ORDERED SEMIGROUPS

PAUL CONRAD ${ }^{1)}$

1. Introduction. In this paper order will always mean linear or total order, and, unless otherwise stated, the composition of any semigroup will be denoted by + . A semigroup S is an ordered semigroup (notation o.s.) if S is an ordered set and for all a, b, c in S

$$
a<b \text { implies } a+c<b+c \text { and } c+a<c+b .
$$

If in addition $a+a>a$ for all a in S, then we call S a positve ordered semigroup (notation pos. o.s.). In particular an o.s. S is cancellative, and hence if e is an idempotent element of S, then e is the identity for S. Moreover, for a. b, c in S and n a positive integer we have the following rules

$$
\begin{aligned}
& a>b \leftrightarrow a+c>b+c \leftrightarrow c+a>c+b . \\
& a>b \leftrightarrow n a>n b . \\
& a>b \text { and } c>d \rightarrow a+c>b+d .
\end{aligned}
$$

Let Γ be an ordered set, and for each $\gamma \in \Gamma$ let S_{γ} be an o.s. such that $S_{\alpha} \cap S_{\beta}=\square$ (the null set) if $\alpha \neq \beta$. Consider $a \in S_{\alpha}$ and $b \in S_{\beta}$ where $\alpha \leq \beta$. Define $a<b$ if $\alpha<\beta$ or $\alpha=\beta$ and $a<b$ in S_{α}. Define $a+b=b+a=b$ if $\alpha<\beta$ and use the addition in S_{α} if $\alpha=\beta$. Then $Q=\bigcup_{r \in \Gamma} S_{\gamma}$ is an ordered set and a semigroup-the ordinal sum of the S_{r}. The S_{r} are the components of Q.

In section 3 we give a necessary and sufficient condition for a semigroup S to be the ordinal sum of pos. o.s. (Theorem 3-1). We also show that if S is a pos. o.s., then there exists a rather natural o-homomorphism of S onto an ordinal sum of pos. o.s. each of which is o-isomorphic to a semigroup of positive real numbers. Cheheta [2] and Vinogradov [9] use an example of Malcev to show that an o.s. cannot necessarily be embedded in a group. Ore [8] has shown that if every pair of elements in a semigroup S has a common right multiple, then S can be embedded in a group $G=\{a-b: a, b \in S\} . G$ is called

1) This work was supported by a grant from the National Science Foundation.
the difference group of S. We show that if S is an o.s., then the order of S can oe extended to an order of G in one and only one way. In section 5 we show that the order type of the set of all convex normal subgroups of G is determined by S .
2. Embedding theorems. Throughout this section S will denote an o.s.

Theorem 2-1. Suppose that S satisfies: (*) for each pair a, b in S there exists a pair x, y in S such that $a+x=b+y$. Then there exists an o-group G such that $G=\{a-b: a, b \in S\}$ and $a-b$ is positive in G if and only if $a>b$ in S. Moreover, if H is an o-group that contains S as an ordered subsemigroup and is generated by S, then there exists an o-isomorphism π of G onto H such that $s \pi=s$ for all $s \in S$. We call G the difference group of S.

This theorem is a corollary of a result of Ore [8] for integral domains. We outline the construction of an o-group G^{\prime} that is o-isomorphic to G. Let $T=S \times S$ and define that $(a, b) \sim(c, d)$ if there exist x, y in S such that $a+x$ $=c+y$ and $b+x=d+y$. Then \sim is an equivalence relation. Denote the equivalence class containing (a, b) by $[a, b]$, and define that $[a, b]+[c, d]$ $=[a+x, d+y]$ where $b+x=c+y$. Then the set G^{\prime} of all equivalence classes is a group, $[a, a]$ is the identity, $[b, a]$ is the inverse of $[a, b]$, and the mapping τ of s upon $[s+x, x]$ is an isomorphism of S into G^{\prime}.
$[a, b]=[a+x, x]-[b+x, x]=a \tau-b \tau$. Thus there is at most one way of extending the order of S to an ordering of G^{\prime}. Namely, define that $[a, b]$ is positive in G^{\prime} if $a>b$ in S. Let \mathscr{P} be the set of all positive elements in G^{\prime}. If $[a, a] \neq[b, c]$, then $b>c$ or $b<c$ in S, and hence $[b, c] \in \mathscr{P}$ or $-[b, c]$ $=[c, b] \in, \mathscr{P}$. If $[a . b]$ and $[c, d]$ belong to \mathscr{P}, then $a>b$ and $c>d$, and $[a, b]+[c, d]=[a+x, d+y]$ where $b+x=c+y$. Thus $a+x>b+x=c+y$ $>d+y$, and hence $[a, b]+[c, d] \in \mathscr{P}$. If $[a, b] \in \mathscr{P}$ and $[c, d] \in G^{\prime}$, then $X=[d, c]+[a, b]+[c, d]=[d, c]+[a+x, d+y]=[d+u, d+y+v]$ where $b+x=c+y$ and $c+u=a+x+v$. To show that $X \in \mathscr{P}$ it suffices to show that $u>y+v$. Pick r and s in S such that $u+r=y+s$. Then $a+x+v+r=c+u+r$ $=c+y+s=b+x+s$. If $v+r \geq s$, then $a+x+v+r>b+x+s$ because $a>b$. Thus $v+r<s$, and hence $y+v+r<y+s=u+r$. Therefore $y+v<u$.

Finally suppose that H is an o-group that is generated by S. Let $[a, b] \pi^{\prime}$ $=a-b$ for all $[a, b] \in G^{\prime}$. If $[a, b]=[c, d]$, then $a+x=c+y$ and $b+x=d+y$.

Thus $a-b=a+x-x-b=c+y-y-d=c-d$, and hence π^{\prime} is single valued. $([a, b]+[c, d]) \pi^{\prime}=[a+x, d+y] \pi^{\prime}=a+x-y-d$, where $b+x=c+y$. Thus $x-y=-b+c$ and $a+x-y-d=a-b+c-d=[a, b] \pi^{\prime}+[c, d] \pi^{\prime}$. If $0=[a, b] \pi^{\prime}$ $=a-b$, then $[a, b]$ is the identity of G^{\prime}. If $[a, b] \in \mathscr{P}$, then $a>b$ in S and hence in H. Thus $[a, b] \pi^{\prime}=a-b$ is positive in H. $S \leq G^{\prime} \pi^{\prime} \leq H$ and, since H is generated by $S, G^{\prime} \pi^{\prime}=H$. Therefore π^{\prime} is an o-isomorphism of G^{\prime} onto H. This completes the proof of the theorem.

Corollary I. S satisfies (*) if and only if S can be embedded in an ogroup $G=\{a-b: a, b \in S\}$.

For suppose that $G=\{a-b: a, b \in S\}$ and that a and b belong to S. Then $-a+b \in G$ and hence $-a+b=x-y$ for some $x, y \in S$. Thus $b+y=a+x$.

Corollary II. Suppose that S satisfies (*) and let G be the difference group of S. Then for a, b, c in S
(a) $a-b=c-d$ if and only if there exist x, y in S such that $a+x=c+y$ and $b+x=d+y$.
(b) $a-b+c-d=a+x-(d+y)$ for all x, y in S such that $b+x=c+y$.
(c) $a-b>c-d$ if and only if there exist x, y in S such that $a+x>c+y$ and $b+x=d+y$.

The equivalence of (i) and (ii) in the following corollary is well known and has been proven by Tamari, Alimov, and Nakada ([4] p. 309).

Corollary III. For a commutative semigroup A the following are equivalent.
(i) A can be embedded in an o-group.
(ii) A can be ordered.
(iii) A satisfies the cancellation law, and na=nb implies that $a=b$, for all a, b in A and all positive integers n.

Proof. Clearly (i) implies (ii), and since any commutative o.s. satisfies (*), (ii) implies (i). An easy argument shows that (ii) implies (iii). Finally assume that A is cancellative, and let $G=\{a-b: a, b \in A\}$ be the difference group of A. If $x=a-b \in G$ and $n x=0$, then $0=n x=n a-n b$, and hence $n a$ $=n b$. Thus by (iii) $a=b$, and $0=a-b=x$. Therefore (iii) implies that the difference group G of A exists and is abelian and torsion free. But this means that G can be ordered (see for example [7]).

Suppose that A is a cancellative commutative semigroup with identity 0. Then if A can be ordered, it is torsion free, but the converse is false. For consider the semigroup $B=N \oplus N$, where N is the additive semigroup of nonnegative integers. For (a, b) and (c, d) in B define that $(a, b) \sim(c, d)$ if $a \equiv c \bmod 2, b \equiv d \bmod 2$ and $a+b=c+d$. Then it is easy to show that \sim is a congruence relation. Let $[a, b]$ be the congruence class that contains (a, b). $B / \sim=\{[a, b]: a, b \in N\}=\{[2 n, 0],[2 n+1,0],[0,2 n+1]$ and $[2 n+1,1]$ for all $n \in N\}$ is a commutative semigroup with identity $[0,0]$. It is easy to show that B / \sim satisfies the cancellation law and is torsion free, but 2[1, 1] $=2[0,2]$ and $[1,1] \neq[0,2]$. Thus (iii) of the last corollary is not satisfied, and hence B / \sim cannot be ordered.

Let $P=\{x \in S: x+x>x\}$ and $N=\{x \in S: x+x<x\}$. The following five propositions are easy to verify (or see [1] for proofs).

1) $P=\{x \in S: x+s>s$ for all $s \in S\}=\{x \in S: s+x>s$ for all $s \in S\}$.
2) $N=\{x \in S: x+s<s$ for all $s \in S\}=\{x \in S: s+x<s$ for all $s \in S\}$.
3) P and N are subsemigroups of S.
4) $N<P$. That is, $n<p$ for all $n \in N$ and all $p \in P$.
5) If S does not have an identity, then $S=N \cup P$ and an identity 0 can be adjoined to S so that $T=S \cup\{0\}$ is a semigroup. Moreover, the order of S can be extended to an order of T in one and only one way, namely $N<0<P$. If we adjoin an identity to a pos. o.s we shall call the result a pos. o.s. with zero. An o.s. S is naturally ordered if for all a, b in S
(R) $a>b$ implies $a=b+x$ for some x in S, and
(L) $a>b$ implies $a=x+b$ for some x in S.

Note that a pos. o.s. P satisfies (R) if and only if $b+P=\{a \in P: a>b\}$ for all b in P.

Theorem 2-2. If S satisfies (R), then S satisfies (*) and hence S is an ordered subsemigroup of its difference group G. If S is naturally ordered, then S contains the semigroup of all positive elements of G. A pos. o.s. P is the semigroup of all positive elements of an o-group if and only if P is naturally ordered.

Proof. Consider a, b in S. If $a>b$, then $a=b+x$ for some x in S. Thus $a+b=b+(x+b)$. Similarly if $a \leq b$, then $a+u=b+v$ for some u, v in S. Therefore S satisfies (*). Suppose that S is naturally ordered, and consider a.
positive element y in the difference group G of S. $y=a-b$, where $a, b \in S$ and $a>b$. Thus $a=x+b$ for some $x \in S$, and hence $y=a-b=x \in \mathrm{~S}$.

Finally suppose that P is a naturally pos. o.s. and let \mathscr{P} be the semigroup of all positive elements of the difference group G of P. Then we have shown that $P \supseteq \mathscr{P}$. If $p \in P$, then $p+p>p$ in P and hence $p=p+p-p>0$ in G. Therefore $P \subseteq \mathscr{P}$.

Lemma 2-1. Let a, b, c be elements of S. If $a+b<b+a$, then $a+n b$ $<n b+a$ and $n a+n b \leq n(a+b)<n(b+a) \leq n b+n a$ for all positive integers n, where the equalities hold if and only if $n=1$.

This follows by a simple induction argument or see [6] for a proof.
Corollary. If p and q are positive integers and $p a=q b$, then $a+b=b+a$.
For if $a+b<b+a$, then $(p+1) a=a+p a=a+q b<q b+a=p a+a$ $=(p+1) a$, a contradiction.

Note that Lemma 2-1 and its corollary are true for an ordinal sum of o.s. For if $a+b<b+a$, then a and b belong to the same component. In [6] the following theorem (which we use later) is proven.

Theorem 2-3. For an o.s. S the following are equivalent. (i) There exists an o-isomorphism of S into a subseriigroup of the (naturally ordered) additive group R of real numbers. (ii) For each pair $a<b$ in S, there exist positive integers m and n such that $m a<(m+1) b$ and $(n+1) a<n b$.

Theorem 2-4. Suppose that the center $Z=\{z \in S: z+s=s+z$ for all $s \in S\}$ of S is not empty. Then there exists o.s. T such that

1) S is an ordered subsemigroup of T,
2) T contains the difference group G of Z and T is generated by S and G,
3) If T^{\prime} is an o.s. that satisfies 1) and 2), then there exists a unique oisomorphism π of T onto T^{\prime} such that $s \pi=s$ for all $s \in S$.

We outline a proof, leaving out the straightforward computations. Let $Q=S \times Z$ and for (a, b) and (c, d) in Q define that

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \text { and } \\
& (a, b) \sim(c, d) \text { if } a+d=b+c
\end{aligned}
$$

Then Q is a semigroup, and \sim is a congruence relation. As usual, denote the equivalence class containing (a, b) by $[a, b]$. For $[a, b]$ and $[c, d]$ in Q / \sim
define that $[a, b]>[c, d]$ if $a+d>b+c$. Then $(Q / \sim,+,>)$ is an o.s. and the mapping τ of $a \in S$ upon $[a+z, z]$, where z is a fixed element in Z is an o-isomorphism of S into $Q / \sim . G^{\prime}=\{[a, b]: a, b \in Z\}$ is the center of Q / \sim and the difference group of $Z \tau$. Clearly Q / \sim is generated $S \tau$ and G^{\prime}. Thus there exists an o-semigroup T that satisfies 1) and 2). Moreover G is the center of T. Finally suppose that T and T^{\prime} are o.s. that satisfy 1) and 2), and consider $t \in T . \quad t=s+g=s+z_{1}-z_{2}$, where $s \in S, g \in G$ and $z_{1}, z_{2} \in Z$. Define $t \sigma=\left[s+z_{1}, z_{2}\right]$. Then σ is on o-isomorphism of T onto Q / \sim. Similarly we define an o-isomorphism σ^{\prime} of T^{\prime} onto Q / \sim, and then $\pi=\sigma \sigma^{\prime-1}$ is the desired o-isomorphism of T onto T^{\prime}.

3. Positive ordered semigroups

Theorem 3-1. A semigroup S is an ordinal sum of pos. o.s. if and only if
(I) S is an ordered set, and for all a, b, c in S,
(II) if $a<b$, then $a+c \leq b+c$ and $c+a \leq c+b$,
(III) $a+a>a$,
(IV) if $a+b=a+c$, then $b=c$ or $a+b=a$, and if $b+a=c+a$, then $b=c$ or $b+a=a$.

Proof. It is easy to verify that an ordinal sum of pos. o.s. satisfies these four conditions. Conversely assume that S is a semigroup that satisfies (I), (II), (III) and (IV). Then S satisfies (III') $a+b \geq \max \{a, b\} \leq b+a$ for all a, b in S. For if $a+b<a$, then $a+2 b \leq a+b$. If $a+2 b<a+b$, then $2 b<b$, but this contradicts (III). If $a+2 b=a+b$, then by (IV) $2 b=b$ or $a+b=a$, a contradiction. Therefore $a+b \geq a$, and by a similar argument $a+b \geq b$.

For a, b in S we define that $a \sim b$ if $a+b>\max \{a, b\}<b+a$. Clearly \sim is symmetric, and by (III) it is reflexive. Suppose that $a \sim b$ and $b \sim c$. Then $c+b>b$, and thus $a+c+b \geq a+b$. If $a+c+b=a+b$, then by (IV) $c+b=b$ or $a+b=a$. Then $b+c$ or $a+b$, a contradiction. Thus $a+c+b$ $>a+b$, and hence $a+c>a$. By symmetry it follows that $a \sim c$, and hence \sim is an equivalence relation.

Let $\bar{a}=\{b \in A: b \sim a\}$, and consider b, c in \bar{a}. We show that $. a+b+c$ $>\max \{a, b+c\}$. By symmetry it follows that $b+c \in \bar{a}$, and hence that \bar{a} is a semigroup. If $a+b+c<a+b$, then $b+c<b$, and hence $b+c$. Thus $a+b+c$ $\geq a+b>a$. If $a+b+c<b+c$, then $a+b<b$, and hence $a+b$. If $a+b+c$
$=b+c$, then by (IV) $a+b=b$ or $b+c=c$, and hence $a+b$ or $b+c$. Therefore $a+b+c>b+c$.

We next show that \bar{a} is a pos. o.s. Consider x, y, z in \bar{a}. If $x<y$, then $x+z<y+z$. For otherwise $x+z=y+z$, and thus $x=y$ or $x+z=z$, a contradiction. By symmetry if $x<y$, then $z+x<z+y$. Thus \bar{a} is an o.s., and since \bar{a} satisfies (III) it is a pos. o.s.

In order to prove that S is the ordinal sum of the semigroups \bar{a} it suffices to show that if $a<b$ and $\bar{a} \neq \bar{b}$, then $a+b=b$ and $\bar{a}<\bar{b} . a+b \leq b$ because $\bar{a} \neq \bar{b}$, and by (III') $a+b \geq b$. Pick $a^{\prime} \in \bar{a}$ and $b^{\prime} \in \bar{b} . a^{\prime}+a+b=a^{\prime}+b$. Hence by (IV) $a^{\prime}+a=a^{\prime}$ or $a^{\prime}+b=b$. But $a^{\prime}+a>a$ because $a^{\prime} \sim a$. If $b^{\prime} \leq a^{\prime}$, then $b^{\prime}+b \leq a^{\prime}+b=b$, and hence $b^{\prime}+b$. Therefore $a^{\prime}<b^{\prime}$, and hence $\bar{a}<\bar{b}$.

For the rest of this section we investigate pos. o.s. The information obtained will then apply to semigroups that satisfy the four properties of Theorem 3-1. For the remainder of this section let P denote a pos. o.s.

Lemma 3-1. For all a, b in P and all positive integers $m,(m+1) a$ $+(m+1) b$ is greater than $m a+m b$ and $m b+m a$.

Proof. $\quad(m+1) a>m a$ and $(m+1) b>m b$. Thus $(m+1) a+(m+1) b$ $>m a+m b$. Suppose that $a \geq b$. If $a \geq m b$, then $(m+1) a+(m+1) b>(m+1) a$ $=a+m a \geq m b+m a$. If $a<m b$, then since $m b<(m+1) b \leq(m+1) a$, there exists a positive integer n such that $n a<(m+1) b \leq(n+1) a$. Thus $(m+1) a$ $+(m+1) b>(m+1) a+n a=(n+1) a+m a>m b+m a$. By an entirely similar argument if $a<b$, then $(m+1) a+(m+1) b>m b+m a$.

Lemma 3-2. For all a, b in P and all positive integers m :
(i) $(\mathrm{m}+1)(a+b)$ is greater than $m(a+b)$ and $m(b+a)$.
(ii) $(m+1) a+(m+1) b$ is greater than $m(a+b)$ and $m(b+a)$.
(iii) $(m+1)(a+b)$ is greater than $m b+m a$ and $m a+m b$.

Proof. (i) $(m+1)(a+b)=m(a+b)+a+b>m(a+b)$ and $(m+1)(a+b)$ $=a+m(b+a)+b>m(b+a)+b>m(b+a)$. (ii) If $a+b \geq b+a$, then by Lemma 2-1, $(m+1) a+(m+1) b \geq(m+1)(a+b)$, and by (i) $(m+1)(a+b)$ $>m(a+b)$ and $m(b+a)$. If $a+b<b+a$, then by Lemma 3-1, $(m+1) a$ $+(m+1) b>m b+m a$, and by Lemma 2-1, $m b+m a \geq m(b+a)>m(a+b)$. (iii) If $b+a \geq a+b$, then by Lemma $2-1,(m+1)(a+b) \geq(m+1) a+(m+1) b$, and by Lemma $3-1,(m+1) a+(m+1) b>m a+m b$ and $m b+m a$. If $a+b$
$>b+a$, then by Lemma 2-1, $(m+1)(a+b)>(m+1)(b+a)>(m+1) b$ $+(m+1) a$, and by Lemma 3-1, $(m+1) b+(m+1) a>m b+m a$ and $m a+m b$.

Remark. Lemmas 3-1 and 3-2 remain true if P is an ordinal sum of pos. o.s. In fact, the given proofs apply.

For a and b in P we define that $a \sigma b$ if $(m+1) a>m b$ and $(m+1) b>m a$ for all positive integers m.

1) σ is a congruence relation. For clearly σ is symmetric and $a \sigma a$ because $(m+1) a>m a$. If $a \sigma b$ and $b \sigma c$, then $(m+2) a>(m+1) b>m c$ and $(m+2) c$ $>(m+1) b>m a$ for all m. Let $m=2 n$, then $2(n+1) a>2 n c$ and $2(n+1) c$ $>2 n a$. Hence $(n+1) a>n c$ and $(n+1) c>n a$, and $a \sigma c$. Finally suppose that $a \sigma b$. By Lemma 3-2, $(m+3)(a+c)>(m+2) a+(m+2) c>(m+1) b+(m+1) c$ $>m(b+c)$ for all m. Let $m=3 m$, then $3(n+1)(a+c)>3 n(b+c)$. Thus $(n+1)(a+c)>n(b+c)$ and similarly $(n+1)(b+c)>n(a+c)$ for all n. Therefore $(a+c) \sigma(b+c)$.
2) The semigroup P / σ is commutative. For by (i) of Lemma 3-2, $(m+1)(a+b)>m(b+a)$ and $(m+1)(b+a)>m(a+b)$ for all m. Therefore $(a+b) \sigma(b+a)$.

For the remainder of this section we shall denote the elements of P by a, b, c and the elements of P / σ by A, B, C. Moreover, m, n, p, q will always denote positive integers. If ρ is a congruence relation over a semigroup S, then ρ^{*} will always denote the natural homomorphism of S onto S / ρ. P / σ is an ordinal sum of pos. o.s., and this can be shown by verifying that P / σ satisfies the four properties of Theorem 3-1. But we wish to show something stronger. Namely, that P / σ is an ordinal sum of pos. o.s. each of which is a subsemigroup of positive reals.
3) If $a>b$, then $a \sigma^{*}=b \sigma^{*}$ or $x>y$ for all x in $a \sigma^{*}$ and y in $b \sigma^{*}$. For suppose that there exists an x in $a \sigma^{*}$ and y in $b \sigma^{*}$ such that $y \geq x$. $(m+2) x$ $>(m+1) a>(m+1) b>m y$. Now let $m=2 n$ and cancel. Then $(n+1) x>n y$ for all n and also $(n+1) y \geq(n+1) x>n x$ for all n. Thus $x \sigma y$, and $a_{\sigma}{ }^{*}=x_{\sigma}{ }^{*}$ $=y \sigma^{*}=b \sigma^{*}$. For $a \sigma^{*}$ and $b \sigma^{*}$ in P / σ we define that $a \sigma^{*}<b \sigma^{*}$ if $a \sigma^{*} \neq b \sigma^{*}$ and $a<b$ in P. Then by (3) this definition is independent of the choice of representatives a and b.

Lemma 3-3. (i) P / σ is an ordered set and $A<B$ implies that $A+C$
$\leq B+C$ for all A, B, C in P / σ. (ii) $A<A+A$. (iii) If $A<B$, then $n A<n B$.
Proof. (i) If $a \sigma^{*}<b \sigma^{*}$ and $b \sigma^{*}<c \sigma^{*}$, then $a<b$ and $b<c$. Hence $a<c$ and $a \sigma^{*} \leq c \sigma^{*}$. If $a \sigma^{*}=c \sigma^{*}$, then $a \in c \sigma^{*}$, but then $a>b$, a contradiction. Thus $a \sigma^{*}<b \sigma^{*}$. If $a \sigma^{*} \neq b \sigma^{*}$, then $a<b$ or $b<a$, and so $a \sigma^{*}<b \sigma^{*}$ or $b \sigma^{*}<a \sigma^{*}$. (ii) Clearly $A \leq 2 A$. Suppose that $2 A=A=a \sigma^{*}$. Then $a \sigma 2 a$, and hence $(m+1) a>(2 m) a$ for all m. In particular for $m=1,2 a>2 a$, a contradiction. Thus $A<A+A$. (iii) Clearly $n A \leq n B$. Suppose that $n A=n B$ where $a \sigma^{*}=A$ and $b \sigma^{*}=B$. Then $n a \sigma n b$, and so $(m+1) n a>m n b$ and $(m+1) n b>m n a$ for all m. But then $(m+1) a>m b$ and $(m+1) b>m a$. Thus $a \sigma b$, and hence $A=a \sigma^{*}=b \sigma^{*}=B$, a contradiction.

For A and B in P / σ we define that $A \tau B$ if there exist positive integers m and n such that $m A>B$ and $n B>A$.
4) τ is an equivalence relation. For clearly τ is symmetric and by (ii) of Lemma 3-3, $2 A>A$. Thus $A \tau A$. If $A \tau B$ and $B \tau C$, then $n A>B, p B>A$, $m B>C$ and $q C>B$ for some positive integers m, n, p, q. By (iii) of Lemma 3-3, $m n A>m B>C$ and $p q C>p B>A$. Therefore $A \tau C$.

Let $A \tau^{*}$ be the equivalence class that contains A. We shall show later that τ is a congruence relation, and so τ^{*} is the natural homomorphism of P / σ onto $(P / \sigma) / \tau$.
5) If $A<B$ and $A \tau^{*} \neq B \tau^{*}$, then $A \tau^{*}<B \tau^{*}$ and $A+B=B$. For suppose that there exist X in $A \tau^{*}$ and Y in $B \tau^{*}$ such that $X \geq Y$. Then $n X \geq n Y>B$ and $m B \geq m A>X$ for some m and n. Thus $X \tau B$, and hence $A \tau^{*}=X \tau^{*}=B \tau^{*}$. $A=a \sigma^{*}$ and $B=b \sigma^{*}$. Since $a+b>b,(m+1)(a+b)>m(a+b)>m b$ for all m. Thus it suffices to show that $(m+1) b>m(a+b)$ for all m. Now $n A<B$ for all n, for otherwise $A \in B \tau^{*}$. Thus $n a<b$ for all n. $(n+2) b=b+(n+1) b$ $>(n+1) a+(n+1) b>n(a+b)$. Now let $n=2 m$ and cancel to get $(m+1) b$ $>m(a+b)$. Thus $A+B=B$.
6) If $A<B$ and $A \tau C$, then $A+C<B+C$. For $A=a \sigma^{*}, B=b \sigma^{*}, C=c \sigma^{*}$, $a<b$ and $(n+1) a<n b$ for some positive integer n. By Lemma 3-3, $A+C$ $\leq B+C$. Suppose (by way of contradiction) that $A+C=B+C$. Then $(m+3) a$ $+(m+3) c>(m+2)(a+c)>(m+1)(b+c)>m b+m c$. Therefore $(m+3) a$ $+3 c>m b$ for all m. Since $A \tau C$, there exists an integer h such that $h A$ $>C$ and $3 h A>3 C$ by Lemma .3-3. Let $k=3 h$, then $k a>3 c$. $(k+3) n b$
$>(k+3)(n+1) a=[(k+3) n+3] a+k a>[(k+3) n+3] a+3 c$. Now let $m=(k+3) n$. Then $m b>(m+3) a+c$, a contradiction.

Theorem 3-2. For each A in $P / \sigma, A \tau^{*}$ is an ordered subsemigroup of P / σ that is o-isomorphic to an additive semigroup of positive real numbers. P / σ is an ordinal sum of the pos. o.s. $A \tau^{*}$.

Proof. Consider B, C in $A \tau^{*}$. $A=a \sigma^{*}, B=b \sigma^{*}$ and $C=c \sigma^{*}$, where a, b, c $\in P$. There exist positive integers m, n, r, s such that $m B>A, n A>B, r C>A$ and $s A>C$. Thus $m b>a, n a>b, r c>a$ and $s a>c$. Let $q=\max \{m, r\}$. Then $q b>a$ and $q c>a$. Thus $(q+1)(b+c)>q b+q c>2 a>a$, and by Lemma $3-3,(q+2)(B+C)>(q+1)(B+C) \geq A$. Let $t=\max \{n, s\}$. Then $t a>b$ and $t a>c$. Thus $2 t a>b+c$ and $(2 t+1) A>2 t A \geq B+C$. Therefore $B+C \in A \tau^{*}$, and so $A \tau^{*}$ is a semigroup. By Lemma 3-3, $A \tau^{*}$ is ordered, and thus by (6) $A \tau^{*}$ is an o.s. In order to prove that A^{*} is o-isomorphic to a semigroup of positive real numbers, it suffices by Theorem 2-3 to show that if $X, Y \in A \tau^{*}$ and $X<Y$, then there exist positive integers m and n such that ($m+1$) $X<m Y$ and $n X<(n+1) Y$.
$X=x \sigma^{*}$ and $Y=y \sigma^{*}$ for some x and y in P. Since $X<Y, n X<n Y$ $<(n+1) Y$ for all n. Hence $n x<(n+1) y$ for all n. Suppose (by way of contradiction) that ($m+1$) $X \geq m Y$ for all m. If for some m, $(m+1) X=m Y$, then $(m+2) X=(m+1) X+X<m Y+Y=(m+1) Y$. Therefore $(m+1) X$ $>m Y$ for all m. Thus $(m+1) x>m y$ and $m x<(m+1) y$ for all m. Therefore $X=Y$, a contradiction. Thus by Theorem 2-3 there exists an isomorphism π of $A \tau^{*}$ into the additive group of reals. But for $B \in A \tau^{*}, B<2 B$. Hence $B \pi$ $<2(B \pi)$. Therefore $B \pi$ is a positive real number. It follows at once from (4) and (5) that P / σ is the ordinal sum of the $A \tau^{*}$.

Corollary. τ is a congruence relation on P / σ.
Proof. Consider X, Y, Z in P / σ, and assume that $X \tau Y$. If $Z \tau X$, then since $X \tau^{*}$ is a semigroup $X+Z$ and $Y+Z$ belong to $X \tau^{*}$. Thus $(X+Z) \tau(Y+Z)$. Suppose that $X \tau^{*} \neq Z \tau^{*}$. If $Z<X$, then $Z \tau^{*}<X \tau^{*}=Y \tau^{*}$. Thus by (5) $X+Z$ $=X$ and $Y+Z=Y$. If $X<Z$, then $Y \tau^{*}=X \tau^{*}<Z \tau^{*}$. Thus by (5) $X+Z=Z$ $=Y+Z$. In either case $(X+Z) \tau(Y+Z)$.

There is a natural $1-1$ order preserving correspondence between the congruence relations of P / σ and the congruence relations of P that contain δ,

Therefore τ can also be considered as a congruence relation on P, where $a \tau b$ if there exist positive integers m and n such that $m a>b$ and $n b>a$. Consider X and Y in $P / \tau . \quad X=x \tau^{*}$ and $Y=y \tau^{*}$ for some x and y in P. We define that $X<Y$ if $X \neq Y$ and $x<y$ in P. Then P / τ is an ordered set and τ^{*} is an o homomorphism of P onto P / τ. Denote the addition in P / τ by [+]. Then since $X+Y \subseteq \max [X, Y]$ in $P, X[+] Y=\max [X, Y]$ in $P / \tau . \quad X$ is a subsemigroup of P and X / σ is σ-isomorphic to a subsemigroup of the positive reals. Thus in Clifford's terminology [3], P / τ is a semilattice and P is a semilattice of the semigroups $X \in P / \tau$. In particular, $P-X$ is a subsemigroup of P and the number of components $A \sigma^{*}$ of P / σ is equal to the number of elements in P / τ which we shall denote by $|P / \tau|$.

A subsemigroup C of P is convex if $a \in P, c \in C$ and $a<c$ imply that $a \in C$. It is easy to show that the set \mathscr{S} of all convex subsemigroups of P is ordered by inclusion, and that if A and B are convex subsemigroups of P and $A \supset B$, then $A \backslash B$ is a semigroup. Moreover if A covers B, and $a \in A \backslash B$, then $a \tau^{*}=A \backslash B$. For each $a \in P$ let $P^{a}=\left\{x \in P: x \tau^{*} \leq a \tau^{*}\right\}$. Then P^{a} is a convex subsemigroup of P and if C is a convex subsemigroup of P, then $C=\bigcup_{a \in C} P^{a}$. Thus the order type of \mathscr{S} is completely determined by P / τ.

Let G be an o-group and let Γ be the set of all pairs of convex subgroups G^{\top}, G_{\curlyvee} of G such that G^{\mp} covers G_{γ}. Define that $\left(G_{\alpha}, G^{\alpha}\right)<\left(G_{\beta}, G^{3}\right)$ if $G^{x} \leq G_{\beta}$. Then Γ is ordered, and the order type of Γ is the rank of G.

Theorem 3-3. If P is a naturally pos. o.s., then the rank of the difference grout G of P equals the order type of P / τ.

For by Theorem 2-2, P is the semigroup of all positive elements of G, and a convex subgroup of G is determined by its set of positive elements. Thus if $\left(G_{\because}, G^{i}\right) \in I$, then $G_{\curlyvee} \cap P$ and $G^{\ddot{\gamma}} \cap P$ are convex subsemigroups of P and $G^{\check{ }} \cap P$ covers $G_{i} \cap P$. Moreover $\left(G^{\ddot{ }} \cap P\right) \backslash\left(G_{\because} \cap P\right)=a \tau^{*}$, where $a \in\left(G^{r} \cap P\right)$ $\backslash(G \because \cap P)$.

Remark. If P is a commutative naturally pos. o.s. and the components $A \tau^{*}$ of P / σ are d-closed, then the c-closure C of the difference group G of P is uniquely determined by P / σ. For C is isomorphic to the Hahn group $H\left(\Gamma, R_{r}\right)$, where Γ is an ordered set with order type equal to the rank of G and the $R_{\text {; }}$ are isomorphic to the components $G^{\dagger} / G_{;}$of G (see [5] for these concepts). But Γ is determined by P / σ and the components of G are just the difference
groups of the components of P / σ.
Let P be a positive o.s. that satisfies ($*$) and let G be the difference group of P. It should be made clear that there is virtually no relationship between the order type of P / τ and the rank of G, even if G is abelian. For example let $G=R \oplus R \oplus R$, where R is the additive group of real numbers. Define (a, b, c) in G positive if $c>0$ or $c=0$ and $b>0$ or $c=b=0$ and $a>0$. Let $P=\{(a, b, c)$ $\in G: c>0\rangle$. Then G is the difference group of $P,|P / \tau|=1$, and the rank of G is 3. By generalizing this example it is easy to see that for $|P / \tau|=1$ the rank of G can be any given order type. But we shall show (Theorem 5-1) that P does determine the order type of the set of all convex normai subgroups of G.
4. Relationships between P and P / σ. Throughout this section let P be a pos. o.s. A semigroup Q is a t-semigroup if Q is an ordered set and $m a<(m+1) a$ for all a in Q and all positive integers m.

Lemma 4-1. Let ρ^{*} be an o-homomorphism of Ponto a t-semigroup Q. For a and b in P define $a \rho b$ if $a \rho^{*}=b \rho^{*}$. Then ρ is a congruence relation on P and $\rho \subseteq \sigma$.

Proof. If $a \rho b$, then $a \rho^{*}=b \rho^{*}$. Hence $(m+1)\left(a \rho^{*}\right)>m\left(b \rho^{*}\right)$ and $(m+1) \cdot$ $\left(b \rho^{*}\right)>m\left(a \rho^{*}\right)$. Thus since ρ^{*} is an o-homomorphism, $(m+1) a>m b$ and $(m+1) b>m a$ for all m. Therefore $a \sigma b$.

Now consider $q \in Q . \quad q=a \rho^{*}$ for some $a \in P$. Define $q \alpha=a \sigma^{*}$. Then by the usual arguments α is an o-homomorphism of Q onto P / σ such that $p \rho^{*} \alpha$ $=p \sigma^{*}$ for all $p \in P$. We have the following diagram and theorem.

Theorem 4-1. P / σ is the smallest o-homomorphic image of P that is a t semigroup. In particular, P / σ is the smallest o-homomorphic image of P that is an ordinal sum of pos. o.s.

Remarks. (1) Let ρ be a congruence relation on P. Then P / ρ is a t semigroup and ρ^{*} is an o-homomorphism if and only if for all $a, b \in P:(A)$ If $a<b$, then $a \rho^{*}=b \rho^{*}$ or $x<y$ for all $x \in a \rho^{*}$ and $y \in b \rho^{*}$, and $m a$ (NOT ρ)
$(m+1) a$ for all m. Thus σ is the join of all congruence relations that satisfy (A). (2) If $|P / \tau|=1$ and ρ is a congruence relation on P such that P / ρ is an ordinal sum of pos. o.s. and ρ^{*} is an o-homomorphism, then P / ρ is a pos. o.s..
5. Relationship between P and its quotient group G. Let P be a pos. o.s. and let $\Delta=\{\rho: \rho$ is a congruence relation on $P, P / \rho$ is a pos. o.s. or a pos. o.s. with zero, and ρ^{*} is an o-homomorphism $\}$.

Lemma 5-1. Δ is ordered by inclusion.
Proof. Consider $\alpha, \beta \in \Delta$ and suppose (by way of contradiction) that there exist $a, b, c, d \in P$ such that $a \alpha b, a(\operatorname{NOT} \beta) b, c(\operatorname{NOT} \alpha) d$ and $c \beta d$. Case I. $a>b$ and $c>d$. Then $a \beta^{*}>b \beta^{*}$ and $c \alpha^{*}>d \alpha^{*}$. If $a+d \leq b+c$, then $a \beta^{*}+d \beta^{*}$ $\leq b \beta^{*}+c \beta^{*}$ and $d \beta^{*}=c \beta^{*}$. Thus $a \beta^{*} \leq b \beta^{*}$, a contradiction. If $a+d>b+c$, then $a \alpha^{*}+d \alpha^{*} \geq b \alpha^{*}+c \alpha^{*}$ and $a \alpha^{*}=b \alpha^{*}$. Thus $d \alpha^{*} \geq c \alpha^{*}$, a contradiction. Similarly in the other three cases we get a contradiction.

For the remainder of this section we assume that P is a pos. o.s. which satisfies (*). In particular, the results obtained are valid for commutative pos. o.s. Let G be the difference group of P and let π be an o-homomorphism of P into a pos. o.s. with zero. Then clearly $P \pi$ satisfies (*). Let H be the difference group of $P \pi$ and for $g=a-b$ in G define $g \bar{\pi}=a \pi-b \pi$.

Lemma 5-2. $\bar{\pi}$ is the unique extension of π to an o-homomorphism of G onto H.

Proof. If $a-b=c-d$, where $a, b, c, d \in P$, then by Corollary II of Theorem 2-1, there exist $x, y \in P$ such that $a+x=c+y$ and $b+x=d+y$. Thus $a \pi+x \pi$ $=c \pi+y \pi$ and $b \pi+x \pi=d \pi+y \pi$, and so by applying this corollary again, $a \pi-b \pi$ $=c \pi-d \pi$. Thus $\bar{\pi}$ is single valued. The lemma now follows by repeated use of Corollary II and straightforward computation.

It is well known and easy to verify that the kernel of any o-homomorphism of an o-group is a convex normal subgroup. Let \mathscr{C} be the set of all convex normal subgroups of G except G itself. Then \mathscr{C} is ordered with respect to inclusion.

Theorem 5-1. There exists a 1-1 order preserving mapping of Δ onto \mathscr{C}.
Proof. For each $\rho \in \Delta$ let $\bar{\rho}$ be the unique extension of ρ^{*} to G (which is assured by Lemma 5-2), and let $\rho \eta=K(\bar{\rho})=\{x \equiv G: x \bar{\rho}=0\}$. We wish to show
that η is the desired mapping. Since $\bar{\rho}$ is uniquely determined by ρ, η is single valued. Let $\alpha, \beta \in \Delta$ and $\alpha \subseteq \beta$. If $x \in K(\bar{\alpha})$, then $x=a-b$, where $a, b \in P$ and $0=x \bar{\alpha}=(a-b) \bar{\alpha}=a \bar{\alpha}-b \bar{\alpha}=a \alpha^{*}-b \alpha^{*}$. Thus $a \alpha b$ and hence $a \beta b$. But then $0=a \beta^{*}-b \beta^{*}=x \bar{\beta}$. Therefore $x \in K(\bar{\rho})$ and $\alpha \eta \subseteq \beta \eta$. If $\alpha \neq \beta$, then there exist $a, b \in P$ such that $a \beta b$ but not $a \alpha b$, but this means that $a-b \in K(\bar{\beta}) \backslash K(\bar{\alpha})$. Therefore η is $1-1$ and order preserving. Next consider $C \in \mathscr{C}$ and let N be the natural o-homomorphism of G onto G / C. Let ρ be the congruence relation induced on P by $N(a \rho b$ if and only if $a N=b N)$. Define that $a \rho^{*}>b \rho^{*}$ if $a+C$ $>b+C$. Then it follows by a straightforward computation that $\rho \in \Delta$ and $\rho \eta=C$. Therefore η is $a 1-1$ orderpreserving mapping of Δ onto \mathscr{C}.

If $|P / \tau|=1$ or equivalently if P / σ is o-isomorphic to a subsemigroup of positive reals, then $\sigma \in \Delta$ and $\Delta=\{\rho: \rho$ is a congruence relation on $P, P / \rho$ is a pos. o.s. and ρ^{*} is an o-homomorphism $\}$.

References

[1] N. G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576.
[2] C. G. Chehata, On ordered semigroups, J. London Math. Soc. 28 (1953), 353-356.
[3] A. H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504.
[4] A. H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64 (1958), 305-316.
[5] P. Conrad, Extensions of ordered groups, Proc. Amer. Math. Soc. 6 (1955), 516-528.
[6] P. Conrad, Semigroups of real numbers, (to appear).
[7] C. J. Everett, A note on a result of L. Fuchs on ordered groups, Amer. J. Math. 73 (1950), 216.
[8] O. Ore, Linear equations in non-commutative fields, Annals Math. 32 (1931), 463-477.
[9] A. A. Vinogradov, On the theory of ordered semigroups, Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz. Mat. Nauki 4 (1953) 19-21.

Tulane University

