ON THE HECKE-LANDAU L-SERIES

To Zyoiti Suetuna on his 60th Birthday

TIKAO TATUZAWA

§ 1. Introduction

Let k be an algebraic number field of degree $n=r_{1}+2 r_{2}$ with r_{1} real conjugates $k^{(l)}\left(1 \leqq l \leqq r_{1}\right)$ and \boldsymbol{r}_{2} pairs of complex conjugates $k^{(m)}, k^{\left(m+r_{2}\right)}\left(r_{1}+1 \leqq m\right.$ $\leqq r_{1}+r_{2}$). Let 0 be the integral domain consisting of all integers in k. We introduce a generalized module \tilde{f} composed of an ordinal integral ideal \mathfrak{f} in k and an infinite part \mathfrak{j}_{∞} which is a product of some infinite prime spots $p_{\infty}^{(l)}$, say,

$$
\begin{equation*}
\tilde{\mathfrak{f}}=\mathfrak{f} \cdot \mathfrak{f}_{\infty}, \quad \mathfrak{f}_{\infty}=\mathfrak{p}_{\infty}^{(1)} \mathfrak{p}_{\infty}^{(2)} \cdots \mathfrak{p}_{\infty}^{(q)} \quad\left(0 \leqq q \leqq r_{1}\right) . \tag{1}
\end{equation*}
$$

For $\alpha \in k$, the (multiplicative) congruence

$$
\begin{equation*}
\alpha \equiv 1 \quad(\bmod \tilde{f}) \tag{2}
\end{equation*}
$$

means that $\alpha \equiv 1(\bmod \mathfrak{f})$ and α is \mathfrak{f}_{∞}-positive namely $\alpha^{(1)}>0, \alpha^{(2)}>0, \ldots$, $\alpha^{(q)}>0$. Let A be the multiplicative group constituted by ideals in k prime to f and S be the group of principal ideals generated by α satisfying (2). From an abelian character of the group A / S, we can define a character $\chi \bmod \tilde{f}$ in a similar way as in the rational case. Let \widetilde{g} be a divisor of \tilde{f}. We say that $\%$ is also defined by $\widetilde{\mathfrak{g}}$, whenever the assumption $\alpha \equiv 1(\bmod \widetilde{\mathfrak{g}}),(\alpha, \mathfrak{f})=\mathfrak{D}$, entails the conclusion $\chi(\alpha)=1$. There exists the minimal (with respect to the number of prime factors) generalized module which defines $\%$ This is called the conductor of $\%$. If the conductor of $\chi \bmod \tilde{f}$ is \tilde{f} itself, then χ is called a primitive character $\bmod \tilde{\mathfrak{f}}$.

From now on let χ be a primitive character $\bmod \tilde{\mathfrak{f}}$. Let b be the ramification ideal (different) of k. Let Ω be an absolute ideal class of k. We denote by $\hat{\mathscr{R}}$ the ideal class $\Omega^{-1} \Omega^{*}$ where Ω^{*} is an absolute ideal class containing df . Let $s=\sigma+$ it be a complex variable. Let $L(s, \Omega, \%)$ and $L(s, \chi)$ be respectively the functions defined by

Received September 7, 1959.

$$
\sum_{\mathfrak{a} \in \mathfrak{\Re}, \mathfrak{a} \neq 0} \%(\mathfrak{a}) / N(\mathfrak{a})^{s}, \quad \sum_{\mathfrak{a}, a \neq 0} \not \%(\mathfrak{a}) / N(\mathfrak{a})^{s}
$$

for $\sigma>1$, the summation running over all non-zero integral ideals in \mathscr{R} and in k respectively, Similarly we define that

$$
\zeta_{k}(s, \Re)=\sum_{a \in \Re, a \neq 0} 1 / N(\mathfrak{a})^{s}, \quad \zeta_{k}(s)=\sum_{a, a \neq 0} 1 / N(\mathfrak{a})^{s}
$$

for $\sigma>1$. We put

$$
A(\chi)=\pi^{-n} d N(\mathfrak{\}})
$$

where $d=N(\delta)$ is the discriminant of k. For convenience, we put

$$
a_{p}= \begin{cases}1 & 1 \leqq p \leqq q \\ 0 & q+1 \leqq p \leqq n\end{cases}
$$

where q has the same meaning as in (1). Further we define that

$$
\Gamma(s, \chi)=\int_{0}^{\infty} \cdots \int \exp \left(-\sum_{p=1}^{n} z_{p}\right) \prod_{p=1}^{n} z_{p}^{\left(s+a_{p}\right) / 2} \frac{d z_{1} d z_{2} \cdots d z_{r+1}}{z_{1} z_{2} \cdots z_{r+1}}
$$

for $\sigma>0$, where $r_{1}+r_{2}=r+1$ and

$$
\begin{equation*}
z_{p}=z_{p+r_{2}} \quad\left(r_{1}+1 \leqq p \leqq r_{1}+r_{2}\right) \tag{3}
\end{equation*}
$$

We shall know in $\S 3$ that

$$
\begin{equation*}
\Gamma(s, \chi)=2^{-r_{2} s} \Gamma\left(\frac{s+1}{2}\right)^{q} \Gamma\left(\frac{s}{2}\right)^{r_{1}-q} \Gamma(s)^{r_{2}} \tag{4}
\end{equation*}
$$

Now we put

$$
\phi(s, \not \chi)=\frac{(2 \pi)^{r_{2}}}{\sqrt{d}} A(\not \chi)^{s / 2} \Gamma^{\prime}(s, \not \chi) L(s, \chi)
$$

This function is regular for all s with one exception $s=1$ (simple pole) in the case of the Dedekind zeta-function $\zeta_{k}(s)(\tilde{f}=0, \chi$ principal $)$, moreover it satisfies the functional equation

$$
\begin{equation*}
\phi(s, \not \chi)=I(\mathcal{Z}) \phi(1-s, \bar{\chi}) \tag{5}
\end{equation*}
$$

where $I(\chi)$ will be defined in $\S 2$.
For an integral ideal \mathfrak{a} we define that

$$
\begin{gather*}
I(s, \not, \mathfrak{a})=\int \cdots \int \exp \left(-\sum_{p=1}^{n} z_{p}\right) \prod_{p=1}^{n} z_{p}^{\left(s+a_{p}\right) / 2} \frac{d z_{1} d z_{2} \cdots d z_{r+1}}{z_{1} z_{2} \cdots z_{r+1}} \\
z_{p}>0, \prod_{p=1}^{n} z_{p} \geqq N(\mathfrak{a})^{2} / A(\%) \tag{6}
\end{gather*}
$$

for $\sigma>0$ with (3). As we shall prove later, (6) and the series

$$
\begin{equation*}
\psi(s, \chi)=\frac{(2 \pi)^{r_{2}}}{\sqrt{d}} A(\chi)^{s / 2} \sum_{\mathfrak{a}, a \neq 0} \chi(\mathfrak{a}) \Gamma(s, \chi, \mathfrak{a}) / N(\mathfrak{a})^{s} \tag{7}
\end{equation*}
$$

(the summation runs over all non-zero integral ideals in k) are absolutely convergent for all s and represent integral functions. Further we obtain

$$
\begin{equation*}
\phi(s, \not \subset)=-\frac{2^{r_{1}+r_{2}} \pi^{r_{2}} R h}{w \sqrt{d}} \frac{E(\nsim)}{s(1-s)}+\psi(s, \chi)+I(\chi) \psi(1-s, \bar{\chi}) \tag{8}
\end{equation*}
$$

where R is the ragulator of k, w is the number of roots of unity contaned in k, h is the class number of k, and

$$
E(\%)= \begin{cases}1 & \text { if } \tilde{\mathrm{f}}=\mathfrak{v}, \chi \text { principal } \\ 0 & \text { otherwise } .\end{cases}
$$

Since

$$
\begin{equation*}
I(\chi) I(\bar{\chi})=1 \tag{9}
\end{equation*}
$$

(which will be proved in §2), (5) can be derived from (8), so that (8) is finer than (5). In the case of the Riemann zeta-function, (8) implies

$$
\begin{gathered}
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=-\frac{1}{s(1-s)} \\
+\pi^{-s / 2} \sum_{n=1}^{\infty} n^{-s} \int_{\pi n^{2}}^{\infty} e^{-z} z^{(s / 2)-1} d z+\pi^{-(1-s) / 2} \sum_{n=1}^{\infty} n^{-1+s} \int_{\pi n^{2}}^{\infty} e^{-z} z^{((1-s) / 2)-1} d z
\end{gathered}
$$

In this paper we shall prove (7) and (8).

§ 2. On the Gauss sum

For every $\xi \neq 0$ in $k, \eta=\eta(\xi)$ is defined such that

$$
\eta \equiv 1(\bmod \mathfrak{f}), \quad \eta \equiv \xi\left(\bmod \mathfrak{f}_{\infty}\right) .
$$

Let \mathfrak{a} be any ideal (fractional or integral) in k and $\xi \in \mathfrak{a}$. We define

$$
\psi(\mathfrak{a}, \xi)= \begin{cases}\chi\left(\frac{\xi}{\mathfrak{a}} \eta(\xi)\right) & \xi \neq 0 \tag{10}\\ 0 & \xi=0, \mathfrak{f} \neq 0 \\ \bar{\chi}(\mathfrak{a}) & \xi=0, \mathfrak{f}=0\end{cases}
$$

and put

$$
\begin{equation*}
\psi(\xi)=\psi(0, \hat{\xi}) . \tag{11}
\end{equation*}
$$

When $\%$ is replaced by $\bar{\chi}$ in (10) and (11), we write $\bar{\psi}$ instead of ψ. If $\eta_{l}(1 \leqq l$ $\leqq q$) is an integer in k such that

$$
\begin{array}{cc}
& \eta_{l} \equiv 1 \\
\eta_{l}^{(l)}<0, & (\bmod \mathfrak{f}) \\
\eta_{l}^{(m)}>0 & (m \neq l, 1 \leqq m \leqq q),
\end{array}
$$

then

$$
\chi\left(\eta_{l}\right)=-1 .
$$

Were it $\chi\left(\eta_{l}\right)=1, \chi$ would be defined by \tilde{f}_{l} where $\tilde{f}_{l}=\mathfrak{f} \cdot \mathfrak{f}_{l \infty}, \tilde{f}_{l \infty}=\mathfrak{f}_{\infty} / p_{\infty}^{(l)}$. Indeed, if $\alpha \equiv 1\left(\bmod \tilde{f}_{l}\right)$ then α or $\alpha \eta_{l}$ is congruent to $1 \bmod \tilde{f}$, whence it follows that $\%(\alpha)$ or $\%\left(\alpha \eta_{l}\right)$ is equal to 1 and this implies $\%(\alpha)=1$. If we write for $\xi \in k$

$$
P(\xi)= \begin{cases}\xi^{(1)} \xi^{(2)} \cdots \xi^{(q)} & q>0 \\ 1 & q=0\end{cases}
$$

then we can prove that

$$
\begin{equation*}
\chi(\eta(\xi))=\operatorname{sgn} P(\xi) \tag{12}
\end{equation*}
$$

by the aid of auxiliary integers $\eta_{l}(1 \leqq l \leqq q)$ (see [2], p. 75).
We take λ, μ such that

$$
\begin{array}{llll}
\lambda & \mathfrak{f}_{\infty} \text { positive, } & \lambda=\mathfrak{b f} \cdot \mathfrak{g}, & (\mathfrak{g}, \mathfrak{f})=\mathfrak{d}, \\
\mu & \mathfrak{f}_{\infty} \text {-positive, } & \mu=\mathfrak{g} \cdot \mathfrak{y}, & (\mathfrak{n}, \mathfrak{f})=\mathfrak{d},
\end{array}
$$

where g and \mathfrak{g} are integral ideals in k, and set

$$
\begin{equation*}
F(\chi)=\chi(\mathfrak{y}) \sum_{\beta} \chi(\beta) \exp \left\{2 \pi i S\left(\frac{\beta \mu}{\lambda}\right)\right\}, \tag{13}
\end{equation*}
$$

where β runs over a complete system of residues mod \oint which are all \oint_{∞}-positive. By the definition of b it is obvious that \sum_{β} is independent of the choice of a system. If $\nu \in(\mathrm{bf})^{-1}$, then (see [2], p. 76) we get, from (13),

$$
\sum_{\beta} \nsim(\beta) \exp \{2 \pi i S(\beta \nu)\}= \begin{cases}\bar{\chi}(\eta(\nu) \nu \delta f) F(\chi) & \nu \neq 0 \tag{14}\\ \bar{\chi}(\delta f) F(\chi) & \nu=0 .\end{cases}
$$

We denote by $F(\nu, \%)$ the left-hand side of (14). There exists a number ν_{0} in k such that

$$
\begin{equation*}
\nu_{0} \quad \mathfrak{f}_{\infty} \text {-positive }, \quad \nu_{0}=(\delta \mathfrak{f})^{-1} \mathfrak{n}_{0}, \quad\left(\mathfrak{n}_{0}, \mathfrak{f}\right)=0 \tag{15}
\end{equation*}
$$

where \mathfrak{n}_{0} is an integral ideal in k. Since

$$
\overline{\%}\left(\eta\left(\nu_{0}\right) \nu_{0} \partial f\right) \neq 0
$$

$F(\%)$ is independent of choices of λ and μ.
Let $\rho_{j}(1 \leqq j \leqq N(\mathfrak{f}))$ be a complete system of residues mod \mathfrak{f} which are all f_{∞}-positive. We put

$$
\nu_{j}=\nu_{0} \rho_{j}, \quad \mathfrak{n}_{j}=\nu_{j} \text { 响. }
$$

Since the number of \mathfrak{n}_{j} satisfying $\left(\mathfrak{n}_{j}, \mathfrak{f}\right)=\mathfrak{0}$ is $\varphi(\mathfrak{f})$, we get

$$
\begin{equation*}
\sum_{j=1}^{N(f)}|F(\nu j, \chi)|^{2}=\varphi(f)|F(\chi)|^{2} \tag{16}
\end{equation*}
$$

by (14). On the other hand,

$$
\begin{equation*}
\sum_{j=1}^{\nu(f)}\left|F\left(\nu_{j}, \chi\right)\right|^{2}=\sum_{\beta_{1}} \sum_{\beta_{2}} \chi\left(\beta_{1}\right) \bar{\chi}\left(\beta_{2}\right) \sum_{j=1}^{X(f)} \exp \left\{2 \pi i S\left(\left(\beta_{1}-\beta_{2}\right) \nu_{j}\right)\right\} . \tag{17}
\end{equation*}
$$

Now we prove that if $\alpha \in(\delta \mathfrak{f})^{-1}$ then

$$
\sum_{j=1}^{\mathrm{N}(\mathfrak{f})} \exp \left\{2 \pi i S\left(\alpha \rho_{i}\right)\right\}= \begin{cases}N(\mathfrak{f}) & \mathfrak{f} \mid \alpha \delta \mathfrak{f} \tag{18}\\ 0 & \mathfrak{f}+\alpha \delta \mathfrak{F} .\end{cases}
$$

The first part is obvious. To prove the second part, we denote by T the lefthand side of (18) and put $\alpha \triangleright \mathfrak{\delta}=\mathfrak{g}$. If $\mathfrak{f}+\mathrm{g}$, then α does not belong to \mathfrak{b}^{-1}. By the definition of \mathfrak{b}^{-1} there is an integer γ such that $\exp \{2 \pi i S(\gamma \alpha)\} \neq 1$. Since

$$
\exp \{2 \pi i S(\alpha \gamma)\} T=\sum_{j=1}^{N(f)} \exp \left\{2 \pi i S\left(\alpha\left(\gamma+\rho_{j}\right)\right)\right\}=T,
$$

we obtain $T=0$ provided that $\mathfrak{f}+\mathrm{g}$. It follows from (18) that

$$
\sum_{j=1}^{v(f)} \exp \left\{2 \pi i S\left(\left(\beta_{1}-\beta_{2}\right) \nu_{0} \rho_{j}\right)\right\}= \begin{cases}N(\mathfrak{f}) & \beta_{1} \equiv \beta_{2}(\bmod \mathfrak{f}) \\ 0 & \beta_{1} \equiv \beta_{2}(\bmod \mathfrak{f}),\end{cases}
$$

whence follows

$$
\sum_{j=1}^{v(\mathfrak{f})}|F(\nu j, \chi)|^{2}=\sum_{\beta} \chi(\beta) \bar{\chi}(\beta) N(\mathfrak{f})=\varphi(\mathfrak{f}) N(\mathfrak{f})
$$

by (17). This combined with (16), we obtain

$$
\begin{equation*}
|F(\%)|=\sqrt{N(f)} \tag{19}
\end{equation*}
$$

(see [3], p. 213). Now we define

$$
\begin{equation*}
I(\chi)=(-i)^{q} F(\chi) / \sqrt{N(\oint)} . \tag{20}
\end{equation*}
$$

Since $\%\left(\eta\left(\nu_{0}\right)\right)=1$ by (12) and (15),

$$
\begin{equation*}
\sum_{\beta} \not \approx(\beta) \exp \left\{2 \pi i S\left(\beta \nu_{0}\right)\right\}=\bar{\chi}\left(\eta\left(\nu_{0}\right) \mathfrak{n}_{0}\right) F(\chi)=\bar{\chi}\left(\mathfrak{n}_{0}\right) F(\not) . \tag{21}
\end{equation*}
$$

Similarly, since $\chi\left(\eta\left(-\nu_{0}\right)\right)=(-1)^{q}$,

$$
\begin{equation*}
\sum_{\beta} \bar{\chi}(\beta) \exp \left\{2 \pi i S\left(-\beta_{\nu_{0}}\right)\right\}=\chi\left(\eta\left(-\nu_{0}\right) n_{0}\right) F(\bar{\chi})=(-1)^{q} \chi\left(n_{0}\right) F(\bar{\chi}) . \tag{22}
\end{equation*}
$$

Because of $\chi\left(\mathfrak{n}_{0}\right) \neq 0$ it follows from (21) and (22) that $F(\chi)$ and $(-1)^{q} F(\bar{\chi})$ are conjugate, so that

$$
\overline{I(\bar{\chi})}=I(\bar{\chi}) .
$$

Since $|I(\chi)|=1$ by (19) and (20), this implies (9).
For any ideal a in k (fractional or integral), we put

$$
\begin{equation*}
c(\mathfrak{a})=\left\{d N(\mathfrak{a})^{2} N(\mathfrak{f})\right\}^{-1 / n} . \tag{23}
\end{equation*}
$$

Let $t_{p}(1 \leqq p \leqq n)$ be real variables satisfying $t_{p}=t_{p+r_{2}}\left(r_{1}+1 \leqq p \leqq r_{1}+r_{2}\right)$. If we define

$$
\Theta(t ; a, \chi)=\sum_{\xi \in a} \psi(a, \xi) P(\xi) \exp \left\{-\pi c(a) \sum_{p=1}^{n} t_{p}\left|\xi^{(p)}\right|^{2}\right\}
$$

then we have the following generalized Hecke's Θ-formula

$$
\begin{equation*}
\Theta(t ; a, \chi)=I(\chi) c(a)^{-q} \prod_{p=1}^{n} t_{p}^{-1 / 2-a_{p}} \Theta\left(\frac{1}{t} ; \frac{1}{a f \emptyset}, \bar{\chi}\right), \tag{24}
\end{equation*}
$$

which is due to Suetuna (see [5], p. 78). Landau's formula is somewhat complicated, because he does not use fractional ideals.

§ 3. Integral representation

Let c be a positive and $\xi \neq 0$ be in k. Since

$$
\begin{aligned}
& \Gamma\left(\frac{s+1}{2}\right)(\pi c)^{-(s+1) / 2}\left|\xi^{(p)}\right|^{-s-1}=\int_{0}^{\infty} \exp \left(-\pi c\left|\xi^{(p)}\right|^{2} t_{p}\right) t_{p}^{(s+1) / 2)-1} d t_{p} \quad(1 \leqq p \leqq q) \\
& \Gamma\left(\frac{s}{2}\right)(\pi c)^{-s / 2}\left|\xi^{(p)}\right|^{-s}=\int_{0}^{\infty} \exp \left(-\pi c\left|\xi^{(p)}\right|^{2} t_{p}\right) t_{p}^{(s / 2)-1} d t_{p} \quad\left(q+1 \leqq p \leqq r_{1}\right) \\
& \Gamma(s)(2 \pi c)^{-s}\left|\xi^{(p)} \xi^{\left(p+r_{2}\right)}\right|^{-s}=\int_{0}^{\infty} \exp \left(-2 \pi c\left|\xi^{(p)}\right|^{2} t_{p}\right) t_{p}^{s-1} d t_{p} \quad\left(r_{1}+1 \leqq p \leqq r_{1}+r_{2}\right)
\end{aligned}
$$

for $\sigma>0$, we have

$$
\begin{align*}
& (\pi c)^{-(n s+q) / 2} 2^{-r_{2} s} \Gamma\left(\frac{s+1}{2}\right)^{q} \Gamma\left(\frac{s}{2}\right)^{r_{1}-q} \Gamma(s)^{r_{2}} \frac{\chi(\eta(\xi))}{|N(\xi)|^{s}} \\
& \quad=P(\xi) \int_{0}^{\infty} \cdots \int \exp \left(-\pi c \sum_{p=1}^{n}\left|\xi^{(p)}\right|^{2} t_{p}\right) \prod_{p=1}^{n} t_{p}^{\left(s+a_{p}\right) / 2} \frac{d t_{1} d t_{2} \cdots d t_{r+1}}{t_{1} t_{3} \cdots t_{r+1}} . \tag{25}
\end{align*}
$$

If we put, in (25), $c=\pi^{-1}, \xi=1$ and $t_{p}=z_{p}$, then we obtain (4), so that the existence of the integral (6) is also established. Similarly, we have

$$
\begin{align*}
& (\pi c)^{-(n s+q) / 2} 2^{-r_{2} s} \Gamma\left(\frac{s+1}{2}\right)^{q} \Gamma\left(\frac{s}{2}\right)^{r_{1}-q} \Gamma(s)^{r_{2}} \frac{1}{|N(\xi)|^{s}} \\
& \quad=|P(\xi)| \int_{0}^{\infty} \cdots \int \exp \left(-\pi c \sum_{p=1}^{n}\left|\xi^{(p)}\right|^{2} t_{p}\right) \prod_{p=1}^{n} t_{p}^{\left(s+a_{p}\right) / 2} \frac{d t_{1} d t_{2} \cdots d t_{r+1}}{t_{1} t_{2} \cdots t_{r+1}} \tag{26}
\end{align*}
$$

for $\sigma>0$.
Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}\left(r=r_{1}+r_{2}-1\right)$ be a system of fundamental units. For brevity, we use $Q=n 2^{r_{1}-1} R$ which is the absolute value of the following determinant

$$
\left|\begin{array}{ll}
1, & 2 \log \left|\varepsilon_{1}^{(1)}\right|, \ldots, 2 \log \left|\varepsilon_{r}^{(1)}\right| \\
1, & 2 \log \left|\varepsilon_{1}^{(2)}\right| \ldots \ldots, 2 \log \left|\varepsilon_{r}^{(2)}\right| \\
\ldots \cdots \cdots \cdots \cdot \\
1, & 2 \log \left|\varepsilon_{1}^{(r+1)}\right|, \ldots, 2 \log \left|\varepsilon_{r}^{(r+1)}\right|
\end{array}\right|
$$

After changing the variables in the right-hand side of (25) by

$$
\begin{equation*}
t_{p}=u\left|\varepsilon_{1}^{(p)}\right|^{2 x_{1}} \cdots\left|\varepsilon_{r}^{(p)}\right|^{2 x_{r}} \quad(1 \leqq p \leqq r+1) \tag{27}
\end{equation*}
$$

we put $c=c(a)$ (see (23)) and multiply both sides of (25) by $\psi(\mathfrak{a}, \xi)$ and construct the summation $\sum_{(\xi) \subseteq a, \xi \neq 0}$, then we obtain for $\sigma>1$

$$
\begin{align*}
& \{\pi c(a)\}^{-q / 2} A(\chi)^{s / 2} \Gamma(s, \chi) L(s, \Omega, \chi) \\
& =Q \int_{0}^{\infty} u^{(\langle n s+q) / 2)-1} d u \int_{-\infty}^{\infty} \cdots \int_{(\xi) \equiv a, \xi \neq 0} \psi(a, \xi) P(\xi) \\
& \times \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\xi^{(p)} \varepsilon_{1}^{(p) x_{1}} \cdots \varepsilon_{r}^{(p) x_{r}}\right|^{2}\right\}\left|P\left(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}}\right)\right| \\
& \times d x_{1} d x_{2} \cdots d x_{r} . \tag{28}
\end{align*}
$$

provided that $a \in \mathscr{R}^{-1}$, since

$$
\left|\frac{\partial\left(t_{1}, t_{2}, \ldots, t_{r+1}\right)}{\partial\left(u, x_{1}, \cdots, x_{r}\right)}\right|=\frac{t_{1} t_{2} \cdots t_{r+1}}{u} Q .
$$

Similarly, from (26) we obtain

$$
\begin{align*}
& \{\pi c(\mathfrak{a})\}^{-q / 2} A(\chi)^{s / 2} \Gamma(s, \chi) \xi_{k}(s, \Omega) \\
& \quad=Q \int_{0}^{\infty} u^{((n s+q) / 2)-1} d u \int_{-\infty}^{\infty} \cdots \int_{(\xi)}^{\infty} \sum_{\underline{\xi},} \mid P(\xi \neq 0 \\
& \quad \times \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\xi^{(p)} \varepsilon_{1}^{(p) x_{1}} \cdots \varepsilon_{r}^{(p) x_{r}}\right|^{2}\right\rangle\left|P\left(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}}\right)\right| \\
& \quad \times d x_{1} d x_{2} \cdots d x_{r} \tag{29}
\end{align*}
$$

for $\sigma>1$.
Using the Θ-formula (24) and proceeding on with the computation in the same way as Landau, we get from (28) the following formula for $\sigma>1$.

$$
\begin{align*}
& A(\chi)^{s / 2} \Gamma(s, \chi) L(s, \mathscr{R}, \chi) \\
&=-\frac{2 Q}{n w} E_{0}\left(\bar{\chi}(a) \frac{1}{s}+\chi\left(\frac{1}{a\lceil\emptyset}\right) \frac{1}{1-s}\right) \\
&+\frac{Q}{w}\{\pi c(a)\}^{q / 2} \int_{-1 / 2}^{1 / 2} \cdot \cdot \int\left|P\left(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}}\right)\right| d y_{1} d y_{2} \cdots d y_{r} \\
& \times \int_{1}^{\infty} u^{((n s+q) / 2)-1}\left\{-\psi(a, 0) P(0)+\Theta\left(u\left|\varepsilon_{2}^{2 y_{1}} \cdots \varepsilon_{r}^{2 y_{r}}\right| ; a, \chi\right)\right\} d u \\
&+\frac{Q}{w}\left\{\pi c\left(\frac{1}{a\lceil\delta}\right)\right\}^{q / 2} I(\chi) \int_{-1 / 2}^{1 / 2} \int\left|P\left(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}}\right)\right| d y_{1} d y_{2} \cdots d y_{r} \\
& \times \int_{1}^{\infty} u^{((n(1-s)+q) / 2)-1}\left\{-\bar{\psi}\left(\frac{1}{a\lceil\delta}, 0\right) P(0)+\Theta\left(\left(u\left|\varepsilon_{1}^{2 y_{1}} \cdots \varepsilon_{r}^{2 y_{r}}\right| ; \frac{1}{a\lceil\delta}, \bar{\chi}\right)\right\} d u\right. \tag{30}
\end{align*}
$$

where

$$
E_{0}= \begin{cases}1 & q=0, \mathfrak{f}=0 \\ 0 & \text { otherwise } .\end{cases}
$$

Similarly we know from (29) that the integral

$$
\begin{align*}
& \frac{Q}{w}\{\pi c(a)\}^{q / 2} \int_{-1 / 2}^{1 / 2} \cdot \int\left|P\left(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{y_{r}}\right)\right| d y_{1} d y_{2} \cdots d y_{r} \\
& \quad \times \int_{1}^{\infty} u^{((n \sigma+q) / 2)-1} \sum_{\xi \in a, \xi \neq 0}|P(\xi)| \\
& \quad \times \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\xi^{(p)}\right|^{2} \cdot\left|\varepsilon_{1}^{(p) y_{1}} \varepsilon_{2}^{(p) y_{2}} \cdots \varepsilon_{r}^{(p) y_{r}}\right|^{2}\right\} d u \tag{31}
\end{align*}
$$

exists for $\sigma>1$. Since (31) is a monotone increasing function of σ, two integrals of the right-hand side of (30) are absolutely convergent for all s and represent integral functions.

§4. Analogue to Siegel's formulation

The first integral of (30) is equal to

$$
\begin{align*}
& \left.\frac{Q}{w}\{\pi c(a)\}^{/ / 2} \int_{1}^{\infty} u^{((n s+q) / 2)-1} d u \int_{-1 / 2}^{1 / 2} \cdot \int \right\rvert\, P\left(\varepsilon_{1}^{y_{1}} \varepsilon_{2}^{y_{2}} \cdots \varepsilon_{r}^{\left.y_{r}\right) \mid}\right. \\
& \quad \times \sum_{\lambda \in a, \lambda \neq 0} \psi(a, \lambda) P(\lambda) \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\lambda^{(p)}\right|^{2} \cdot \mid \varepsilon_{1}^{(p) y_{1}} \varepsilon_{2}^{(p) y_{2}} \cdots \varepsilon_{r}^{\left.\left.(p) y_{r}\right|^{2}\right\}}\right. \\
& \quad \times d y_{1} d y_{2} \cdots d y_{r}, \tag{32}
\end{align*}
$$

by the convergency of (31). If we put

$$
\lambda=\xi \rho \varepsilon_{1}^{b_{1}} \cdots s_{r}^{b_{r}}
$$

where ρ is a root of unity and $b_{j}(1 \leqq j \leqq r)$ is an integer, then we obtain, using (12),

$$
\psi(\mathfrak{a}, \lambda) P(\lambda)=\left|P\left(\varepsilon_{1}^{b_{1}} \varepsilon_{2}^{b_{2}} \cdots \varepsilon_{r}^{b_{r}}\right)\right| \psi(\mathfrak{a}, \xi) P(\xi),
$$

and (32) turns out to be equal to

$$
\begin{align*}
& Q\{\pi c(a)\}^{q / 2} \int_{1}^{\infty} u^{((n s+q) / 2)-1} d u u_{b_{1}, b_{2}, \ldots, b_{r=-\infty}}^{\infty} \int_{-1 / 2}^{1 / 2} \int\left|P\left(\varepsilon_{1}^{b_{1}+y_{1}} \cdots \varepsilon_{r}^{b_{r}+y_{r}}\right)\right| \\
& \times \sum_{(\xi) \equiv a, \xi \neq 0} \psi(a, \xi) P(\xi) \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\xi^{(p)} \varepsilon_{1}^{(p) b_{1}+y_{1}} \cdots \varepsilon_{r}^{(p) b_{r}+y_{r}}\right|^{2}\right\} \\
& \times d y_{1} d y_{2} \cdots d y_{r} \\
& =Q\{\pi c(a)\}^{q / 2} \int_{1}^{\infty} u^{((n s+q) / 2)-1} d u \int_{-\infty}^{\infty} \cdots \int_{(\xi) \leq a, \xi \neq 0} \sum_{n(a, \xi) P(\xi)} \\
& \times \exp \left\{-\pi c(\mathfrak{a}) u \sum_{p=1}^{n}\left|\xi^{(p)} \varepsilon_{1}^{(p) x_{2}} \cdots \varepsilon_{r}^{i p\left(x_{r}\right.}\right|^{2}\right\} \cdot\left|P\left(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}}\right)\right| \\
& \times d x_{1} d x_{2} \cdots d x_{r} . \tag{33}
\end{align*}
$$

Since the summation is absolutely and uniformly convergent for

$$
2^{a} \leqq u \leqq 2^{a+1}, \quad a_{j} \leqq x_{j} \leqq a_{j}+1 \quad(1 \leqq j \leqq r),
$$

where a is a non-negative integer and a_{j} is an integer, (33) is equal to

$$
\begin{align*}
& Q\{\pi c(\mathfrak{a})\}^{q / 2} \sum_{(\xi) \subseteq a, \xi \neq 0} \psi(\mathfrak{a}, \xi) P(\xi) \int_{1}^{\infty} u^{((n s+q) / 2)-1} d u \\
& \times \int_{-\infty}^{\infty} \cdots \int \exp \left\{-\pi c(a) u \sum_{p=1}^{n}\left|\xi^{(p)} \varepsilon_{1}^{(p) x_{1}} \cdots \varepsilon_{r}^{(p) x_{r}}\right|^{2}\right\} \cdot\left|P\left(\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{r}^{x_{r}}\right)\right| \\
& \quad \times d x_{1} d x_{2} \cdots d x_{r} . \tag{34}
\end{align*}
$$

By transformation of (27), (34) is changed into

$$
\begin{align*}
& \{\pi c(a)\}^{q / 2} \sum_{(\xi) \subseteq a, \xi \neq 0} \psi(a, \xi) P(\xi) \iint_{t p>0} \cdots \int_{t_{2} \cdots t_{n} \geqq 1} \exp \left\{-\pi c(a) \sum_{p=1}^{n}\left|\xi^{(p)}\right|^{2} t_{p}\right\} \\
& \quad \times\left(\prod_{p=1}^{n} t_{p}^{\left(s+a_{p}\right) / 2}\right) \frac{d t_{1} d t_{2} \cdots d t_{r+1}}{t_{1} t_{2} \cdots t_{r+1}} . \tag{35}
\end{align*}
$$

If $\xi=\mathfrak{a b}$, then

$$
N(\xi)=N(\mathfrak{a}) N(\mathfrak{b})
$$

and

$$
\psi(\mathfrak{a}, \xi) P(\xi)=\chi\left(\mathfrak{b}_{\eta}(\xi)\right) P(\xi)=\chi(\mathfrak{b})|P(\xi)| .
$$

Now we put

$$
\pi c(\mathfrak{a})\left|\xi^{(p)}\right|^{2} t_{p}=z_{p} \quad(1 \leqq p \leqq r+1) .
$$

Inserting these in (35), we can prove that the first integral of (30) is equal to

$$
A(\chi)^{s / 2} \sum_{\mathfrak{b} \in S, \mathfrak{S}, \mathfrak{b} \neq 0} \frac{\chi(\mathfrak{b})}{N(\mathfrak{b})^{s}} \Gamma(s, \chi, \mathfrak{b})
$$

Similarly we can prove that (31) is equal to

$$
A(\chi)^{\sigma / 2} \sum_{\mathfrak{b} \in \Omega, \mathfrak{R} \neq 0} \frac{1}{N(\mathfrak{b})^{\sigma}} \Gamma(\sigma, \chi, \mathfrak{b}),
$$

so that this is also a monotone increasing function of $\sigma(-\infty<\sigma<\infty)$. Hence (7) is proved. We repeat the same argument with respect to the second integral of (30), and finally we obtain

$$
\begin{aligned}
& A(\chi)^{s / 2} \Gamma(s, \chi) L(s, \Re, \chi) \\
&=-\frac{2 Q}{n w} E_{0}\left(\chi(\Re) \frac{1}{s}+\bar{\chi}(\hat{\Omega}) \frac{1}{1-s}\right) \\
&+A(\chi)^{s / 2} \sum_{\mathfrak{b} \in \Omega, \mathfrak{B} \neq 0} \frac{\chi(\mathfrak{b})}{N(\mathfrak{b})^{s}} \Gamma(s, \chi, \mathfrak{b}) \\
&+A(\chi)^{(1-s / 2} I(\chi) \sum_{\mathfrak{b} \in \hat{\Omega}, \mathfrak{b} \neq 0} \frac{\bar{\chi}(\mathfrak{b})}{N(\mathfrak{b})^{1-s}} \Gamma(1-s, \bar{\chi}, \mathfrak{b}),
\end{aligned}
$$

whence follows (8) immediately.

References

[1] E. Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Aus den Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1917), 1-20.
[2] E. Landau, Über Ideale und Primideale in Idealklasse, Mathematische Zeitschrift, 2 (1918), 52-154.
[3] K. Prachar, Primzahlverteilung, Springer, 1957.
[4] C. L. Siegel, Über die Klassenzahl quadratischer Zahlkörger, Acta Arithmetica, 1 (1935), 83-86.
[5] Z. Suetuna, Analytic number theory (in Japanese), Iwanami, 1950.

Mathematical Institute
Nagoya University

