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Introduction. In the theory of meromorphic functions, it is important to

investigate the properties of covering surfaces generated by their inverse func-

tions. For this purpose, the study of properties of a non-compact region of a

Riemann surface is useful.

Recently Kuramochi has given in his paper [5] the following very interest-

ing theorem. Let R be a Riemann surface and let Ro be a compact domain on

R with compact relative boundary BRQ. Then

Theorem. If R belongs to OHB-OG (Otw-Oθ resp.), then R-R* belongs

to OAB (OAD resp.).

Here we use the following notations.

Oo: the class of Riemann surfaces which admit no Green function.

OHB(OAB) : the class of Riemann surfaces on which there exists no non-

constant single-valued bounded harmonic (analytic) function.

OHD(OAD) the class of Riemann surfaces on which there exists no non-

constant single-valued harmonic (analytic) function with finite Dirichlet-integral.

Constantinescu-Cornea [1] have investigated this theorem in detail and

obtained several results. Kuramochi ίβl has extended this theorem again.

On the other hand, the method given by Heins [2] may be expected to

contribute to the same purpose. He introduced the concept "locally of type-BΓ

using the Green functions and gave many results concerning covering properties.

We shall give, in this article, simple proofs of extended Kuramochi's

theorems in Constantinescu-Cornea's way and prove some properties of covering

surfaces using them and Heins' method.

For simplicity, we shall call, in this article, a non-compact or compact

domain G on a Riemann surface R a subregion on R when its relative boundary

C with respect to R consists of at most an enumerable number of analytic non-

compact or compact curves which cluster nowhere in R. We say that G belongs
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to the class SOHB (SOHD) if there exists no non-constant single-valued bounded

(Dirichlet-bounded) harmonic function in G which vanishes continuously at every

point on C.

1. Let Rί and R2 be two Riemann surfaces which admit Green functions

and let / be a conformal mapping of & into R2. We denote by ©ί?1 and ©*,

Green functions of Rι and R2 respectively. Then holds the equality

0)= Σ n(r)®Rι(P r) + uq{p),

where n(r) is the multiplicity of / at r e /ft, and uq{p) is the greatest harmonic

minorant of <§>R2{f{p) <j) on Rι.

Generally, a positive harmonic function is representable uniquely by the

sum of a non-negative quasi-bounded harmonic function which is defined as the

limit of a monotone non-decreasing sequence of non-negative bounded harmonic

functions, and a non-negative singular harmonic function which is defined as a

non-negative harmonic function dominating no positive bounded harmonic func-

tion (Parreau [9]). Heins [2] proved that uQ(p) is quasi-bounded except for

a set of Q of capacity zero and that the quasi-bounded component of uq(p) is

either positive on Rι x R2 or constantly zero.

According to Heins [2], we say that / is of type-Bl if the second alternative

occurs for /.

Now, let Ri and R2 be arbitrary Riemann surfaces, and let / be a conformal

mapping of Rι into R2. We shall say that / is of type-Bl at <?ei?2 provided

that there exists a simply connected Jordan region Ω satisfying : (1) q e Ω C R2,

(2) f~\Ω) * φ and (3) for each component Δ of f'HΩ), the restriction /Δ of /

to Δ is of type-Bl considering /Δ as to be a conformal mapping of Δ into Ω.

We shall say that / is locally of type-Bl if / is of type-Bl at each point of R2.

Then, we obtain the following:

THEOREM 1. Let Rι and R2 be arbitrary Riemann surfaces, and let f be a

conformal mapping of Rι into R2. Then, f is locally of type-Bl if and only if,

for any compact subregion Ω on R2 (we suppose that Ω has at least one exterior

point when R2 is compact), each component of f~ι{Ω) belongs to SOHB.

Proof. It is evident that / is locally of type-Bl if, for any compact subre-

gion Ω on R>, each component of f~1{Ω) belongs to SOnB.
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Suppose that / is locally of type-Bl. Let Ω be an arbitrary compact subre-

gion on R2* and let {R[} be an exhaustion of R2 with compact relative boundaries

BRl As Ω is compact in R2, there exists an integer to such that R\° D Ω.

(When R2 is compact, we take as R? a subregion on R2 containing Ω and having

at least one exterior point.) Let Δ be any component of f~ι{Ω) and let Δ* be

the component of fΉRΪ0) containing Δ. And we put A = min @&t(s I q), where
sεQ

q is an arbitrary point of R2. Consider a bounded positive harmonic function

u on Δ vanishing continuously on BJ, and denote by u* the subharmonic function

which is equal to u on Δ and to zero on Δ* - Δ. Without loss of generality,

we can suppose that sup w* ^ 1. Then, we have

Au* ^ <SRΌ2(/Δ* q)

on J*. The least harmonic majorant of Au* on J* is dominated by the quasi-

bounded component of the greatest harmonic minorant of ®B*O2(/Δ* ί ί) By

Theorem 16. 1 in C2], Λ* is of type-Bl considering fΛ* as to be a conformal

mapping of J* into /?f

2°, and hence the quasi-bounded component of the greatest

harmonic minorant of ®B«Ό2(/Δ* ί #) is identically zero in J*. Consequently, we

can conclude that MΞO and therefore we have Δ<=SOHB. Thus our proof is

complete.

2. Let R be a Riemann surface which admits a Green function, let (Smiβ (?)

be the Green function on R with a pole at ^ e i ? and let i> = <f (t) be the mapping

which maps the universal covering surface R™ of R onto If | < 1 one-to-one con-

formally. Then ®s(ψit) q) has angular limit zero a.e. on |f| =1. We denote

by g the set of all points on |f| = 1 of such kind and classify g into classes by

the following equivalence relation. Let fi and f2 be points of g We say that

h and f2 belong to the same class provided that there exists a covering trans-

formation T of 7?00 such that f2=Γ'(fi), where 7" is the linear transformation

of I f I < 1 onto itself corresponding to T. We call each class an ideal boundary

point and call all points of $ belonging to an ideal boundary point its image.

We denote by F all ideal boundary points.

If the image 2JΪ of a subset M of F is measurable on If | = 1, we say that M

is measurable and call ω(p M, R) =zω*(φ~ι(p) W) the harmonic measure of

M with respect to R, where ω*(f 501) is the harmonic measure of 5DI with respect

to |fI < 1. Let M be a set of positive measure. According to Constantinescu-
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Cornea [1], we say that M is HB(HD)-indivisible if, for any bounded (Dirichlet-

bounded) harmonic function u(p) on R, u(ψ{t)) has the same angular limit a.e.

on the image 9Jΐ of M. For instance, F is HB(HD)-indivisible if R belongs to

OHB-OG(OHD-OQ). It is known that if M is //"^-indivisible, then M is HD-

indivisible.

We shall consider the class UHB(UHD) of Riemann surfaces which contain

at least one /ffi(//Z))-indivisible set on their ideal boundaries. Heins [3] intro-

duced a class OL of Riemann surfaces, on which there exists no non-constant

single-valued Lindelofian meromorphic function. Here we say a conformal

mapping of a Riemann surface Rι into another Riemann surface R2 is Lindelofian if

Σ n{r)%Rχ(p r) < + oo

for p and q satisfying f{p) * q. It was proved by Heins that the relation

OHB COLC OAB

holds and that, for the class of Riemann surfaces with finite genus,

Oo = OHB = OL

holds.

Let R be a Riemann surface belonging to UHB, let M be an //"^-indivisible

set on its ideal boundary and let / be a single-valued Lindelofian meromorphic

function. Then we have for w=f(ψ{t))

Σ n(w)<S>(t s) = Σ n(r ; / ) { Σ

= Σ n(r ; / )

and f(ψit)) is Lindelofian on | ί | < 1. Hence, we see that f(ψ(t)) is mero-

morphic of bounded type in Nevanlinna's sense in \t I < 1 from Heins' result:

A Lindelofian meromorphic function of the unit disc is of bounded type. So

f(ψ(t)) has the same angular limit a.e. on the image ϋR of M and we can con-

clude that / is constant by the theorem of Lusin and Priwaloff [8].

Similary we can see that there exists no non-constant single-valued mero-

morphic function with finite Dirichlet-integral on any Riemann surface belonging

to UHΌ. Thus, we have the following relations

* OHB -OGC UHB COL-OGC OAB - OG

OHD -OGC UHΌ C OAΌ - O6 .
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3. We shall deal with some operations introduced by Kuramochi [4] and

Heins [2] for the sequel. Let G be a subregion on a Riemann surface R let n

be a positive harmonic function on R and let U be a positive harmonic function

on G vanishing continuously on dG such that there exists at least one positive

superharmonic function on R dominating U on G (we shall call such a function

U admissible). We denote by IQ(u) and EG(U) the upper envelope of the non-

negative subharmonic functions on dG dominated by u and vanishing continu-

ously on dG and the lower envelope of the positive superharmonic functions

on R dominating U on G, respectively. It is easily verified that IcΛu) and EcAU)

are harmonic in G and in R respectively, and that IcΛu) vanishes continuously

on dG.

We shall state some properties of these operations as lemmas.

LEMMA 1. Operations I<f and Eσ have the property of linearity.

Proof. We shall give a proof only for I(f.

For any positive number a, obviously the equality

Ia(au) = aLΛu)

holds. Let v be the same one as n. Then

IrXu) + I<i(v)^u + v on G.

Hence

l a i n ) + Iff(υ) ^ IG(U + V ) ^ U + V

on G. Consider max (/<?(« + ») - «, 0) on G. It is subharmonic in Gf vanishes

continuously on dG and is dominated by υ on G. Hence

lΛu + v) - u^ max (lo(u + v) - u, 0) ^ Irλv)

and

Icλu+ V) - Ia(v) ̂  U.

Hence we have

L Λ u + v) - Icλv) ^ I G ( u ) y i . e . I G { u + v ) ^

and therefore we can conclude that

Ia(u+V) = /,/(«) +/r, (#).

We can prove the linearity of EG in the similar way.



266 KIKUJI MATSUMOTO

LEMMA 2. IG EG is an identity\ that is, for any admissible positive harmonic

function U on G,

IGIEG(U)1=U.

Proof. It is evident that EG(U) > ί / o n G and we have on G

ECΛU)>IGIEG(U)1>U.

Hence we have

and, by Lemma 1,

EGZIG(EG(U))1 = EGZIG(EG(U)) - U+ Ul

Therefore

EσL

and we can infer that

LEMMA 3. Let v be a positive harmonic function on R. If there exists an

admissible positive harmonic function U on G such that v is dominated by EG(U),

then we can find an admissible function V on G such that

Proof. From v^EG(U)y we have

Hence we have

EGZlrΛt>)l + EnZlcλEcΛU) - v)l = EG(U).

On the other hand, obviously

EGZIG(V)1^V and EGZIG{EG(U) - v)l t^ErΛU) - v,

and we can conclude that

V = EGZICΛV)1.

Putting V=IrΛv), we see that V satisfies the conditions of the lemma.

LEMMA 4. Let U and Ui (ί = l, 2, . . .) be admissible positive harmonic
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functions on G and let u and u% (i = 1, 2, . . .) be positive harmonic functions on

R. If U = Σ ϋ ϊ exists, then

EO(U) =

If u- Σw/ exists, then
i = l

Ia(u) =

/V00/. For any integer n, U>^Ui and « ^ Σ « ί . Hence we have
i = 1 < = 1

and

Therefore

EG(U)>f^EG(Ui) and IrΛu) > Σ / σ ( % ).
t = 1 t = 1

By Lemma 3, we can find a positive harmonic function V on G vanishing con-

tinuously on dG such that ECXU) ^EG( V) = Σ-Eσ(W). Hence, for any integer
1

Hence we can see that U = V and therefore

Next we shall prove the latter equality. If we take an arbitrary point p

on R, then we can find an integer n for given positive number e such that

Σ Ui(p) < e. From Iσ( Σ u)(p)^ Σ Mi(ί) < e, we haveΣ p Σ

Since we can take ε as small as we please and p is an arbitrary point on R,

we have

and hence
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We shall say that a positive harmonic function u is minimal if, for any

positive harmonic function v dominated by uy there exists a constant c (0<c^l)

such that v = cu. Then we obtain the following lemma.

LEMMA 5. Let u be a positive minimal harmonic function on R. If IG(u)

is positive, then Icλu) is also minimal on G.

Proof. Let U be a positive harmonic function on G dominated by IG{u).

Then U vanishes continuously on dG. We have

and on account of the minimality of u we can find a constant c (0 < c ^ 1) such

that

EG(U) = cu.

Hence

Let HD be the class of non-negative harmonic functions, each of which is

the limiting function of a monotone non-increasing sequence of positive harmonic

functions with finite Dirichlet-integrals. We shall say that a positive harmonic

function u belonging to HD is minimal in HD if, for any positive member v of

HD dominated by u, there exists a constant c (0 < c ^ 1) such that v = cu.

Constantinescu and Cornea [1] proved that if u and v belong to HD> the

greatest harmonic minorant u A v of the superharmonic function min (u, v) and

the least harmonic majorant u V v of the subharmonic function max(w, υ) also

belong to HD.

LEMMA 6. Let u be a positive HD-minimal harmonic function on R> and let

G be a subregion not belonging to SOHD. If there exists an admissible positive

harmonic function U on G having a finite Dirichlet-integral such that EG{U)

dominates u on R, then LΛu) is also minimal in HD on G.

Proof By Lemma 3 we can see that there exists an admissible function V

on G such that Eβ( V) = u, because EG(U) ^ u. Hence U^V and u^u MJ^V

on G. Obviously u A U vanishes continuously on dG. We see that u A U- V

because V is the upper envelope of positive subharmonic functions dominated
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by u and vanishing continuously on dG. Therefore V belongs to HD.

If W is a positive harmonic function on G belonging to HD and dominated

by V, then EcλW) also belongs to HD on R and EG(W) = cu for some constant

c ( 0 < c ^ l ) . In fact, let {Wi} be a monotone non-increasing sequence of

harmonic functions with finite Dirichlet-integrals having W as their limiting

function. Then the sequence {Ui\ Wi} also has W as their limiting function.

It is seen that EaWKWd^HD and lim£G(Γ/Λ Wi) =EG(W) ^ Eo( V) - u.

Since u is minimal in HD on R, there exists a constant c such that EQ(W) = CM.

Hence we have W- IσίEG(W)l = clcλu) = cV. Thus we can conclude that

IG(U) is minimal in HD on G.

If M is a #D-indivisible set such that, for any HD-indivisible set M* con-

taining M, the harmonic measure of M1 - M with respect to R is zero, then we

call M a maximal #2>indivisible set. Constantinescu-Cornea [1] proved that

M is ΉB (maximal HD)-indivisible if and only if the harmonic measure ω(p M)

of M with respect to R is minimal (minimal in HD). For the problem when

subregions on a Riemann surface belonging to UHB or UHD belong to (Inn or

UΠD, Lemmas 5 and 6 with this result give some answers.

The condition of the last lemma is equivalent to the condition "frei" given

by Constantinescu-Cornea [1].

4. According to Constantinescu and Cornea El], we denote by OπBn{OHDu)

(1 ^ n ^ oo) the class of Riemann surfaces, the ideal boundary of which is null

or consists of at most n HB (maximal HD)-indivisible sets. These classes are

the same ones considered by Kuramochi E6]. In fact, as Constantinescu and

Cornea proved, OHBn(OnDn) (l^=n < °°) coincides with the class of Riemann

surfaces on which there exist at most n number of linearly independent bounded

(Dirichlet-bounded) harmonic functions. We note that OHB^OHB and OHΌX

= OHD.

Now, we give proofs of Kuramochi's Theorems E5], E6].

THEOREM 2. (Kuramochi) // a Riemann surface R belongs to θHBn-ΌG

11 <̂  n ^ oo) and a subregion G on R does not belong to SOHB, then G belongs

to OL.

Proof. Suppose that the ideal boundary of R consists of just m (^n)

number of //^-indivisible sets Mi (i = 1, 2, . . , , m). Let ω, (i = 1, 2, . . . , m)
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m

be the harmonic measure of Mi in R. Then each ω, is minimal and Σ ω , ==l.
m

Since G does not belong to SOHK, 7<?1 = Σ/<?(&>*) is positive. Consequently for
ί = l

some *Ό> /G(O?/0) is positive and minimal on G by Lemma 5.

We map the universal covering surface Gα of G onto \t I < 1, and denote

the mapping function by p - ψ(t). Let Mbe the set on |f | = 1 such that lG(ωio)°ψ

has angular limit 1 a.e. on it and 0 a.e. on (I ί I = 1) — Λf. Then M is of measure

positive and on account of the minimulity of 7G(ω/0), M is an iϊB-indivisible set.

Hence the region G belongs to UHB and by the relation (*) we can see that

G e OL. Thus the proof is complete.

Kuroda [7] introduced a class OAB of Riemann surfaces, on every subregion

of which there exists no non-constant single-valued bounded analytic function

with a real part vanishing continuously on its relative boundary. He proved

that each Riemann surface belonging to OAB has Iversen property and gave the

relation

OHB C OAB C OAB

and for the class of Riemann surfaces with finite genus,

OG = OHB C OAB % OAB.

The subregion G of Theorem 2 obviously does not belong to O\B, because

there exist non-constant single-valued meromorphic functions on G not having

Iversen property. Hence we have

Further, OHD is not a subclass of OL in virtue of Toki's example [10] and we

obtain

OL$QHD.

THEOREM 3. (Kuramochi) // a Riemann surface R belongs to θHΌn- OG

(1 ^ n ^ oo) and a subregion G on R does not belong to SOHD, then G belongs

to OAD.

Proof. Suppose that the ideal boundary of R consists of just m i^n)

number of maximal i/D-indivisible sets Mi {i = 1, 2, . . . , m). Let ω, ( ί = l , 2,

. . . , m) be the harmonic measure of Mi with respect to R. Then ω, belongs

to HD and is minimal in HD (cf. [1]). Since G does not belong to SOHD and
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since SOBD = SOHBDJ there exists a positive bounded harmonic function U having

a finite. Dirichlet-integral and vanishing continuously on dG. By Dirichlet printi-
ng

pie we see that EO(U) has also a finite Dirichlet-integral and EG(U) = Σt f/ω, .

Since EG(U) is positive, for some ι0, au0 is positive and EG(U) = EG( U)

^ ωi0. Hence by Lemma 6, we can conclude that 7σ(ω, β) is minimal in HD on G.

We map the universal covering surface G™ of G onto \t\ < 1 by Ϋ5 and

denote by M the set on |f| = 1 such that 7G(ω/0) ° y has angular limit 1 a.e. on

M and 0 a.e. on (If I = 1) - Ml It is seen that M is of positive measure and is

maximal #D-indivisible because of the #D-minimality of 7G(ωf 0) (cf. [1]). Hence

G e UHΌ and by the relation (*) we can see that G&OAD. Thus our theorem

is proved.

5. In this section we shall state some results which are deduced from

Theorems 1 and 2.

THEOREM 4. If a Riemann surface R belongs to OHBH (1 ̂  w ̂  °° ), then any

non-constant single-valued meromorphic function f on R is locally of type-Bl.

Proof. Let Ω be an arbitrary subregion on the ̂ -plane having at least one

exterior point. Then all components of fι(Ω) belong to SOHB by Theorem 2.

Thus we can see that / is locally of type-Bl by Theorem 1.

COROLLARY. Let R be a Riemann surfuce belonging to OEB7I ( l έ « ^ °°),

and let Φ be the covering surface of the w-plane generated by a non-constant

single-valued meromorphic function f on R. Then every connected piece ΦΔ of Φ

on any disc Δ in the w-plane covers each point of Δ the same number of times

except for at most an Fo-set of capacity zero.

Proof. This corollary is immediate from Theorem 4 and Theorem 21.2

in [2].

THEOREM 5. Let R be a Riemann surface belonging to OHBn ( l ^ w ^ oc)

and let G be a subregion on R not belonging to SOHB. Then the cluster set of

any non-constant single-valued meromorphic function f on G at the ideal boundary

of G is the whole w-plane, and the range of values of f contains all values of

the w-plane except for at most an Fo-set of capacity zero.

Proof. Without loss of generality, we may suppose that / is analytic on
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dG. By Theorem 2, G belongs to OL and / is not Lindelofian. Heins proved in

[3] that if, for some ί o ε G , Σ n(r)®G(pa, r) < -f oo for a set of w of positive
/(r)*tP

capacity, then / is Lindelofian on G. Hence / takes each value infinitely often

except for an Fσ-set of capacity zero.

6. Here we shall be concerned with the subsurfaces on Riemann surfaces

of the class

THEOREM 6. Let f be a non-constant single-valued meromorphip function

on a Riemann surface R. If there exist a point wo, n - 1 (n < oo ) number of

subregions a and a sequence of Jordan regions Ωi of the w-plane such that Ci Γ\ CJ
n - 1 oo

= φ for i*j, to* $ U Ci, Ωi D Ωi+i and Π Ωi = WQ, and that, for each i, at least
ί = 1 t = 1

one component δi of f~ι{ci) and one component Δi of f~1(Ωi) do not belong to

SOHD, then R does not belong to OHD^

To prove this theorem, we give the following:

THEOREM 7. Let R be a Riemann surface. Then R does not belong to OHBU

(OHDn resp.) (n < <») if there exist nΛ-\ subregions Gi (ί = 0, 1, 2, . . . , n)

disjoint from each other on R such that GΪ^SOHB for all i (GO^SOHB and

Gi et SOHD fori=ly2,...,n resp.).

Proof. Suppose that R belongs to OHBJOBDJ. Then the boundary of R

consists of just m (^n) number of HB (maximal HD)-indivisible sets Mk

(ft = l, 2, . . . , m). Since G, $ SOHB(SOHD) ( i = l , 2, . . . , n), we can find for

each ί # 0 in the same way as in the proofs of Theorems 2 and 3 a harmonic

measure ωk(p) = ω(p Mk) of Mk such that IGι(
ωk) > 0. Furthermore we can

see that IGj(ωk) = 0 for .7 = 0, . . . , i - 1, i + 1 , . . . , n. In fact, for / # / ,

EGjIGj(a)k) ^ ωky

and from the minimality of ωk and the fact that suι>IGi(ωk) = 1
Oi

EGiIGi(<ύk) = ωk.

Hence we have EGjIG.j{ωk) = 0 and IGj(ωk) - IGjEGjIGj(ωk) =0. Thus we can see
m m

that, for any ωk, Iao(ωk) = 0 and 7GO(1) = / f l ί ( Σ ^ ) = Σ/σo(fi>*) = 0. This contra-
fc = l A: = l

diets the condition: G0$SOHB, which proves the theorem.
2» The auther proved only the case «=1 and the extension of the present form is due.

to Kuroda.
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Proof of Theorem 6. By Theorem 1, / is not locally of type-Bl, so by

Theorem 17.1 in [2] the set of points w in any closed neighbourhood of wo,

at which / is not of type-Bl, is of positive capacity. Let Wi * Wo be such a
n-l

point, satisfying w\ $ U Ci, then for some i, Ωi does not contain Wi and
t = l

n-l n-l

Ωi Γλ (\J a) = φ. Choosing a positive number p satisfying that (A U(Ucί))
< = 1 ί = l

Γλ (\w-wi\ < p) =φ, we can find among components of f~1(\w — wί\<())9 a

component Δo not belonging to SOHB and satisfying Jo Π J/ = ψ and Jo Π & = φ.

By Theorem 7, R does not belong to OHDΆ-

THEOREM 8. Let R be a Riemann surface belonging to Oιwn (1 ^s w ̂  <» ),

/e£ Φ fo £/*£ covering surface of the w-plane generated by a non-constant single-

valued meromorphic function f on R, and let Φ? be a connected piece of Φ on

\w - WQ\ < p. If the area of Φ? is finite, then the restriction f9 of f to the com-

ponent Δ? of f~1(\w — Wo\ < μ) corresponding to Φp is of type-Bl of ΔP. Hence

ΦP covers each point of \w-wQ\<p the same number of times except for at

most a closed set of capacity zero, and Φv is finitely sheeted.

Proof. Suppose that fP is not of type-Bl. Then, by Theorem 1, there

exists a positive number ρ0 < 9 such that a component JPϋ of f~1(\w — Wo\ < po)

exists and does not belong to SOHΠ. Let ω be the harmonic measure of I w - WQ\

= Po with respect to the ring domain (po< \W — WQ\ < p), and let ω* be the

superharmonic function such that ω* is equal to ω on p0 < I w - Wo I < p and to

1 on \w-wo\^po. Put A = max ] grad ω* I. Then A is finite and D(ω*°f)

^ A2D(fP) -A2 x (the area of Φ?) < -f oo. Hence, by Dirichlet principle, the

greatest harmonic minorant u of ω* ° / of Δ? has a finite Dirichlet-integral.

Since ΔH does not belong to SOHB> there exists a positive bounded harmonic

function uQ such that uo = 0 on 3JPo and sup w0 = 1. Denote by ut the subhar-

monic function such that ut = wo on ΔH and w0* = 0 o n J P - JPo, then M* ̂ ω * °/p,

0 < £wo* ̂  ω* ° / because of superharmonicity of to* ° /, and we can conclude

that 0 < Eut ^ w and Δ? does not belong to SOiW. This contradicts Theorem 3.

Thus our theorem is established.

It is evident that this theorem implies Kuramochi's result (Theorem 12 in

[6]).
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