potential Uμκ of

this measure has the following properties:

Uμκ ;> 1 nearly everywhere on K,

U*K = 1 μR- a.e.

The measure μκ is called a capacitary measure of ϋΓ. We put £(/D = j Uμκdμκ

= μκ(K). When there is not any measure with finite energy on K> we put

e(K)=0. Since Φ is of type positive, e(K) equals inf \lfvdp taken over all

measures r<=%R+(&) with finite energy such that ί/v > 1 nearly everywhere on

K. Using this functional e we put for an arbitrary set X

ei(X) = supe(iΓ) over all compact sets KC X

= inf ei(G) over all open sets G D X

3. LEMMA 12. For m?ry o^w s^ G,

The equality β, (G) = go(G) is obvious. We write e(G) instead of

or eo(G). First we prove c{G)2^e(G). For any positive number ε there

exists a measure /* of Wl+(Ω) such that j ί / μ ^ < c(G)2+ ε and Z7μ>l in G ex-

cept i? e φ, where φ is the class of polar sets with respect to the functional c.

Since E is of measure zero with respect to every positive measure with finite

energy, Uμ > 1 everywhere in G by Lemma 11. Now let K be an arbitrary

compact set contained in G. Then we obtain e(K) <; J Uμdμ<c(G)2 + ε. Hence

e(G) ^c(G) 2. Next we prove *(G) ̂ c(G) 2 . Let e(G) be finite and {Kn) be an

increasing sequence of compact sets and G = U iΓw, and let μ« be a capacitary

measure of Kn. Since the total measures μn(Kn) are bounded, a subsequence

{/i«Λ} converges vaguely to a positive measure μ. It is easily seen that Uμ^>l

nearly everywhere in G, because Φ satisfies the continuity principle, and hence
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by Lemma 11, £/μ ;> 1 everywhere in G and μ belongs to g^. Thus we obtain

c(G)2 ^ J V j A ^ lim^U*«*dμnk < e(G).1Q)

From this lemma follows

LEMMA 13. For any set X, c(X)2 = eQ(X).U)

Proof. The inequality c{Xf <L eo{X) is immediate. We prove the converse.

Let X be a set such that c(X)2 < 4- °o. Then for any positive member e there

is a measure μ^Ώt+(Ω) such that J U^dμ < c(X)2 + ε and £/μ ;> 1 on X except

5 e $ , where £ is contained in some 7V, j U
Jdv < -f oo. For any positive inte-

ger n we put

G^{P^Ω; Uv(P)>n}.

Then Gn D Z - β, G O £ and hence G n U β D X Since ^^~μ and -1 -i; be-

long to g^ and 5β, respectively, we have by Lemma 12 that

eo(X) ^ c(Gn U G^) 2 ^ the energy of 2^~

1 ΓrrV , 2 ( 7 2 -- 1 ) / f r r μ , ΓΓrV ,

Here we make 7ί tend to infinity and we obtain eQ{X) ̂  c{X)2 + e and hence

e*(X) ^

4. Now we can prove

LEMMA 14. The capacity induced by the functional c fulfills the postulate

(a. 4).

Proof. Let X be a set such that c{X) < + °° and ε be an arbitrary posi-

tive number. Since £0(X) is finite, there is an open set G D I such that e(G)

< eQ{X) + e = c(X)2+ε. Let μ be a capacitary measure of G. Then

= ^ZF dμ = μ(Ω) and ί / μ > l in G. Consequently μ belongs to g γ and ^

<c(X)2+ε and ^(j2) < c(Z)24- ε. Therefore we conclude that the capacity

induced by the functional c fulfills the postulate (a. 4).

ί0) μ is called a capacitary measure of G.
π> Cf. Aronszajn-Smith [1].
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LEMMA 15. The capacity induced by the functional c fulfills the postulates

(a . l ) , (a. 2) and (a. 3).

Proof, Suppose that there is a positive measure μ $ 0 carried by a compact

set K such that £/μ is continuous in Ω. Then c(K) is positive and by Theorem

2, K is not a polar set, and hence the capacity fulfills (a . l ) . Now suppose that

a compact set K is not a polar set Then it is shown that there is a positive

measure ^ $ 0 carried by K such that J Uμdμ is finite. Then by the continuity

principle there is a positive measure i / ί θ carried by K such that £/v is con-

tinuous in Ω. Hence the capacity fulfills (a.2). We can prove by the same

argument as in the proof of Theorem 2.1 in [7J that the capacity fulfills (a. 3).

From this lemma and Theorem 9 we obtain

THEOREM 13. Suppose that a regular kernel Φ is of type positive and satis-

fies the condition (*) and the continuity principle. Then every analytic set is

capacitable with respect to the capacity induced by the functional c in § 6.1.
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