
ORDERED SEMIGROUPS

PAUL CONRADX)

1. Introduction. In this paper order will always mean linear or total order,

and, unless otherwise stated, the composition of any semigroup will be denoted

by +. A semigroup S is an ordered semigroup (notation o.s.) if S is an ordered

set and for all a, b, c in S

a < b implies a + c <b + c and c-\-a < c-\-b.

If in addition a-i-a> a for all a in S, then we call S a positive ordered semi-

group (notation pos. o.s.). In particular an o.s. S is cancellative, and hence if

e is an idempotent element of S, then e is the identity for S. Moreover, for a,

by c in S and n a positive integer we have the following rules

a>b±-*a-\-c>b-{ c±->cΛ~a>cJrb.

a> b *—*• na > nb.

a> b and c>d~>a + c>b-\-d.

Let Γ be an ordered set, and for each γ e Γ let Sr be an o.s. such that

& Π S ? = D (the null set) if α#/3. Consider β ε S , and δeSjj where a<β.

Define a < b if a < β or a = β and a < b in Sa. Define aΛ b -& + a^b if a < β

and use the addition in Sα if a = β. Then Q = U S T is an ordered set and a
TGΓ

semigroup — the ordinal sum of the Sr. The Sr are the components of Q.

In section 3 we give a necessary and sufficient condition for a semigroup

S to be the ordinal sum of pos. o.s. (Theorem 3-1). We also show that if S

is a pos. o.s., then there exists a rather natural ohomomorphism of S onto an

ordinal sum of pos. o.s. each of which is o-isomorphic to a semigroup of positive

real numbers. Cheheta [2] and Vinogradov [9] use an example of Malcev to

show that an o.s. cannot necessarily be embedded in a group. Ore [8] has

shown that if every pair of elements in a semigroup S has a common right

multiple, then S can be embedded in a group G = {a — b : a, b e S}. G is called
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the difference group of S. We show that if S is an o.s., then the order of S

can oe extended to an order of G in one and only one way. In section 5 we

show that the order type of the set of all convex normal subgroups of G is

determined by S.

2. Embedding theorems. Throughout this section S will denote an o.s.

THEOREM 2-1. Suppose that S satisfies: (*) for each pair a, b in S there

exists a pair x, y in S such that a + x-b + y. Then there exists an o-group G

such that G = {a — b : ay b^S) and a — b is positive in G if and only if a> b

in S. Moreover, if H is an o-group that contains S as an ordered subsemigroup

and is generated by S, then there exists an o-isomorphism π of G onto H such

that sπ-s for all s^S. We call G the difference group of S.

This theorem is a corollary of a result of Ore [8] for integral domains.

We outline the construction of an o-group G' that is o-isomorphic to G. Let

T^SxS and define that {a, b)~~(c, d) if there exist x, y in S such that a + x

= c + y and b + x - d + y. Then — is an equivalence relation. Denote the

equivalence class containing {a, b) by Za, bl, and define that Za, bl+Zc, dl

=-Za + x, d + yl where b + x= c+y. Then the set G' of all equivalence classes

is a group, Za, al is the identity, Zbt al is the inverse of Zay bl, and the mapping

r of s upon Zs + x, xl is an isomorphism of S into G'.

Za, b~] = Za + x, xl — Lb + x, xl = aτ ~ bτ. Thus there is at most one way of

extending the order of S to an ordering of G'. Namely, define that Za, b] is

positive in G' if a > b in S. Let JP be the set of all positive elements in G.

If Za, a~\ * Zb, c], then b > c or b < c in S, and hence Zb, c~] e JP or - Zb, cl

= Zc, bl e <jP. If Za. bl and Zc, dl belong to J*9 then a > b and c > d, and

Za, bl + Zc, dl = Za-{ x, d+ v] where b + x = c+y. Thus a + x> b-{- x = c+y

> d + y, and hence Za, bl + Zc, dl^JP, If Za, bl^jP and Zc, dl^G1, then

X=ίd, cl + Za, bl + Zc, dl = Zd, cl+Za + x, d + yl^ίd+u. d + y + vl where

b + x = c +y and c + u - a + x + υ. To show that Z e JP it suffices to show that

u>y + v. Pick r and s in S such that u + r = jy + s. Then a + x+v + r-c + u + r

= c + y + s = b + x + s. If v + r>s, then a + x + υ + r>b + x + s because a > b.

Thus υ + r < s, and hence y + v + r<y + s = u + r. Therefore y + v <u.

Finally suppose that H is an o-group that is generated by S. Let Za, blπ'

= a -b for all Za, fleG1. If Za, bl ^Zc, dl, then a+x = c+y and b + x = d + y.
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Thus a-b = a + x- x-b — c+y—y — d=c — d, and hence πf is single valued.

(Za, bl + Zc, dl)π' = La + x> d + ylπ'^a + x-y-d, where b+x^c+y. Thus

x-.y=-.b + c and a + x-y-d = a-b + c~d=Za, blπ'+Zc, rf]τr'. If 0 = [α, Wzr'

= « - Z>, then [α, 6] is the identity of G'. If [a, b] e J^, then « > H n S and

hence in i£ Thus Za, b]π' = a~b is positive in H. S< GV < H and, since //

is generated by S, GV = ϋ/. Therefore π' is an o-isomorphism of G' onto if.

This completes the proof of the theorem.

COROLLARY I. S satisfies (*) if and only if S can be embedded in an o-

group G = {a — b : <z, έ e S } .

For suppose that G~{a-b : a> b&S) and that « and & belong to S. Then

and hence -<z-h£ = #-jy for some x, y e S. Thus £ +jy = # -f #.

COROLLARY II. Suppose that S satisfies (*) and let G be the difference group

of S. Then for a, b, c in S

(a) a- b -c- d if and only if there exist x, y in S such that a + x = c -f y

and bΛ x=d + y.

(b) a-b + c-d = a + x- (d + y) for all x, y in S such that b + x = c+y.

(c) a-b> c ~ d if and only if there exist x, y in S such that a + x> c Λ-y

and b + x~ d-\-y.

The equivalence of ( i ) and (ii) in the following corollary is well known

and has been proven by Tamari, Alimov, and Nakada ([4] p. 309).

COROLLARY III. For a commutative semigroup A the following are equivalent.

( i ) A can be embedded in an o-group*

(ii) A can be ordered.

(iii) A satisfies the cancellation law, and na = nb implies that a-b, for all

at b in A and all positive integers n.

Proof Clearly ( i ) implies (ii), and since any commutative o.s. satisfies

(*), (ii) implies ( i ) . An easy argument shows that (ii) implies (iii). Finally

assume that A is cancellative, and let G = {a — b : af Z>e A} be the difference

group of A. Iίx-a~b£ΞG and nx - 0, then 0 = nx = na - nby and hence na

=>nb. Thus by (iii) a = b, and 0 = a - b - x. Therefore (iii) implies that the

difference group G of A exists and is abelian and torsion free. But this means

that G can be ordered (see for example [7]).
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Suppose that A is a cancellative commutative semigroup with identity 0.

Then if A can be ordered, it is torsion free, but the converse is false. For

consider the semigroup B = N® N, where N is the additive semigroup of non-

negative integers. For (a, b) and (c, d) in B define that {a, b)~~(c, d) if

a = c mod 2, b = d mod 2 and a + b = c + d. Then it is easy to show that ~~ is

a congruence relation. Let La, b] be the congruence class that contains (#, b).

Bl* = {ia, bl : a, b€ΞN} = {Z2n, 0], [2w + l, 0], [0, 2w + l ] and [2w + l, 1]

for all n^N) is a commutative semigroup with identity [0, 0]. It is easy to

show that Bl **- satisfies the cancellation law and is torsion free, but 2[1, 1]

= 2[0, 2] and [1, 1] * [0, 2]. Thus (iii) of the last corollary is not satisfied,

and hence B i ~~ cannot be ordered.

Let P= {XZΞS : x + x> x} and N={x^S : x + x < x). The following five

propositions are easy to verify (or see [1] for proofs).

1) P={XΪΞS : x + s> s for all s ε S ) = ( χ e S : s + * > s for all s e S } .

2) W = { # e S : # + s < s for all s e S } = {*eS : s + * < s for all seS} .

3) P and iV are subsemigroups of S.

4) N<P. That is, n < p for all n e iV and all £ e P.

δ) If S does not have an identity, then S= NU P and an identity 0 can be

adjoined to S so that T= SU {0} is a semigroup. Moreover, the order of S can

be extended to an order of T in one and only one way, namely N<0<P. If

we adjoin an identity to a pos. o.s we shall call the result a pos. o.s. with

zero. An o.s. S is naturally ordered if for all a, b in S

(R) a> b implies a = b + x for some x in S, and

(L) a> b implies a = x-\-b for some x in S.

Note that a pos. o.s. P satisfies (R) if and only if b +P= {a&P : a> b} for

all b in P.

THEOREM 2-2. If S satisfies (R), then S satisfies (*) αra? Ẑ wce S is an

ordered subsemigroup of its difference group G. If S is naturally ordered, then

S contains the semigroup of all positive elements of G. A pos. o.s. P is the semi-

group of all positive elements of an o-group if and only if P is naturally ordered.

Proof. Consider a, b in S. If a > b, then a = b + x for some x in S. Thus

a + b = b-\- ix+b). Similarly if a<b, then a + u = b + υ for some u, v in S.

Therefore S satisfies (*). Suppose that S is naturally ordered, and consider a'
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positive element y in the difference group G όί S. y - a — b, where a, b e S and

a > b. Thus a = x + b for some # e S, and hence y-a-b = x<^S.

Finally suppose that P is a naturally pos. o.s. and let JP be the semigroup

of all positive elements of the difference group G of P. Then we have shown

that ? 3 ^ . If ί e P , then pΛ-p>p in P and hence p^p+p-p> 0 in G.

Therefore

LEMMA 2-1. Z,eί α, b> c be elements of S. If a +b < b +a, then a + nb

< nb + a and na~rnb <n{a +b) <n{b ) a) <nb + na for all positive integers n,

where the equalities hold if and only if n = 1.

This follows by a simple induction argument or see [6] for a proof.

COROLLARY. If p and q are positive integers and pa = qb, then a-j-b ~b-\- a.

For if a -h b <b + a, then (p + I) a = a + pa = a + qb < qb + a = pa + a

-(p + l)a, a contradiction.

Note that Lemma 2-1 and its corollary are true for an ordinal sum of o.s.

For if a-\- b <b -\- a, then a and b belong to the same component. In [6] the

following theorem (which we use later) is proven.

THEOREM 2-3. For an o.s. S the following are equivalent. (i) There exists

an O'isomorphism of S into a subsemigroup of the (naturally ordered) additive

group R of real numbers, (ii) For each pair a<b in S, there exist positive

integers m and n such that ma < (m+l)b and (« + I) a < nb.

THEOREM 2-4. Suppose that the center Z- {z^S : z + s = s + z for all s e S)

of S is not empty. Then there exists o.s. T such that

1) S is an ordered subsemigroup of T,

2) T contains the difference group G of Z and T is generated by S and G,

3) If Tf is an o.s. that satisfies- 1) and 2), then there exists a unique o-

isomorphism π of T onto T' such that sπ = s for all S G S ,

We outline a proof, leaving out the straightforward computations. Let

Q^Sx Z and for (a, b) and (c, d) in Q define that

(α, b) + (c, d) = (a + c, b + d) and

(a, b)~~{c, d) if a + d=b-Yc.

Then Q is a semigroup, and ^ is a congruence relation. As usual, denote the

equivalence class containing (a, b) by La, &]. For La, b} and \_c, d~\ in QI ~~
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define that ίa, b] > [_c, d] if a + d> b + c. Then (Q/^, + , > ) is an o.s. and

the mapping τ of C G S upon [_a-\-zf z], where z is a fixed element in Z is an

o-isomorphism of S into Q/^. Gf = {ίa, b}: a, b^Z) is the center of Q/~~ and

the difference group of Zτ. Clearly QI ~ is generated Sτ and Gf. Thus there

exists an o-semigroup T that satisfies 1) and 2). Moreover G is the center of

7". Finally suppose that T and T' are o.s. that satisfy 1) and 2), and consider

ί e T . t = s+g=s-i-Zι—z2, where s&S, g^G and zίt z2^Z. Define tσ-Ls+Zu z2~]>

Then a is on o-isomorphism of T onto QI -^. Similarly we define an o-isomor-

phism σ' of T' onto Q/^, and then π-aa'~ι is the desired o-isomorphism of T

onto T'.

3. Positive ordered semigroups

THEOREM 3-1. A semigroup S is an ordinal sum of pos. o.s. if and only if

( I ) S is an ordered set, and for all a, b, c in S,

(II) if a < by then a + c <b-\- c and c + a<c + b,

(III) a + a>a,

(IV) if a-\-b = a+ c, then b = c or a-hb = a, and if b + a- c-\- a, then b = c

or b-\- a — a.

Proof. It is easy to verify that an ordinal sum of pos. o.s. satisfies these

four conditions. Conversely assume that S is a semigroup that satisfies (I) ,

(II), (III) and (IV). Then S satisfies (IIΓ) <2 + £>max{tf, b)<b + a for all α,

b in S. For if a + b < a, then a + 2b<a + b. If a + 2b < a + b, then 2b < b, but

this contradicts (III). If a + 2b = a + b, then by (IV) 2b = b or a + b^a, a

contradiction. Therefore a-\-b>a, and by a similar argument a + b>b.

For a, b in S we define that a — b if a + b> max {«, b) <b-\-a. Clearly

— is symmetric, and by (III) it is reflexive. Suppose that a^b and b ~ c.

Then c + b>by and thus a + c + b >:a + b. If a+ c + b = a-\- b, then by (IV)

c + b — b or a-\ b = a. Then b Λ- c or a 4- b, a contradiction, Thus a -t- c -f- £

> a + b, and hence β + c > β . By symmetry it follows that α — c, and hence —

is an equivalence relation.

Let a = {b GE A : b^-a), and consider &, c in «. We show that .α-f & + c

> max {«, ^ + c}. By symmetry it follows that H c e o , and hence that α is a

semigroup. If a + bJ

rc<a-\-bi then b-\- c < by and hence H e Thus α + b + c

«. If a + b + c < b + c, then a + b <bf and hence β i έ , If # + & + <-



ORDERED SEMIGROUPS 57

= b 4- c, then by (IV) a + b = /; or b + c = r, and hence a + b or H r . Therefore

a~\-b-{ c> b Λ- c.

We next show that cϊ is a pos. o.s. Consider x, y, z in a. If # < y, then

x + z <y + z. For otherwise # + 2 = jy 4- z, and thus x - y or x -\-z-z, a contra-

diction. By symmetry if x < y, then z 4- # < z -f j>. Thus # is an o.s., and since

a satisfies (III) it is a pos. o.s.

In order to prove that S is the ordinal sum of the semigroups a it suffices

to show that if a < b and a ^ 2>, then a + b = b and α < 5. a + b<b because

a # 5, and by (ΠΓ) a + b>b. Pick a' e α and ί ' e S . d + a + b^ a! + b. Hence

by (IV) a' + a = af or a! Λ-b^ b. But a' -\-a> a because α' — α. If bf < a\ then

bf + b < af + b = b, and hence &' -f Z?. Therefore a1 < b\ and hence a < b.

For the rest of this section we investigate pos. o.s. The information ob-

tained will then apply to semigroups that satisfy the four properties of Theorem

3-1. For the remainder of this section let P denote a pos. o.s.

LEMMA 3-1. For all a, b in P and all positive integers m, (m-fl)tf

4- (m -f 1) b is greater than ma + mb and mb + ma.

Proof, (m4-1)a > ma and {m4-1)b > mb. Thus (w + l ) β + (m+ l)b

>ma+ mb. Suppose that a>b. If a>?nby then (m + I)a-\- {m-\-1)b > (m + l)a

= a-\-ma>mb-\-ma. If a < mb, then since mb < {m ±l)b <(m-\-l)a, there

exists a positive integer n such that na < (m-\-1)6 < (n + l)a. Thus (m-hl)α

4- (W2 + 1)£ > im+l)a + na - in + I)a+ ma > mb4-ma. By an entirely similar

argument if a < b, then (m + l)a-h (m + l)b> mbΛ ma.

LEMMA 3-2. For all ay b in P and all positive integers m:

( i ) (m + l){a + b) is greater than m{a + b) and m{b-ha).

( i i ) (m + 1) a + (m + l)b is greater than m(a-ϊ-b) and m(b -ha).

(iii) (m+l)(a + b) is greater than mb+ma and ma + mb.

Proof, ( i ) (m+ l)(a + b) =m(a + b) + a + b> m(a-hb) and (m + l)(a + b)

= a+m{b + a)+b> m(b + a) + b> m{b + a). (ii) If a + b>b + a, then by

Lemma 2-1, (m + l ) β + ( m + l ) ^ > ( w H - l ) ( β + έ) ( and by ( i ) ( m - f l ) U 4 £)

> m(a-\-b) and mib + a). If a + b <b + a, then by Lemma 3-1, (wί-(-l)β

-\-(m + l)b > mb + ma, and by Lemma 2-1, mb + ma>m(b + a) > m{a + b).

(iii) If £ 4- a>a + b, then by Lemma 2-1, (#j 4-1)(# 4- &) > (m + 1)a4- (m 4-1)Z?,

and by Lemma 3-1, (m 4-1) tf 4- km 4 3) b > ma 4- m& and mb + mα. If a 4 ί>
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>b + a, t h e n by L e m m a 2-1, (m -f l)(a + b) > (m + \)(b + a) > (?n + 1)/?

2, and by L e m m a 3-1, (#z + 1)£ 4- ( w-f 1 ) # > mZ>-f- m a and ma-\-mb.

Remark. Lemmas 3-1 and 3-2 remain true if P is an ordinal sum of pos.

o.s. In fact, the given proofs apply.

F o r a a n d b in P w e def ine t h a t aσb if (m-\-ί)a> mb a n d {m + l)b> ma

for all positive integers ???.

1) a is a congruence relation. For clearly J is symmetric and aaa because

(m + l)a > ma. If aσb and £<;<:, then (wz + 2)tf > (m + l)b > me and (m + 2)c

> (m + l)b> ma for all m. Let m~2n, t h e n 2(w + l ) α > 2 we and 2(/ι + l ) c

> 2 720. Hence (w + 1) a > nc and (n-\-l) c > na, and <z<;c. Final ly suppose t h a t

a σ b . B y L e m m a 3 - 2 , (m + 3)(a + c ) X m + 2 ) a + { m + 2 ) c > ( m + l ) b + ( m + l ) c

>m{b + c) for all m. Let m = 3m, then 3(W + 1)(Λ + C) > 3n(b + c). Thus

(W + 1)(Λ + C) > w(Z> + c) and similarly (w 4- 1)(^ + c) > w(β + c) for all w.

T h e r e f o r e (a + c)σ(b + c).

2) The semigroup P/σ is commutative. F o r by ( i ) of L e m m a 3-2,

(m+l)(a + b) > m{b + a) and (m + l)(b + a) > m{a + b) for all m. T h e r e f o r e

For the remainder of this section we shall denote the elements of P by

a, b, c and the elements of Pi a by A, B, C. Moreover, m, n> β, q will always

denote positive integers. If p is a congruence relation over a semigroup S,

then Q' will always denote the natural homomorphism of S onto Sip. Pi a is

an ordinal sum of pos. o.s., and this can be shown by verifying that P/σ satisfies

the four properties of Theorem 3-1. But we wish to show something stronger.

Namely, that P/σ is an ordinal sum of pos. o.s. each of which is a subsemigroup

of positive reals.

3) If a > by then aσ* = bσ* or x>y for all x in aa* and y in bσ*. For sup-

p o s e t h a t t h e r e e x i s t s a n x i n aσ* a n d y i n bσ* s u c h t h a t y > x . (m + 2 ) x

> (m + l)a>(m-\-ϊ)b> my. Now let m- 2n and cancel. Then in + I) x > ny

for all n a n d also (w-f- l)y> (n+ l)x > nx for all n. T h u s xσy, and aσ* — xσ*

— ye* — bσ*. For aσ* and bσ* in Pi a we define that aσ* < bσ* if aσ* =̂  bσ* and

a < b in P. Then by (3) this definition is independent of the choice of repre-

sentatives a and b.

LEMMA 3-3. (i) P/σ is an ordered set and A < B implies that A + C
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<B + C for all A, B, C in P/σ. (ii) A<A + A. (iii) If A<B, then nA<nB.

Proof. (i ) If ao]: < bσ"' and bσ* < cσΛ\ then a < b and b < c. Hence a < c

and aσ* < ca*. If aσ* - cσ*> then a e cσ*, but then a > b} a contradiction. Thus

aσ* < bσ*. If aσ* # bσ*, then a < b or b < a> and so aj* < bσ* or bσ* < aσ*.

(ii) Clearly A < 2A. Suppose that 2A = A=-aσ*. Then aσ2a, and hence

(m + l)a> (2 m)a for all m. In particular for TW = 1, 2a>2a, a contradiction.

Thus A < A + A. (iii) Clearly «A < 72J5. Suppose that nA = wB where Λ</* = Λ

and bσ*=B. Then naσnb, and so (m + l)na> mnb and (m + l)nb>mna for

all w. But then ( m + l ) β > ? ? 2 # and (m + l)b> ma. Thus tfcr£, and hence

A = tf<7* = ^ί;* = B, a contradiction.

For A and B in P/# we define that AτB if there exist positive integers m

and n such that m i > B and nB> A.

4) r is <2w equivalence relation. For clearly r is symmetric and by (ii) of

Lemma 3-3, 2 A > A. Thus AT A. If AτB and JSrC, then nA> B, pB> A,

mB> C and qC > B for some positive integers m, w, β, q. By (iii) of Lemma

3-3, mnA > mB > C and pqC >pB > A. Therefore AτC.

Let Aτ* be the equivalence class that contains A. We shall show later

that τ is a congruence relation, and so τ* is the natural homomorphism of P/σ

onto (P/σ)/τ.

5) If A<B and Aτ* * Bτ*, then Aτ* < Bτ* and A + B = B. For suppose

that there exist X in Aτ* and Y in £r* such that X > F. Then nX>nY> B

and mB > mA > X for some m and w. Thus Xτ B, and hence Ar* = Xτ* = 5r*.

A = Λ / ' and B = bσ*. Since a + b> b, (m + ϊ)(a + b) > m(a + b)> mb for all m.

Thus it suffices to show that (m-\-l)b> m(aΛ-b) for all m. Now nA <B for

all n, for otherwise A E S Γ * . Thus na < b for all n. (n + 2)b = b+(n

> (n+l)a+(n + l)b> n(a-\-b). Now let w = 2m and cancel to get (m

+ b). Thus A -f i5 - B.

6) If A<B and AτC, then A + C<B + C. For A = aσ\ B = ^ , C = cc;*,

α < 6 and (n + l)a <nb for some positive integer n. By Lemma 3-3, A + C

< B + C. Suppose (by way of contradiction) that A + C = JB-f C. Then (w + 3)«

+ (m + 3)c > (wiH-2)(/ϊ-fc) > ( m - f D ( H c ) > mb + mc. Therefore (m + 3)a

+ 3c>mb for all m. Since ArC, there exists an integer h such that hA

>C and 3hA>3C by Lemma .3-3. Let k = 3h, then to > 3c. (k + 3)nb
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> (k + 3)(n + Da = ί(k + 3)n + 3la + ka > Kk + 3 ) « + 3 ] β + 3c. Now let

m = (k + 3) n. Then w£ > (̂ 2 -f 3) a-f c, a contradiction.

THEOREM 3-2. For each A in P/σ, Aτ* is an ordered subsemigroup of Pi a

that is o-isomorphic to an additive semigroup of positive real numbers. Pi a is

an ordinal sum of the pos. o.s. Aτ*.

Proof. Consider B> C in Aτ*. A = aa'\ B = ba* and C = ca*, where a, b, c

e P . There exist positive integers m, ft, r, s such that mB>A, nA>B, r θ A

and sA > C. Thus w& > a, na> b, rc> a and sa > c. Let # = max {m, r).

Then qb> a and #c > a. Thus (^+ 1)(Z? + c) > qb + qc>2a> a, and by Lemma

3-3, (q+2)(B+C) > ((/+ 1)(S+ C) > A. Let ί = max(w, s}. Then ίβ> ^ and

to>c. Thus 2 t a > 6 +£ and (2ί+ 1) A > 2tA> B + C. Therefore 5 - f C e M

and so Aτ* is a semigroup. By Lemma 3-3, Aτ* is ordered, and thus by (6)

Aτ* is an o.s. In order to prove that A* is o-isomorphic to a semigroup of

positive real numbers, it suffices by Theorem 2-3 to show that if X, Y ^ Aτ*

and X< Y, then there exist positive integers m and n such that (m-\-l)X<mY

and nX< (n + DY.

X=xσ* and Y^yσ* for some x and ^ in P. Since X<Y, nX<nY

< (n-hl)Y for all n. Hence nx < (n + Dy for all n. Suppose (by way of

contradiction) that (m + DX>mY for all m. If for some rn, (m+DX=tnY,

then (m + 2)X= (m + DX+X<mY+Y={tn+DY. Therefore (m +1)X

> mY for all m. Thus (m + Dx> my and TWΛΓ < (m + Dy for aΆm. Therefore

X- y, a contradiction. Thus by Theorem 2-3 there exists an isomorphism π

of Aτ* into the additive group of reals. But for B<^Aτ*, B <2B. Hence Bπ

<2(Bπ). Therefore Bπ is a positive real number. It follows at once from (4)

and (5) that P/σ is the ordinal sum of the Aτ*.

COROLLARY, τ is a congruence relation on Pi a.

Proof. Consider X, Y, Z in PI a, and assume that XτY. If ZτX, then

since Xτ* is a semigroup X+ Z and Y+Z belong to Xτ*. Thus (X+ Z) τ (Y + Z).

Suppose that Xr*^Zr*. If Z < X, then Zr* < Xr* = Yτ*. Thus by (δ) X+Z

= X and y + Z= y. If X < Z, then yτ* = Xr* < Zτ*. Thus by (5) X+Z= Z

= Y + Z. In either case (X+Z)τ{Y+Z).

There is a natural 1-1 order preserving correspondence between the con-

gruence relations of PI a and the congruence relations of P that contain <3\
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Therefore τ can also be considered as a congruence relation on P, where aτh

if there exist positive integers m and n such that ma > b and nb> a. Consider

X and Y in P/τ. X = xτ* and Y = yτ* for some # and y in P. We define that

X< Y if X- ̂ Y and #<jy in P. Then P/τ is an ordered set and r* is an o-

homomorphism of P onto P/τ. Denote the addition in P/τ by [ + ] . Then

since X + F c m a x [ X , Y] in P, . ¥ [ + ] F=max[X, Yl in P/r. X is a subsemi-

group of P and X/</ is o-isomorphic to a subsemigroup of the positive reals.

Thus in Clifford's terminology [3], P/τ is a semilattice and P is a semilattice

of the semigroups X^P/τ. In particular, P-X is a subsemigroup of P and

the number of components Aa* of P/<; is equal to the number of elements in

P/τ which we shall denote by \P/τ\.

A subsemigroup C of P is convex if β £ P , c e C and a < c imply that

fleC. It is easy to show that the set έ/7 of all convex subsemigroups of P is

ordered by inclusion, and that if A and B are convex subsemigroups of P and

AD By then A \ B is a semigroup. Moreover if A covers B, and α ε A \ β ,

then tfr* = A \ £ . For each a e P let Pa = {x <= P : *r* < ar*}. Then P* is a

convex subsemigroup of P and if C is a convex subsemigroup of P, then

C = U P*. Thus the order type of cy is completely determined by P/τ.
αEC

Let G be an o-group and let Γ be the set of all pairs of convex subgroups

G\ GT of G such that G covers Gr. Define that (Gβ, G*)<(G,3, G?) if G*<G?.

Then Γ is ordered, and the order type of Γ is the r#??& of G.

THEOREM 3-3. If P is a naturally pos. o.s., then the rank of the difference

group G of P equals the order type of P/τ.

For by Theorem 2-2, P is the semigroup of all positive elements of G, and

a convex subgroup of G is determined by its set of positive elements. Thus

if (Gτ, G') G Γ, then Gτ Γ\ P and G Π P are convex subsemigroups of P and

Gr Π P covers G, Π P. Moreover (Gτ Π P) \ (Gτ Π P) = ar*, where a e (GΎ Π P)

\ ( G r Π P ) .

Remark. If P is a commutative naturally pos. o.s. and the components Ar*

of P / J are J-closed, then the c-closure C of the difference group G of P i s

uniquely determined by P/a. For C is isomorphic to the Hahn group H(Γ, Rr),

where Γ is an ordered set with order type equal to the rank of G and the Rr

are isomorphic to the components G/G- of G (see [5] for these concepts).

But Γ is determined by P/a and the components of G are just the difference
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groups of the components of P/σ.

Let P be a positive o.s. that satisfies (*) and let G be the difference group

of P. It should be made clear that there is virtually no relationship between

the order type of P/τ and the rank of G, even if G is abelian. For example

let G = RφRφR, where R is the additive group of real numbers. Define (a>byc)

in G positive if c>0 or c = 0 and b>0 or c = b -- 0 and a>0. Let P= {(ayb,c)

e G : c > 0}. Then G is the difference group of P, \P/τ\ = 1, and the rank of

G is 3. By generalizing this example it is easy to see that for \P/τ\ =1 the

rank of G can be any given order type. But we shall show (Theorem 5-1)

that P does determine the order type of the set of all convex normal subgroups

of G.

4. Relationships between P and P/a. Throughout this section let P be a

pos. o.s. A semigroup Q is a t-semigroup if Q is an ordered set and

ma < (m + l)a for all a in Q and all positive integers m.

LEMMA 4-1. Let p* be an o-homomorphism of P onto a i semigroup Q. For

a and b in P define apb if ap* — bμ*. Then p is a congruence relation on P and

pC a.

Proof. If apb, then ap* = bp*. Hence (m + l)(ap*) > m(bp*) and (m + l)

(bp*) > m(ap*). Thus since p* is an o-homomorphism, (m + l)a>mb and

{m-\-l)b> ma for all m. Therefore aσb.

Now consider q^Q. q - ap* for some a^P. Define qa = ao*. Then by

the usual arguments a is an o-homomorphism of Q onto Pi a such that pp*oc

---pa* for all p^P. We have the following diagram and theorem.

\

A I
P/σ

THEOREM 4-1. P/σ is the smallest o-homomorphic image of P that is a t-

semigroup. In particular, P/σ is the smallest o-homomorphic image of P that

is an ordinal sum of pos. os.

Remarks. (1) Let p be a congruence relation on P. Then Pip is a t-

semigroup and p* is an o-homomorphism if and only if for all C J G P : (A)

If a<b, then ap* = bp* or %<y for all x&ap* and y<Ξbp*, and ma(N0Ύ p)
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(m + l)a for all m. Thus a is the join of all congruence relations that satisfy

(A). (2) If \P/τ\ - 1 and p is a congruence relation on P such that Pip is an

ordinal sum of pos. o.s. and p* is an o-homomorphism, then Pip is a pos. o.s..

5. Relationship between P and its quotient group G. Let P be a pos. o.s.

and let Δ- {p : p is a congruence relation on P, P/p is a pos. o.s. or a pos. o.s.

with zero, and p* is an o-homomorphism}.

LEMMA 5-1. Δ is ordered by inclusion.

Proof. Consider a, β e Δ and suppose (by way of contradiction) that there

exist a, b, c, d^P such that accb, α(NOT β)b, c(NOΎ a)d and cjSrf. Case I.

a>b and c > d . Then aβ*>bβ* and cα:*><fo*. If a + d<b + c, then αβ* + t//3*

< */3* + cβ* and rf/3* = cβ*. Thus a#* < £/T, a contradiction. If Λ + d > b + c,

then β ^ + tfα^δα^ + cα:* and «α* = k * . Thus dcc*>ca*y a contradiction.

Similarly in the other three cases we get a contradiction.

For the remainder of this section we assume that P is a pos. o.s. which

satisfies (*). In particular, the results obtained are valid for commutative pos.

o.s. Let G be the difference group of P and let π be an 0-homomorphism of

P into a pos. o.s. with zero. Then clearly Pπ satisfies (*). Let H be the differ-

ence group of Pπ and f or g = a - b in G define gπ = aπ - £7:.

LEMMA 5-2. π is the unique extension of π to an o-homomorphism of G

onto H.

Proof. If a- b = c~ d, where a, b, c, d& P, then by Corollary II of Theorem

2-1, there exist x, y<=P such that aΛ-x-cΛ-y and b-hx = d+y. Thus aπ + #7r

= cπ-\-yπ and for -f tfπ = dπ + yπ, and so by applying this corollary again, aπ - bπ

= cπ - dπ. Thus TΓ is single valued. The lemma now follows by repeated use

of Corollary II and straightforward computation.

It is well known and easy to verify that the kernel of any o-homomorphism

of an o-group is a convex normal subgroup. Let *€ be the set of all convex

normal subgroups of G except G itself. Then "€ is ordered with respect to

inclusion.

THEOREM 5-1. There exists a 1-1 order preserving mapping of Δ onto %.

Proof. For each p e Δ let p be the unique extension of p* to G (which is

assured by Lemma 5-2), and let p η = Kip) = {x^G : xp = 0}. We wish to show



64 PAUL CONRAD

that 7) is the desired mapping. Since p is uniquely determined by p, -η is single

valued. Let a, β e ά and a£Lβ. If x e /£(#), then x= a- b, where a, b£z P and

0 = #ίF = ( # - b)a = #<ϊ -&* = aoc* - ba*. Thus ##& and hence aβb. But then

0 = <j/3* - 6/9* = *£. Therefore # e K(p) and α>? cjfy. If a*β, then there exist

a, ό e P s u c h that β/36 but not aab, but this means that a- be K(JΪ)\K(a).

Therefore -η is 1 — 1 and order preserving. Next consider C e ^ and let N be

the natural o-homomorphism of G onto G/C. Let p be the congruence relation

induced on P by N (apb if and only if Λ2V= bN). Define that βp^ > bp* iί a+C

> b + C. Then it follows by a straightforward computation that p e J and

pτ7 = c. Therefore η is α 1 - 1 orderpreserving mapping of A onto ^

If | P / r | = l or equivalently if Pi a is o-isomorphic to a subsemigroup of

positive reals, then aeΔ and A = {p : p is a congruence relation on P, P/p is

a pos. o.s. and p* is an o-homomorphism}.
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