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Introduction

The local theory of continuous (infinite) pseudo-groups of transformations

was originated by S. Lie, and developed by himself, F. Engel, E. Vessiot, E.

Cartan, etc. In the beginning, the definition was not clear and we can find

several different definitions in the papers of pioneers. In 1902, E. Cartan intro-

duced a definition using his theory of exterior differential systems and made an

extensive study in his series of papers [1], [2], and [31 The writer will adopt his

definition in this series of papers. A continuous pseudo-group of transforma-

tions is, roughly speaking, a collection of real (or complex) analytic homeo-

morphisms of domains in a real (or complex) euclidean space, which is closed

under the operations of composition and inverse, and which forms the general

solutions of a system of partial differential equations. An example is the colle-

ction of conformal mappings of domains in a complex plane, considered as a

real euclidean space, because the collection forms the general solutions of

Cauchy-Riemann equations. A continuous pseudo-group of transformations is

called finite, if the underlying system of differential equations is completely

integrable, otherwise infinite. Aside from the applications of the theory to the

differential geometry and partial differential equations, he was also interested

in the analytic-algebraic structure which lies behind the structure of continuous

pseudo-group of transformations. Namely, if G is a pseudo-group of trans-

formations and /, g are in G, then the inverse /"Ms defined and the composi-

tion f°g is defined for some pairs (/, g). Thus G forms an algebraic system
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which looks like a group on the other hand such algebraic system will be

related with the analytic properties of the underlying partial differential

equations. This is what we called the analytic-algebraic structure. In the

finite case, then, the analytic-algebraic structure is the parameter local groups.

One of the key points of E. Cartan's theory, in this respect, is his notion of

" isomorphisme holoedrique," which gives the definition of the isomorphism of

such analytic-algebraic structures. In the finite case, there exists an "isomor-

phisme holoedrique" between two pseudo-groups of transformations if and only

if their parameter local groups are isomorphic. In the general case, we have

no notion of parameter local groups. So he had to define the isomorphism of

the underlying analytic-algebraic structures without explicitly defining the

structure. The main purpose of the present series of papers is to introduce

the notion similar to that of parameter local groups in the general case. Our

task, then, is to generalize the notion of local Lie groups to the special case of

infinite dimensional parameter space so that the generalized notion can be used

as parameter structure of continuous pseudo-groups of transformations.

An examination in the finite case will make clear what approach one

should take. In this case, general solutions of the underlying systems of partial

differential equations depend on, roughly speaking, a number of arbitrary con-

stants. By parameterizing the general solutions by a finite number of constants,

and by means of compositions of transformations, we define the multiplication

functions of parameter local Lie groups. In the infinite case, the general

solutions depend on a finite number of arbitrary functions, in stead of arbitrary

constants. However, replacing arbitrary constants by arbitrary functions, we

can carry out the same reasoning as in the finite case, and we obtain the

multiplications between parameters and finally something like parameter local

groups. The first task, then, is to generalize the notion of analytic functions

to the case we are intersested in, because the multiplication functions are

analytic in the finite case. However, in order to develop the Lie's fundamental

theorems in our generalized case, we have to generalize the notion of formal

power series to our case as well. We shall call the generalized formal power

series the formal analytic mappings. Chapter I is devoted to present their

definitions and to prove several porperties which we shall use later. In

Chapter II, using formal analytic mappings as multiplications and commutators,



CONTINUOUS INFINITE PSEUDO-GROUPS 227

we introduce the notion of formal Lie (F) -group and formal Lie (F)-algebra

and prove Lie's fundamental theorems in our case. In the subsequent papers,

we shall give a description of E. Cartan's theory of continuous pseudo-groups,

and study the relations between our approach and E. Cartan's.

As stated before, we are concerned only with the local aspect of the

theory. So the global aspect of the theory, which is the subject of several

recent interesting works, will be entirely neglected. It should be noted also

that we are concerned only in the analytic case, real or complex, namely in

the case where transformations considered are analytic. No effort is made to

extend the theory to differentiable case, even though it is a very interesting

problem.

Chapter I. Formal Analytic Mappings

A field K containing infinitely many elements will be fixed throughout this

chapter. So such words as "over K" will be omitted when no confusion can

occur.

1. Vector spaces with (F)-structures

Let H be a vector space (over K) of dimension possibly infinite. Let //(/)

and Ba\ where Z = 0, 1, . . . , be vector subspaces of H. Assume that the

dimension of each B(l) is finite, say dι. Let h(Z) = {h!u . . . , hai} be an ordered

basis of Ba\

DEFINITION I. 1. A collection (H{1\ Ba\ h(/)) is called a (F)-sίructure in

Hy if the following conditions are satisfied:

(1°) H=H0)ΏHω^' -ΏHa)ΏHa+l)Ώ '

(2°) H{1) is the direct sum of B{1) and H(lJrί)

(3°) For any sequence (?*)/=0, i,..., where ξι^Ba\ there is a unique element

ξ in H such that ξ - (ς°-f ζι + + ς z ) e # ( / H ) for any integer I We denote

ξ by the formal sum ξ° + ξ1 + + ξι -f , or Σ ξι I

(4°) We can find integers p, k and a real number nil such that, for

sufficiently large /, ive have

miil-kΫ < dim (HIΉU)) <niι(l + k)p.

Elements of B{1) will be called homogeneous elements of degree /. The
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basis h(/; will be called the distinguished basis of degree /. Any member of

the distinguished bases will be called a distinguished element. Set nι = dim

(H/Ha+1))^ d* + dι+ - +dι. We introduce an order lexicographically in

the set of distinguished elements. Namely, we define hj (j -1, 2, . . . ) , as

follows: htii-i+j = hfj for j = 1, . . . , dι if dι is not zero. By the definitions,

any element ξ in H can be expressed uniquely as ξ = Σ bJ hj, where bj e K.
3

Conversely, for any sequense {bj)j=\,2,... of elements in K, the formal sum

*Σιbjhj represents an element in H. {hu h2, . . .} will be called the ordered

set of distinguished elements of the structure. It is easy to see that p and mi

such as in (4°) are uniquely determined by the structure. p and m-p\ni\

will be called the degree and the multiplicity of the structure. The ordered

pair (m> p) will be called the characteristic of the structure.

By a (F) -vector space, we mean a vector space in which a definite (F)-

structure is imposed. As far as no confusion can occur, we usually denote by

the same symbol, say H, a (F)-vector space as well as its underlying vector

space. When we want to make explicit the (F)-structure of a (F)-vector space,

a (F)-vector space will be denoted by (H, Ha\ B{1\ h (/1).

Let (H\H'κl\ B'a\ h/(/)) be a (F)-vector space. Then (h(/), 0) and (0,h'(/)),

in this order, form an ordered basis, say h"(/), of BU) -h B'{1\ the direct sum of

B{1) and B'a\ Then we can check that the collection (Ha) + H'a\ BU) + B'a\

h'/(/)) forms a (F)-structure in // + //'. The (F)-vector space (H+H\ Iίl) +

JE/'(/), B(l) + B'a\ h"(/)) will be called the direct sum of (F)-vector spaces H

and H'. As far as any ambiguity may not occur, the direct sum of (F)-vector

spaces H and H1 will be denoted by H+H'.

PROPOSITION I. 1. Let (m, p) and {m\ p') be the characteristics of H and

H'f respectively. If p^p', then the characteristic of H+H' is (m, p). Ifp^p',

the characteristic of H+Hf is (m+m1, p).

EXAMPLE 1. Let H be a vector space of dimension finite, say m. Set

H{0) = H, H{l) = {0} for / > l , Bm = H, and £ ( / ) = {0} for / > 1 . Let h(0) be an

ordered basis of the vector space H. We regard h(Z) as the empty "set for

Z>1. The collection (H, Ha\ Bι\ h(/)) is a (F)-vector space of characteristic

(m, 0). It is easy to see that any (F)-structure introduced in H is of charac-

teristic (m, 0). Conversely, if a (F)-vector space is of characteristic (w, 0);
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then its underlying vector space is a w-dimensional vector space.

EXAMPLE 2. Let Hp be the vector space of formal power series in p

indeterminates xu . . . , Xp with coefficients in K. When p is zero, Hp means

the 1-dimensional vector space over K. Denote by H{p the vector subspace of

all elements in Hp such that their terms of degree less than /, not including

terms of degree strictly /, are zero. Denote by B(p] the vector space of

homogeneous polynomials of degree /. Monomials in Xu - . . , xp of degree /,

ordered lexicographically, form an ordered basis h$} of B{1). Because the

dimension of HplHf is equal to (pD'Ί (/+1) ( / + ί - l ) , (#/>, Hf, B%\

h!p) forms a (F)-vector space of characteristic (1, p)t which we shall denote

also by Hp for simplicity. Denote by Hp the direct sum of s copies of the

(F)-vector space Hp. The characteristic of HS

P is (5, p).

DEFINITION I. 2. By a system S of characters ive mean an ordered set of

a finite number of non-negative integers s0, si, . . . , sp, where sp # 0. Denote

by H{S) the direct sum of Hl\ H\\ . . . , and Hpv. By Proposition I. 7, H(S)

is a (F)-vector space of characteristic (sp, p).

DEFINITION I. 3. Let F be a linear mapping of H into H1. F is called an

analytic linear mapping if and only if there is an integer k such that the

image of H(l) by F is in H'a~k) for sufficiently large I.

Thus, if the degree of H is zero, any linear mapping of H into H' is

analytic. Let H" be another (F) -vector space. If G is an analytic linear

mapping of H1 into Hπ, it is clear that the composition G°F is again an

analytic linear mapping of H into H". H and H' are said to be isomorphic if

there are analytic linear mappings F and G of H into H' and of Hf into H,

respectively, such that G°F and F°G are the identity mappings of H and H\

respectively. Thus, what is essential in the definition of the (F)-vector space

is the filtration H{1) of H. The homogeneous elements and the distinguished

elements are added in the definition, in order to make the description of the

later development easier.

PROPOSITION I. 2. Let H and Hf be (F)-vector spaces of characteristics (w,

p) and {m\ pf). Denote by F an analytic linear mapping of H into H\ Assume

that F is bijective. Then either p^p', or p = p' and m^m'.
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Proof. Identify the vector space H with the vector space H1 by the

mapping F. Then Ha)QH'{l~k\ Choosing k sufficiently large, we find that

( / + * ) * / ( / - * ) * ' > ( £ ! tn')/(p'l m) for large /. Then the conclusion of our

proposition follows immediately by letting / tend to oo.

THEOREM I. 1. Let H and H1 be (F) vector spaces. Then H and H* are

isomorphic if and only if they have the same characteristic.

Proof. By Proposition I. 2., it is clear that if H and Hf are isomorphic

then they have the same characteristic. Let {hi, h2, . . . } and {h[, h'2t . . . }

be the ordered set of distinguished elements of H and H1 respectively. We

define linear mappings F and G of H into Hf and of H1 into 27, respectively,

as follows:

Clearly G°F and F°G are the identity mappings. Because H and H1 have the

same characteristic, the condition (4°) implies that F and G are analytic.

In particular, if S={sQ, su . . . , sp}> sP*0, then H(S) is isomorphic to

Hjf. Let F be a linear mapping of H + H onto H defined by the formula:

FiiitanXu itbnxΐ)) = Έ(anxΓ + bnxln+1). F is a bijective and analytic
n = 0 ?i = 0 n = 0

linear mapping. However, F""1 is not analytic.

DEFINITION I. 4. A decreasing sequence {C{ί)} of vector subspaces of H is

called an admissible filtratisn of H if there is an integer k such that Ha'k)

ΏC{ί)ΏHa+k) for sufficiently large I.

PROPOSITION I. 3. Let F be an analytic linear mapping of H into H1. Set C{1)

= {ξ(ΞH; F(ξ)ζ=H'{l)). If there is an analytic linear mapping Ff of Hf into H

such that F'°F is the identity mapping of H, then {CU)} is an admissible

filtration of H.

The proof is easy.

A method of constructing a (F)-vector space is as follows: Let Aa\

(/ = 0, 1, . . . ), be a sequence of finite dimensional vector spaces. Set dlU)

= dim Aa\ ri(l) = d'{0)+ + d'(l\ Assume that we can find integers/)', *'

and a real number m[ such that

(1) tnl (/-*')* < ri{b < mi d+k')p'.
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Let H1 be the set of all sequences a = {Λ*}/=O, i,... such that aι^Aa\ H1 forms

a vector space by the obvious addition and multiplication by scalars, and A(l)

will be identified, by the obvious injection, with the vector subspace of all

sequences a = {d} such that d = 0 for / # / . Let Hf{l+1) be the vector subspace

of all sequences a = {d} such that d = 0 for i = 0, . . . , / . We set i/' ( 0 ) = H'.

If we choose an ordered basis h / ( / ) of A{1) for each /, ( # ' , H'{1\ A{1\ h' ( / ))

forms a (F)-vector space of characteristic (pf\ ml, p'). We call this the (F)-

vector space generated by A(/) and h' ( / ). Now, we apply the above construction

in the following case: For a given {H> Ha\ Bκl\ h ( / )) of characteristic (p\ mu

p), take a copy B{l)'r of B{1) for each strictly positive integer r, and let A{1) be

the direct sum of Ba'r)'r for r = 1, 2, . . . , /, provided Z>1. We set A{0) = {0}.

We will show that the requirement (1) is satisfied with m[ = (p + 1 ) ' 1 mi, pf

= p + l, and with sufficiently large A'. Since A(/) is isomorphic with HlHa\

we have the inequality mid- k)p <d'{l) < mΛl+ k)p for large /. Hence for
l-(k+l) l+(k + l)

sufficiently large /, we have mΛ Σ jp)<ri(l} <mx( Σ j p ) . Because of the

inequalities: CJ^p^ipl)'1jp for j>py (plΓιf<Cyp, ΈCJ+p = Cι

p

+£+\ where

&j are binomial coefficients, we have pi mιCp~A<nt(l) <pl nnCp\\+p+2. There-

fore, there exists *' such that fn[U-k')p+1<n'a)<mί(l + k')p+1 for large /.

Thus (1) is satisfied. Denote by h ( / ) ' r the copy of h ( / ) in Bφ r. Let h' ( / j be

the ordered basis h ^ 1 ^ 1 , h ( / " 2 ) ' 2 , . . . , h ( 0 ) ' \ in this order, of A(l\ Denote by

CH the (F)-vector space generated by A{1) and h / ( / ). In the following, we will

constantly use the following notations to express elements in CH: Introducing

an indeterminate t, we denote by ξf the copy of ? e £ ( / ) in Bίl)'r. B{ί)>r being

identified with the vector subspace of CH, any element <χ in CH can be uniquely

expressed as a formal sum: a = Σ ( Σ ? ' ~ r ' r * r ) » where ξι'rGB{l). Because any

element in H can be expressed uniquely as a formal sum of homogeneous

elements, we may also express a without ambiguity as tf = Σ £ r £ r , where ξr

r = l

= Σ ?'' r e # . If h(/) = {hi h'dι) and ξ' r = Σ *'' r ' hi where b' r' ^K, then
I / = 1

-a

we may also use the expression a = *Σaι'ιJii, where attl = ̂ bl*r'lf are formal

power series in t without constant terms. Conversely, expressions as "Σξrt
r>

r = l

Σ α ! l / l ι ! , and Σ^Λy, where ξr^H, a1'1 and α-7 are formal power series in t
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without constant terms, and where {hi, ho, . . .} is the ordered set of distin-

guished elements in H, represent elements in CH.

DEFINITION I. 5. CH will be called the (F) -vector space of formal curves

in the (F)-vector space H. If we use indeterminate t to express elements in CH

as above, t will be called a parameter of curves in H. For any a~*Σχξrtr in
r = l

CH, we set (ba/dt)t=o = ς!

We proved already the following:

PROPOSITION I. 4. If H is of characteristic (m, p)f

 CH is of characteristic

Km,

Let us use the same parameter t for curves in H, H'f and H+H1. Then

elements in Ή, CH', and C(H+H') will be expressed as Σ£r* r , ΣCrf, and Σ

(£r, Cr) f, where ξr^H and ζr^H', respectively. Then the mapping Σ (£r,
r = l

Cr) f->(itξrf, Σ C r ί
r ) of ΊH+H') to CH+C(H') is bijectίve and is the iso-

r=l r=l

morphism of the (F) -vector spaces. As far as no confusion can occur, we

will identify C(H+Hf) with CH+CH' by the above mapping.

For any analytic linear mapping F of H into Hr, we associate a linear

mapping CF of CH into CH' as follows:

is

r=l r=l

where we use the same parameter t to express elements in CH and CH'. It

easy to see that CF is also an analytic linear mapping.

2. Formal analytic mapping

Let H be a (F)-vector space. Let {hi, h2, . . .} be the ordered set of

distinguished elements of H. If the degree of hj is /, we set \j\H = l. Let us

introduce an indeterminate aJ

H for each hj. Denote by I(H) the set of all ai.

Denote by K\_H~\ the ring of polynomials in the indeterminates in I(H). The

polynomials in the indeterminates an, where \J\H<1, form a subring K\_H, 13

and KίHl is the sum of KIH, / ] , 1 = 0, 1, . . . . The above notations will be

used throughout the present paper and we may drop index H if no confusion

can occur. Let Hf be another (F) -vector space.
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DEFINITION I. 6. By a formal analytic mapping F of H into H\ we

understand that, for each integer m = 1, 2, . . . , and for each indeterminate

dw in 7(7/'), there is assigned a polynomial Fm^KZHl satisfying the following

conditions for an integer k: Fm is a homogeneous polynomial of degree m and

of iveight < I i\n* -f km, i.e. Fm is a linear combination of terms a\\ αim, where

\ji\n+ ' ' ' + \j?n\n< \i\H> + km. The integer k will be called a degree of F.

Thus F may be considered as a collection {Fm) of elements in K[_H\

satisfying the above conditions. We may use expressions such as F={Fm '»

aιw^I{H))y or F={Ft

m} to denote a formal analytic mapping of H into 77'.

Let MtΞKlHj For any ξ=bιhι + b2h2+ , bj <= K, in 77, denote by M(ξ)

the value of the polynomial M at a/i = bJ. Let {h[, h\, . . .} be the ordered

set of distinguished elements in 77'. What the writer has in mind, by saying

that F = {Fm} is a formal analytic mapping of H into 77', is the formal mapping :

(2) £-Σ(ΣFi,(e))Λ f\
i m = l

without caring whether or not the summations in the parenthesises have any

meanings. In the case K has a topological structure, we say that F is defined
00

at ξ (with respect to the topological structure), if Σ ^ m ( ? ) converges to a

limit, say Fι(ξ)> for each i. In this case, ΣF'(£)/* ' is called the value of F
i

at f, and will be denoted by F(ξ). F is defined everywhere with respect to

the discrete topology of K, if, for each i, F'm is the zero polynomial for suf-

ficiently large m. In this case, F is completely determined by the mapping:

ξ-*F(ξ). So there will be no confusion even if we mean by F, when Fm = 0

for sufficiently large m for each i, either the collection {Fm} of polynomials or

the mapping: ξ-*F(ξ), according to the context. We hope that this conven-

tion does not arouse any confusion.

Let us consider the case when H is of characteristic (s, 0) and Hf of (1,

0). Then the associated system I{H) of indeterminates consists of s elements

X1 - a)f, . . . , Xs = asπ, and 7(7/0 consists of a single element. Hence a formal

analytic mapping F of H into H' is a sequence of homogeneous polynomials

F?n(X\ . . . , Xs), m = 1, 2, . . . , of degree m. Conversely, it is easy to see

that any such sequence comes from a formal analytic mapping of 77 into 77'.

In this way, F can be identified with the formal power series Σ Fm(Xι, . . . ,
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Xs) without the constant term.

DEFINITION I. 7. A formal analytic mapping F={Fm} of H into Hf is

called linear if Fm = 0 for m^h

In this case F is defined everywhere in H with respect to the discrete

topology of K and, as a mapping, is an analytic linear mapping of H into Hf.

Conversely, for any analytic linear mapping F1 of H into Hf

t it is easy to see

that there is a unique linear formal analytic mapping F of H into H' such that

F, considered as a mapping, is equal to F'. In this sense, the notion of analytic

linear mappings is equal to that of linear formal analytic mappings.

Let M be an element of KLH], For any a = Σ a?hj in CH, where a3 are

formal power series in t without the constant term, and where {hi, h2> . . .} is

the ordered set of distinguished elements, denote by M(a) the formal power

series in t obtained by replacing the indeterminates a3

H by a3. Let F={Fm}

be a formal analytic mapping of H into H'. We now associate a mapping

(CF)' of CH into C(H') as follows: The value of i°FV at a is equal to

(3) Σ(Σf« («))«,
i m = 1

where {fel, ti2t . . .} is the ordered set of distinguished elements in 22'. By

Definition I. 6., Fin (a) are divisible by tm because a3 are divisible by t.

Therefore the summations in the parenthesises in (3) are defined as formal

power series in t without the constant terms, and so (3) represents a unique

elements in C(H'). It is not hard to see that there is a unique formal analytic

mapping CF of CH into C(H') such that CF is defined everywhere in CH with

respect to the discrete topology of K and such that CF, as a mapping, is equal

to (CF)'. According to the convention made before, (CF)' will be also denoted

by CF. CF is called the mapping of curves in H associated with the formal

analytic mapping F. If F' is a formal analytic mapping of H into H' such that
c F = e ( F ' ) , then it is clear that F=Ff. Thus CF completely determines F.

Let H" be another (F)-vector space. Let G be a formal analytic mapping

of H' into H". We claim that there is a unique formal analytic mapping L of

H into H" such that CL, as a mapping, is equal to the composition of the

mappings CF and CG. L may be defined by constructing formally the composi-

tion of the formal mappings (2). L will be called the composition of F and
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G, and will be denoted by G°F. In order to define L explicitly, we introduce

the following notation: Let M be a polynomial in indeterminates xit . . . , xr,

ί, where r may be zero. M can be expressed as M = Σ Mnt
n, where Mn are

n

polynomials in xu . . . , Λr. We set κnLMl = Mn. Now, L is defined by the

following formula: For each aj

H" in I(Hfl) and for each τw>l, set
m m

(4) i 4 = Σ KUIGU . . . , Σ ί*n )],
n = l g = l

where the formula inside [ ] means the polynomial obtained by replacing
m

the indeterminates dw in Gj

n by *ΣjtQFη. Let £' be a degree of G. Then Z,m

is a linear combination with coefficients in K of terms

(5) FQ\ • . . Fqni

where IιΊU + + IfnIw < \j\w + k'n, \<n<my and where qι+ - - + qn = m.

Then it is easy to verify that {LJ

m} forms a formal analytic mapping of H

into H" of degree <k + k'. We can verify by direct calculation that the

equality: CL = CG°CF holds. If F and G are defined everywhere in H and i/',

respectively, with respect to the discrete topology of K, then so is G°F, and

G°F considered as a mapping is equal to the composition of the mappings F

and G.

Denote by h and /2 the canonical injection of H to the first and the second

components of H+H, respectively. Then {ήhu iίh2, . . . , i>hu hh^ . . . } is

the complete set of distinguished elements in H-\-H. Denote by atJ, anJ the

indeterminates associated with u hj, i2 hj, respectively. Hence elements M of

KlH+Hl are polynomials in . . . , αIJ\ . . . , . . . , αtfJ, . . . . Now we as-

sociate for any formal analytic mapping F of H into H1 a formal analytic

mapping dF of H+H into H' as follows: For each αx

n> in I(H') and for each

w > l , set

(6) (dFΫm = 1] (dFin/dαjj,)fα"J'
j

where ( )' means that we substitute α'j for «L. It is easy to see that the

collection dF- {(dF)m) forms a formal analytic mapping of H+H into H'.

If F is defined everywhere with respective to the discrete topology of K, so is

dF. Therefore, in this case, dF is also considered as a mapping. Identifying
c{H-{-H) wϊthcH+cH by the canonically isomorphism, we have the equality:
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cdF = a*F. Let G be a formal analytic mapping of H' into H". Then for any

a and β in CH>

(7) [ctf (G°F)] (α, 0) =

Denote by (cdF)0 the mapping of c i/ into C(H') defined by the formula:

(cdF)o (oc) =lcdF] (0, a). Then it is easily seen that (cdF)0 is the mapping

of curves in H associated with a formal analytic mapping (dF)Q of H into H1.

Namely, ίdF)Q = L is the collection {Lj

m} such that L{ = Fi 2-4 = 0 for w > 2 .

Thus (dF)0 is linear.

DEFINITION I. 8. dF is called the differential of F. (dF)o is called the

differential of F at the origin.

3. Jacobians and differential equations

THEOREM I. 2. Let F be a formal analytic mapping of H into itself.

Assume that (dF)o is the identity mapping of H. Then there is a unique

formal analytic mapping G of H into itself such that both G°F and F°G are

equal to the identity mapping of H.

Proof. For each ajt=I(H), we set G\! = aj e KlHl Assuming that

GJ

U . . . , Gin-ι e KlHl are constructed, we set

m w ι - 1

Gin = - ΣβmLFiί ilfGί,, . . . )]
n=l q~l

First we shall show that the collection G = {G}

m\ aJ^I(H), m = l, 2, . . .}

forms a formal analytic mapping of // into itself. Since F= {FJ

m} is a formal

analytic mapping, we remark that Gm, m>2, is a linear combination of terms:

(8) G& . . . Gji

where

(9) i/iU+ +\in\H<\j\n + kn,

q\ + * + qn = m, 1 < qr < m - 1, r = 1, . . . , n.

Hence, n in (9) must be>2. We proceed by induction on m. It is clear

that Gin is a homogeneous polynomial of degree m. We can assume without

loss of generality that k>0. Assuming that G\ is of weight < U*|/y +2&(#-1)

for q<m and for any a1 in I(H), we claim that Gj

m is of weight =N<\J\Ή
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+ 2k(m-l). Namely, (8) and (9) imply that N< ^ (\ir\n + 2k(qr - V)
r-\

<\j\ii + 'kn+2k(m- n) = \j\n + 2km- kn<\j\n + 2 k(m - 1), because 2 < n.

Thus G is a formal analytic mapping of a degree 2 &. By explicitly calculating

F°G> it is easy to see that F°G is the identity mapping. Since {dG)o is the

identity mapping, there is a formal analytic mapping Ff such that G°Ff is the

identity mapping. Therefore CG is a bijective endomorphism of CH and both
CF and r F ' must be the inverse mapping of CG. Hence F = F\ Thus we find

that G°F is also the identity mapping.

THEOREM I. 3. Let Y be a formal analytic mapping of H1 -h H into H.

Assume that cY(a, β), where a<Ξc(Hf) and β^cH, is linear with respect to the

variable β. Assume also that c Y(0, j9) = β for any β in CH. Then there is a

formal analytic mapping F of H'+ H into H such that cY(a, cF(a, β)) =
cF(a, cY(a, β)) = β for any a in c(Hf) and for any β in CH.

Proof. We claim that there is a formal analytic mapping Y* of W + H

into itself such that c(Y*) (a, β) = (a, cY(a, β)). Namely, denote by G the

everywhere defined formal analytic mapping (ξ, -η) e H'-\-H-* (|, ξ, rf) ̂  IΓ

+ H' -h H, and by G' the direct sum of the identity mapping of H' and Y, then

Y* = G'°G is the required one. It is easy to verify that (dY*)0 is the identity

mapping. By Theorem I. 2, there is the inverse F* of Y*. Let Ff be the

canonical projection of H'+ H to H. Ff is an everywhere defined formal

analytic mapping. Then F'°F* = F is the required one.

In the finite dimensional case, the following theorem is equivalent to the

existence theorem of solutions for the system of ordinary differential equations

of the first order depending on parameters.

THEOREM I. 4. Assume that the characteristic of K is zero. Let Y be a

formal analytic mapping of H' -f H into H'. Assume that cY(a, 0) = 0 for any

oc in c{Hf). Then there is a unique formal analytic mapping F of Hf + H into

Hf such that

dcF((«, β), (0, β))=cY(cF(a, β), /?),
cF(a, 0) = α:

for any a in c(Hf) and β in CH.

Proof. We naturally identify 1{H) and I(H') with subsets of I(H'+ H),
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Thus, KIH1, KlH'l c Kίff -f Hi Now we define polynomials Fί, w, where

aι^I(H') and #, w are non-negative integers such that v + w>lt in KZH'

by means of induction on rn-v+w as follows:

Fί, o = α\ Fl, i = Yί F\n, o = 0 for m > 2,

(10) Fi,«,= the coefficient of uvtw in

n=l W α+r=l

M/>1, where β'e/CH 1 ) and bι<Ξl(H). Set FJ*= Σ Λ , « .

Since cY(α, 0) =0, Ym are in the ideal generated by I(H). In particular, Y\

depend only in the indeterminates in I(H), since it is linear. Therefore we
m m

may replace Σ in (10) by Σ without affecting the results. Then the similar
π = l M=2

arguments as in the proof of Theorem I. 2, imply that the collection F = {Fm}

is a formal analytic mapping of H' + H into H. Because Yή are in the ideal
m—1 m

generated by I(H), we can replace Σ in (10) by Σ . Then it is easy to

verify that F is the required and unique one.

Similarly, we have the following.

THEOREM I. 5. Under the same assumption as in Theorem I. 4, there is a

unique formal analytic mapping F of H into H1 such that

dcF(β, £)= c Y( c F(j3), β)

for any β in CH.

Assume that the characteristic of K is zero. Let F={Fm} be a formal

analytic mapping of H into H'. For any u in K and or, β in CH, cF{cc + uβ)

= Σ ( Σ F m ( α + Wi5))̂ ! , where {h[, hi, . . . } is the ordered set of distinguished
* m = 1

elements of H'. Then FLU + uβ) = F'm(«) + «• Fm.,(α, £ ) + ^ u'F'm.ria,

0) + + umFin.m(0). We set 3/3« cF(αr + «0) = Σ ( Σ ( S f V ' f k r t a ,

β)))h'i. By definition, O/a« CF(« + uβ))u=o = Ci/F(a, β) = ̂ F U , β). The usual

rules of partial derivatives hold for this operator d/du. For instance, if H

2, and αr=(απ, a ι)t β= (0U ft), then O/a» c F(αi + wβi, α:2 + uβ2))u=v
cF(αri +wβi, α 2+»ft))»=»+ O/9if cF(α:i-f t>ft, αr2+Mj32))«-ι;. If FL =

where G = {G'm} and L = { i y are supposed to be formal analytic

mappings, then 3/Bu cF(a + uβ)= d/Bu CG{cc + uβ) + 9/θw cL(α + wβ). If d/3u

=0 for any u in ϋC, then cF(or + wβ) = cF(a) for any w in K. In
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particular, if B/Bu cF(ua) = 0 then cF(a) = 0.

LEMMA I. 1. Assume that the characteristic of K is zero. Take (F)vector

spaces Hi, H2, and Hz. Denote by F\ Gf formal analytic mappings of Hi -f Ά

into Hz. Let Y be a formal analytic mapping of Hz+Hi + HoΛ- H2 into Hz.

Fix elements a and β in cHχ and in CH2, respectively. Assume that we have

equalities: d/du cF'(a, uβ) = cY(°F'(a, uβ), a, uβ, β) and B/Bu CG'U, uβ)

= cY(cG'(a, uβ), a, uβ, β). If, moreover, cF'(a, 0) =cG'(a, 0), then cF'(a, uβ)

= CG'(a, uβ) for any

Proof. As we can see easily by the arguments at the beginning of the
00

preceding paragraph, cF'(a, uβ) = Σ u Fι(ay β), where F'0{a, β) = cF'(a, 0)

and Ffι(a, β) are divisible by t\ tι being the parameter of curves in Hi-t-H2.
00

By the definition, B/du cF'(a, uβ) =Σ/w /~1F/(α:, β). Then the equality:
i = l

B/Bu cF'(a, uβ) =cY(cF'{ay uβ), a, uβ, β) implies that F[(a, β) is determined

inductively, starting from Fl(a, β), by the formulas entirely determined by YΎ

or, and by β. Therefore, cF'(αr, uβ) =cG'(αr, uβ) for any weK

By the similar argument, we prove the following:

LEMMA I. 2. Hi, H2, Hz, Ff and Gf being as in Lemma L J, denote by Z

a formal analytic mapping of Hz + Hι + H2 into H3. Fix a e cHι and β e fIί2.

Assume that we have the equalities: uBlBu cFl(a, uβ) +acF'(a, uβ)=cZ(cFi

(or, uβ), a, uβ) and u B/du CG(a, uβ) + acG'{κ, uβ) = CZ(CG'{«, uβ), a, uβ)

for a strictly positive integer a. Assume further thai there is a formal

analytic mapping Z' of Hz + Hi + Ά + Ά into H* such that cZ(δ, a, uβ)=u
CZ'<J, a, uβ, β) for any δ in CH*. If, moreover, cF'(x, 0)=cG'(a, 0), then
cF'(a, uβ)=cG'(a, uβ) for any u in K.

Let Y be a formal analytic mapping of H' + H+ H into H1. Then it is

easy to see that there are formal analytic mappings W and X of H' + H+H

-f H and of H' + Hf + H+H into H' respectively, such that

cW(a, β, γ, δ)=lB/Bu{cY(ay β + uγ,
rX(a, a', β, r) = ldfou(cY(a + ua', β,

for any a, a1 in r(H() and β, γ, δ in CH. Under these notations we have the

following:
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THEOREM I. 6. Assume that ive have the following equality:

(Π) cW(a, β, r, δ) + cX(a, CYU, β, r), β, δ)

= CWU, β, o, r) + cX(a, cY(cc> β, 3), β9 r),

(αe c (Jϊ0, β, r, 8ZΞCH).

Suppose that cY(a> β, r) is linear ivith respect to the variable γ. Assume also

that the characteristic of K is zero. Then there is a unique formal analytic

mapping F of H'+ H into Hf such that

dcF((a, β), (0, r))= Γ F( c F(αr, β), β, r)
cF(αr, 0) = or.

Proof. By Theorem I. 4 there is a formal analytic mapping F of H' + H

into H' such that dcF{(a, β), (0, β))=cY(cF{a, β), β, β) and such that cF(ay

0) = a. We will show that F is the required one. Differentiating the equality:

JcF((αr, β + uγ), (0, β + uγ)) = cY(cF(ct, β+uγ), β + uγy β + ur) with respect

to u, we find that

dcF((a, β), (0, r))-cY(cF{a, β), β9 γ)

(12) = -td/du(dcF{(a, β + uγ), (0, i9)))]«=o + cPF(cF(α:,/3), β, γ, β)

+ cX(cF(a, β), dcF((a, β), (0, r ) ) , A β).

Set Hi=^H' + H, H2 = ̂ f, and //̂  = # ' . Denote by F ' the formal analytic

mapping of Hχ + H« into #3 such that C F'U, r, β)=dcF((a, β), (0, r)) - C Γ ( C F

(or, /3), β, r) for any U, r) in cHι and β in ci/2. Substituting cW{cF(a, β),

β, r, β) in (12) by a sum obtained by (11), we find by the definition of F that

dcF'((a, r, β), (0, 0, β)) + C F ' U , r, β)

= cX(cF{a, β), C F'(*, r, β), β, β)
Hence,

ft d/du CF'(U, r, uβ)) + F'({a, r, uβ)) =cZ{cF'(a, r, u$)y a, r, uβ\

where Z is the formal analytic mapping of H3 + Ά + H2 into Hz such that cZ(δy

a} r , β) = cA:(cF(a, β), 0, β, β). Since cY(ay β, r) is linear with respect to r,

so is cX(a, a', β, r^ Hence there is Z' such as in the assumption in Lemma

1. 2. Since d cF((a, uβ)9 (0, β)) -cY(cF(a, uβ), uβ9 β)=0, it follows that
r F'((#, r, 0))=0. On the other hand, denoting by Gf the zero mapping of

H1 + H2 into H:u we find that u d/du cG'((ay γ, uβ)) +G'((α:, r, uβ)) = cZ(cG'
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(a, γ, uβ), a, γ, uβ). Therefore, by Lemma 1. 2, we see that cF'(ac, 7, β)

-0, i.e. dcF((a, β)t (0, r))=Ύ{eF(<x9 /?), β, 7).

4. Germs of analytic mappings

Throughout this section except in the last part we assume that K is the

field of complex numbers with the topology of the euclidean distance. A formal

power series is called convergent if its radius of convergence is strictly

positive. Denote by Jίfp the vector space of convergent power series in xu

. . . , xp. Jέ/p is considered as a subspace of Hp. We set JCf* = K. Let

Jtfp be the direct sum of s copies of J^p. For a system of characters S= {so,

. . . , sp), sP*0, (cf. Def. I. 2), set <Jf{S) = ̂ /> + + Jtf*$. For each λ

= so + l, . . . , so-f-Si-t- * sp, the Λ-th component ξx of ξ in H{S) is a con-

vergent power series in #1, . . . , xpa) K so>O, for Λ = 1, . . . , so> £χ is in ϋf

and we set _£Q)=0. For any strictly positive numbers u and 0, denote by

Jέ/iS'y u, v) the set of all elements ξ in ^/{S) such that, for a sufficiently

small e>0 and for each λ, (i) the radius of convergence of fχ>w-f ε and (ii)

i ςλ (xu . . . , xp{χ)) \<v -ε for any | xr I < w. Of course, ε depends on ξ. When

j ^ s

p - cjs/r(S)f i.e. sύ = = s/,-i = 0 and s/, = s, we set Jίfpiu, v) = J(f{S u,

v). Let C(«) be the disk in the complex plane of radius a with the origin as

its center. A mapping / of C(a) into cJ/(S; u, v) is said to be a regular

curve in Jf/{S\ u, v), if, for each λ = 1, 2, . . . , so + si+ * +s/>, the function

h(xh . . . , xP{\). ί) = C/λ(f)] (*i, . . , Λfc(λ)) is holomorphic for U r |<w, | ί | < α .

DEFINITION I. 9. A mapping Jf of Jίf(S\ u} v) into J//(&\ u', v') is

called regular if c^ r(0)=0 and if for any regular curve f in Jt/iS', u, v),

Jf°f is again a regular curve in J^iS' u\ υf).

PROPOSITION I. 5. Let Jf be a regular mapping of Jfr(S\ u, v) into

u\ v1). Then for any ε>0 and c<l, the image of Jί/{S\ u, cv) is in

u', c(v' + ε)).

Proof T a k e ξ in J^/(S\ u, v). For any fixed x = U i , . . . , Xp{λ)), \xr\

<u', f(z) = ZF(zς)]x(x) is holomorphic for 121 < 1, because z->zξ is a regular

curve. And \f(z)\<υf for | z | < l a n d / ( 0 ) = 0 . Hence by a theorem in the

theory of complex functions, \f(z)\<cvl for \z\<c<l.
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For any ξ in c i ^ ( S ; w, v), set

|ς|« = sup {|?λ(*)l; \xr\<u, r<p(λ), λ =

PROPOSITION I. 6. Lβί JΓ £g 0 regular mapping of Jt/(S\ uy v) into

; u\ v'). Then, if ξ, y are in J&{s\ ut -~)

~

Proof. SetC = f-y. Then ξ -zζ<Ξjfr'(S; u, v) for \z\ <R= v (j\C\u)

Hence, if \χr\<u', then [ F ( £ - z t i l Λ x ) =/(*) is holomorphic for | * | < Λ |/(z)|

<t/', and/(0) = F(ί)λ(Λr). Since Q^Jt/(s\ u, ~), 1<R. Therefore 1/(1)

We remark that J^(S; u", vn)^J^(S\ uy v) Π c # ( S ; u\ vf) for «">w,

uf, and for υ"<v, vf. Let <̂ V be a regular mapping of Jt/iS) ur, vr) into

JCf(8\ Ur, vr) ΩjViS1), ( r = l , 2). We say that ,^Ί and ̂ ' 2 are equivalent

if there are u>uι, u2 and v<Vι, v* such that the restrictions of J?Ί and <J 2̂

to o ^ f S ; w, t;) are equal. Clearly this is an equivalence relation.

DEFINITION I. 10. An equivalence class of regular mappings under the

above relation is called a germ of regular mappings of J^{S) into J&'iS1).

PROPOSITION I. 7. Let J$\ and JJf\ be regular mappings of J&\S\ u, v)

into J^(Sf u\ v1). If <βf\ and JΓt are equivalent, then J#\ = Jf\.

Proof. Assume that S\ and Jf\ coincide on J^{S\ w*, v*)f where w*>w

and v* <v. Take ξ in J&"{S\ u, v). Then there is ε>0 such that the radius

of convergence of fx>(l + 2e)w and (1 + 2 e) |ς|«<t;. Let f(z) be the mapping

of C(l-he) in Jf/(S) defined by the formula: C/xU)] (xi, . - . , xpw) = z ξx

(zxi, . . . , zxpa))- f(z) is a regular curve in J(f(S\ uy v) and fiz) is in

Jά\S\ u*, v*) for z sufficiently near the origin, say, \z\<δ. Then Jf\(f(z))

= Jt\(f(z)) for \z\<δ. Hence by the theorem of coincidence J^Ί(/(1)) =J?2

(/(D), i.e. c^"i(ς)=«^""2(ς).

Let F be a germ of regular mappings of Jt/(S) into Jύ^KS'). We say

that F is defined at ξ in ̂ /{S) if there is a representative Jf" of the class F

which is a regular mapping of J(/\S\ «, v) containing ~ Jϊ'(ζ) is called the

value of F at ~ and will be denoted by ¥($). By Proposition I. 7 the value
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of F at ς is independent of the choice of ^y/{S\ u, v) as above. Denote by

«έ?(F) the set of all ξ at which F is defined. Then F can be regarded as a

mapping of 3 ( F ) into Jύf(S').

Let F and G be germs of regular mappings of Jίf(S) into J^{Sf) and of

cj^(S') into JίfiS"), respecrively. If there is a representative Jf of F which

maps Jtf(S', uy v) into Jfr (S' u\ vf) and if there is a representative *& of

G which maps JV{S'\ u\ vf) into J^{S" u", v"), then we say that the

composition of F and G is defined. It is clear that if' °J? is a regular

mapping of Jύ^(S\ u, v) into Jύ^iS" u"y υ")\ the germ which contains

^ °c#" is called the composition of F and G and will be denoted by G°F. It

is easy to verify that, if G°F can be defined, G°F does not depend on the

choice of *.& and ¥? such as above.

DEFINITION I. 11. A germ F of regular mappings of Jέf(S) into J

is called a germ of analytic mappings of J&iS) into J&'{S')y if there are

strictly positive numbers »*, v, v\ lυ, and an integer k such that for any u< u¥

there is a representative ̂ "u of F which is a regular mapping of rJ/(S\ u, uv)

into Jtf(S' wu, v1). The integer k is called a degree of F.

Remark: When the degrees of Jίf(S) and Jίf(S') are zero, i.e. when

J</(S) and o^(S') are finite dimensional, J^/{S\ u, v) and Jζ/(S; u\ v') are

domains in Jί/(S) and ,Jύ^(Sf)f respectively, and regular mappings in our

sense coincide with the usual regular mappings. In this case, any germ of

regular mappings is a germ of analytic mappings and our definition coincides

with the classical definition of germs of analytic mappings.

PROPOSITION I. 8. Let F and G be germs of analytic mappings of

into cJΫ'(S') and of rjy(S') into ^J^iS"), respectively. Then the composition

of F and G are always defined, and is a germ of analytic mappings of J^/{S)

into <J/{S").

Proof. Keep the notations in Definition L 11. Let w*, vu v[, Wu and kι

be constants for G such as in Definition I. 11. If iv satisfies the conditions,

then any w1 < w satisfies the same conditions. Similary we can replace k by

any k'>k. So we can assume that &i>0 and (u*w)kιvι (2vt)'1<l. Set v2

-zvkιvιv{2 v')~\ Then by Proposition I. 5 there is a representative J* « of F
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which is a regular mapping of J^(Sl u, uk+kιv2) into cJ/(S* wu, (ιvu)kιVi)

for u<u*. Hence, if u<u* = Min («*, w~lmut), the composition of ,£ Ή and

& wu maps /ί(S; u, uk+kιv2) into # ( S " ; Wiw, t ί).

A regular mapping JΓ of J^iSl u, v) into jViS1'; »', z/) is said to be

linear when the following condition is satisfied: If ξ, -η and aξ + ̂ 5ry are in

ίS; u, υ), where a, β are complex numbers, then β~(αξ-\- βy) = α^'(ξ) +

Set cJ^ίS; «) = U { ^ ( S ; *, fθ; ι;>0}. <J^(S; *) is a vector

space. For any ςe.J^ ' ίS; w) and «r such that \α\ <\ς\ΰι v, or"1 J?"(ας) does

not depend on the choice of such α. Set e#'(ί) = α:"1 ^"(αf) . Then Jf' = JT

on ^ ^ ( S ; w, e;) and c^"' is a linear transformation of <_&(S\ u) into cJί^(S';

w'). Moreover, for any t/i, c^"'|ΛΓ(S; w, Vt) is a regular mapping. Thus, in

this case, the germ represented by JΓ is defined on J&'iS', u). A germ F of

regular mappings is said to be linear if it has a representative which is a

linear regular mapping. Then the similar argument as in the proof of

Proposition I. 7 shows that any representative of F is linear. Assume further

that F is analytic. For any ξ in J&*(S), ? 6 (Si u) for sufficiently small u.

Since F has a representative defined on Jtf(S\ u, vι) for sufficiently small u

and vu the above remarks show that F is defined at any ξ in J£f(S) and is,

as a mapping, a linear transformation of cJ^(S) into JCfiS1). Thus

PROPOSITION I. 9. Let F be α germ of analytic mappings of Jzf(S) into

J&\Sf). If F is linear, F is defined everywhere and, as a mapping, is a linear

transformation.

Set 2S= (2so, . . . ,2s/,). Then we can identify Jϊf{S) + Jίf(S) and

J^(S\ u, v) + Jέf(S; u, v) with Jά"(2S) and Jt/(2S\ u, v\ respectively, in

the obvious way. So we can speak of regular mappings of Jtf(S\ u, v)-\-J(/

(S; u, v), etc. Keep the notations in Definition I. 11. For any ξ and -η in

,M/(Sl u, 2~ιukv), set C= (d/dz F«(ί + z 7 ) W By the definition of Jt/{S: u,

v), there is uι, u<uι<u*, such that ξ and -η are in <.#f(Sl uh 2~1wfz;). Hence

^uSξ + z-q) is in JCf(S'\ wuu V) for \z\<l. Hence by Cauchy's integral

formula C is in J^/(Sf I wu, vf). Thus d-β\c- (ςt y)-*C is a regular mapping

of Jf/(S; u, 2~ιuυ) + ,Jf/(S; u, 2~1ukv) into *y/(S'\ ivu, vf). It is clear

that, djfi~u and d Sf w are equivalent. Hence d^Ή defines a unique germ of

analytic mappings d¥ of .//(S) + ,//(S) into .^/{S1), dF is called the
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differential of F. For any r/ in ^{S\ U, 2~1ukv), set (dJfu)o = dJ?'u(0, i?).

Then (dJfu)o represents a germ of analytic mappings (d¥)0 of Jz/(S) into

cj^(S'). (d F)o is called the differential of F at the origin and is linear. If

G is a germ of analytic mappings of Jίf(S') into Jίf(Sn)9 we have the

formula:

(13)

THEOREM I. 7. Let ¥ be a germ of analytic mappings of Jtf(S) into

Assume that there is a representative of F ivhich is a regular mapping

of JέfiS'y u,ukv) into JCfiS1 \ wuy v') for each u<u*. Then there is a unique

formal analytic mapping F of H(S) into H(Sf) such that, for any u<u*> F is

defined on J&iS] u, ukv) with respect to the topology of the euclidean distance

and F(ξ) =F(f) for any ξ in JCfίS; u, uhv).

Proof. Let {hi, h2, . - - } be the ordered set of distinguished elements in

H(S). Components of hi are zero except one component, say Λ(*)-th, which is

a monomial #/, #,-, in xu . . . , Xpaav, where / = U"U(S). For any ξ in H(S),

denote by a'iξ) the coefficient of Xix - XχX in the ^(ι)-th component of ί.

Similarly, letting {hi h'2, . . .} be the ordered set of distinguished elements in

H(S'), hj has components zero except one, say σ(j)-th, which is a monomial

Xj\- - -Xjn in xu . . . yXp'(ou)) where n = \j\n(s>)' Now, let NH(S) be the set of

all elements ξ in H{S) such that each component of ξ is a polynomial of

degree <N. Then there are convergent power series *Fiι'"Jn in indeterminates

aι

mS) for \i>w8')^N such that

= Σ Λ

JVJn

rf'ίf), . . . )xh ' -xjΛ

for any u<u' and any ξ^H{S)Γ\J^{S\ u, ukυ). Let yFj

m be the homogene-

ous part of degree m in V = yFίιύ';jn, and set NFJ

m(ξ) - i V/4( . . . , <*'"<*), . . . ),

i.e. the value of NFJ

m at αJί(5) = a'iξ). Then, for a constant υn,m

for f in NH(S)Πc^(S; u, ukv). By Cauchy's integral formula, the mapping
ΪΓ— ' ' ' ^ :riίf Fσ(.7)Uς)) maps ,j&\S\ u, u υ) into
OXj\ OXJH C72 / 2 = 0

^pno{j)) (tv'u, u~nvn) for u<u*, where zί;' and v" are constants, and it is
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regular when restricted to each J^/{S\ u, ukv). By (14), NFm(ξ) is the value

of Fm(ς) at the origin.

As remarked before, we can assume that k>0. We shall show that, for

N'>N>n + km, NFin = N'FJ

mf i.e. they are the same homogeneous polynomial

of degree m. Take ξ and y in NH{S) and *Ή(S), respectively. Assume that

a\τ}) = 0 for |ί|ff(S)^iV, and that f 6 c ^ ( S ; u, 4Γxukv) for a real number

u<u*. Assume further that the coefficients of components of y are so small

that y e J^(S; u\ 4"1 {uf)N+1 v) for any u'<u. This is possible, because

ai(y) = 0{or \i\H{S)<N. Since zξ e NH(S)Γ\H(S; n',4"1 («')*») for | * | < («'/*)*,

applying Proposition I. 6 for ^ we find that \JΓjm(zξ + y)-Jfj

m(zξ)\w>u<

<U'Γ*~M 4ί/"M«' for |z|<(»'/»)*. Hence by the choice of y we have, for

a constant t>i,

(15) I "Fin (z? + v) - ΛΛ.(rf) I £ ff'*+1-*-Λι>i

for any \z\ < {uΊu)k. Since P(^) = N'Fj

m(zξ + ̂ ) - NFL(zξ) is a polynomial in 2

of degree < wi - 1 , if it is not zero, then P(z) =zιQ(z), where 0 < / < w ~ l ,

0(0)^0. Then by (15) we find that kl>N+ 1 - ft- n>k(m- 1) + 1). Since

£>:0 and τ»- l>/>;0, it is a contradiction. Hence P( ε) is a zero polynomial,

and so Λ > 4 = V F 4 for iV' > N> n + ftw. Now, we set F4 = Λ'Fk N>

For any £ in H(S), denote by *£ the element in NH(S) such that a\Nξ) =

for U'U(S)<AΓ. Then there is a constant #2<4- such that lV£ are in

uy 4"1w^z;) for f in J&'iS', 2u, (2u)kv2). Applying Proposition I. 6, we find

that Σ ^ i i ( f ) converges to Fj(ξ) = Fi\'JiJH(ξ) for ξ (Ξ H(S; u, ukv ι), where

u<2~iu¥ and that Fσ(f) = Σ Fj

o

v"in(ξ)xjx Λ;yn. Thus the only thing left to
Ji Jn

prove is the fact that {FJ

m} forms a formal analytic mapping. By definition

Fm is a homogeneous polynomial of degree m. Take ? in NH(S). If there is

# < « * such that Icfiξ) \ = uk~ιv3, for a sufficiently small constant z>3, where

/ = |ίU(β), then ί ε ^ ( S ; 2 " ^ , 2~kukv)} and so |-vFL(?)l<ic^4(e) !2-^'«<w-w

(2"z;//), where w= lyU(S). Since NFJ

m is a homogeneous polynomial of degree

m, the above inequality implies that \NFL(ξ)\ <u~km~nVι for \ai{ξ)\<u~ι

y

where v" is a constant. This shows that Fm is of weight < \j\π(S') + km. Thus

the theorem is proved.
The above F will be called the formalization of F. If a formal analytic
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mapping F is a formalization of a germ of analytic mappings, we shall say

that F is convergent.

PROPOSITION I. 10. Assume that the characteristics of IKS) and of H(S')

are equal. Then there are everywhere defined germs of linear analytic mappings

F and G of Jtf(S) and J^(S') into ,j/(Sf) and J&(S)y respectively, such that

F°G and G°F are indentity mappings.

Proof. (1°) First we prove the case when Sr = sr + Sr+i+ ' * +s>, (r = 0,

1. . . ,p), where S= (sQf su . . . , sP), S' = (sί, sj, . . . , s'p). ξ in Jζf(S) has sr

components which are functions of xίy . . . , xr we denote these by ξΓ, . . . , ?ίΓ.

Similar notations will be used for elements in ^£/{S'). We define a linear

mapping F of J ^ ( S ) into Jέf(S') by the formula: For ξ

. if

~dXr~*°

B -ft

Of course 5 r+ -\-sQ-ι + σ means a when q = r. We define a linear mapping

G of JV(S') into cJ^(S) by the formula: For i?£c/(S ') ,

= ώ f •••fSr-ihσ-h ysι+.' +Sr-ί\ odXi-\- \ 7)l2+...+sr-L+σ dX2 + * * * + 1 7]σ dX,
•/ 0 '^0 ^ 0

Then it is not hard to check that they represent germs of analytic mappings

and F°G, G°F are identity mappings.

(2°) General case: We write J^/{S) ^ c ^ ( S ' ) when F and G such as in

Proposition I. 10 exist. It is sufficient to show that ,J>Z(S)^J</Spp. By (1°),

we can assume that SO^FO, SI^FO, . . . , sp^O. Therefore it is sufficient to

prove the following statement: If s r > 0 , s r + i>0, . . . , sp>0, p>r, then J^(Q,

. . . , 0, sr, Sr+u > sp) ̂ ^{0, . . . , 0, Sr - 1 , sr+i, . . . , Sp). In fact, making

use of (1°) twice, cJ^(0, . . . , 0, sr, sr+u . . . , sp) ^ J^(0t . . . , 0, sr - 1 , sr+u

. . . , Sp) + cJ^r - c J ^ ( 0 , . . . , 0, S r ~ 1, Sr + u . . . , « / > ) + ( c ^ O + ^

c ^ / r ) - c ^ / ( 0 , . . . , 0 , S r - 1 , Sr + i - l , . . . , 5/,) + ( ^ ^ 0 + ' ' ' + c

. . . , 0, Sr- 1, Sr + i - 1, , Sp) + cJ^r + i « c i / ( 0 , . . . , 0, S r - 1, S,ri, . . . ,5/,).

Let c^^ίS), #*(S) be the set of elements ξ in ^ ( S ) , H(S) such that

components of ξ are power series with real coefficients respectively. Set

JS/nίS; u, υ)=Jύ'n(S)Γ\<J6'(S; u, v). A mapping J# of J?/R(S; u, υ)
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into Jά'R(Sf; u\ υ[) is called regular, if there is a regular mapping Jfc of

Jίf(S\ u> v) into ,Jtf(S'\ v!y v') such that JΓ is the restriction of JΓC to

J&R(S\ u, υ). By the theorem of coincidence, it is clear that such Jfc is

unique. By the similar procedure as above, we define germs of analytic

mappings of J^/R(S) into JόfΛ(S'). They can be regarded as germs of analytic

mappings of J(f(S) into Jύf^S1), representatives of which map intersections

with J(fR(S) into Jύfs(S'). The formalizations of germs of analytic mappings

of JfB(S) into Jύ<*(S') are formal analytic mappings of BP(S) into

Remark. Theorems in §3 do not hold for convergent formal analytic

mappings. For instance, for a fixed real number R>19 let F be a germ of

analytic mappings of J&Ί into itself defined by the formula:

[F(f )1 (z) = ξ(z) + {Rz) ξ(z) ξ(Rz).

Then (dF)o is the identity mapping. By Theorem I. 2, there is the inverse

formal analytic mapping G of the formalization of F. However, G is not

convergent.

5. Examples

and d/dXr as germs of analytic mappings. They

0

are linear and everywhere defined.

(B) Let Aχ(yu . . . , ys, Xp+u . . . , Xp*ι), λ = 1, . . . , s\ be analytic functions

defined for \ya\<vt \xp+μ\<Lu*9 (cr = l, . . . ,s; μ = l, . . . , / ) . Assume that

AxiOy . . . , 0) = 0 and that \A\(y, x)\ <v* in the above domain. Then we have

a mapping Jf of J^/S

p(u, v) into J&'p+iiu, vf) for u<u* defined by the

formula: \.*£Γ(ξ)\(χι xp+ι) = Ax(ξi(xu » . . , %p)> . . - , ξs(xi, . . .., Xp),

Xp+u - . , xι) Clearly they are representatives of a germ of analytic mappings

of J&p into J&"p+ι.

(C) By a homeomorphism element in ^-dimensional complex euclidean

space Cp at the origin, we mean a homeomorphic analytic mapping of a domain

containing the origin onto a domain in Cp. By identifying two homeomorphism

elements at the origin which coincide on a neighborhood of the origin, we

define germs of homemorphism elements of Cp at the origin. Denote by Cp(u)

the domain: \xr\ <u, (r = 1, . . . ,p). For any ξ in Hp(u, 2~ιu), let/" be the

mapping: fr(xu . . - , xp) =%r 4- ξr(Xi, . . . , Xp) of Cp(u) into Cp, Γ maps
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Cp(u) into Cp(2u), and Cp(2~ιu) into Cp(u). Hence if -η is another element

in Jtf*p{u, 2~ιu), then the composition /η°/ ζ is defined on Cp{2~ιu) and its

image is in Cp(2u). Therefore there is a unique element γ in Jt/P

p{2~1 u, 3u)

such that the germ of fr at the origin is equal to that of /η°/\ Putting r

=*<Λu(v, £), we have a mapping <Jίu of Jίfpiu, 2"1 u) +J&ί(u, 2"1 u) into

Jΰ/pp{2~1 u, 3u). One finds easily that the r-th component of <Λu(ζ, y) is

•ηλx)-\-ξΛxιJr'ηi(x)i . . . ,xp + vp(x)), where x= (xu . . >#/>). Clearly ~ # w are

representatives of a germ of analytic mappings of Jέ/Pp + .J ί^ into cJ^!, which

may be called the multiplication in the general infinite pseudo-group of

^-dimensional homeomorphism elements at the origin. ^Jt'u map the intersections

with Jtfpp -f- J&Ί9 into Jifpp, so they also represent a germ of real analytic

mappings.

(D) If ς is in j / | ( 2 « , δu2), where «<1, δ < 4"1, then | / ? ( ^ ) | > « - 4"1 w

= 4"13wfor ]ΛΓr! = wand | / ? (0) |<4" 1 « . Hence the image of C^U) by / '

contains Cp{2~1u). Moreover for ΛΓ in Cp(u), \dfr/BXr\>l~d and ]a/;/a^l

<δ, (r*rs). Therefore there is d>0, independent of u<l, such that the

inverse (f*)'1 is defined on Cp{2~1 u) and maps it into Cp(u). Thus there is

a unique γ in J^p

p{2~x u> 2u) such that the germ of/' at the origin is equal

to that of (f%)~\ Putting r = Jfu(ξ), we define a mapping ,J/P

P{U, δu2) into

c^/p(2~1ui 2 u) for w<l. It is clear that Jfu are representatives of a germ

of analytic mappings of Jt/p into J&'p. -β'Ή preserve Jέ/ψ, so they are also

representatives of a germ of real analytic mappings. The germ may be

called the inverse operation in the infinite pseudo-group of /^-dimensional homeo-

morphism elements at the origin.

(E) Let AA, λ = 1, . . . , 5, be analytic functions in variables Xi, . . . , Xp-u

yu . . . ,ys, and y^y where μ = 1, . . . , 5 and /•= 1, . . . , / > . Assume that Λκ

are defined when the absolute values of each variables are less than, say, a.

Now we consider a system of partial differential equations:

U = 1, . . . ,5).

Let ς be in Jt/% and assume that |ςχ(0)|, I (Bz\/dXr)x=o\ <a. An element y in

i is called a solution of (2*) with the initial condition ί, if vλ = 77λ is a
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solution of (2") and if yxixi, . > xp> 0) = ξχ(xi9 . . . >Xp). The classical

theorem of Cauchy-Kowalewski can be sharpened to the following:

THEOREM I. 8. Assume that each Ax is zero ivhen all the variables, except

Xu » xp+u are zero. Then there is a unique germ of analytic mappings F

of J&Ί into JCfp+χ with the following properties: If JΓ\ Jίfpiu, v) -» JCfp+i

(u'y v1) is a representative of F and if vy u~1v<a, then for any ξ in Jίfsp(u, v)

cJ^(ξ) is the unique solution of (Σ) with the intial condition ξ.

Proof. By the classical theorem, there are positive real numbers uu Vi,

u'u v'u (uiy uΐ1vι<a)t and a regular mapping Jf1 of t ^ ( « ι , vι) into Jίfsp+i(u[t

v[) such that, for any ξ in <JCfsp(uu Vi), ^ *(£) is the unique solution of (Σ)

with the initial condition ξ. Let J# be a regular mapping of J6fp(u, v) into

c^p+iiu1, υ1) equivalent to *$fx and assume that v, u~1v<a. Then by the

similar method as in the proof of Proposition I. 7 we see that <β~'(ξ) is a

solution of (Σ) with the initial condition ξ, and the classical theorem assures

us that Jf(ξ) is the unique one. It remains to show that J " 1 is a represen-

tative of a germ of analytic mappings. We divide the proof in several steps.

(I) The case when A* = Bχ(xi, . . . ,Xp+i, yu J s) + Σ β j r ( ^ >%P+U
μ, r

yu . >ys)yl We use the same notations introduced in the beginning part

of the proof of Theorem I. 7, except we will write μ(i) instead of λ(i), and

I \s,p instead of I \H«V.

(I. i) For ξ in Hp and for i such that }i\s,p>0y denote by diξ the partial

derivative d*ςμ{i)/dXiί' * 9#/ί. For n = 0, 1, . . . let Bn be a collection consisting

of analytic functions A\,n, A&]n"t{Q) in the variables x=(xh . . . , xp), y = (yi,

. . . ,y s ) defined in a common domain containing the origin and independent

of 72, where h^h . . . , huQ) run through distinguished elements of H% such

t h a t \ i ( t ) \ s , p > 0 a n d \ i ( l ) \ s , p + - - + \ i ( q ) \ s , p < n , q = l , . . . , n . I n w h a t

follows, we regard A \ , n as the case ^ = 0 of A\'?n"HQ). So Bn consists of

Aχ%"t(Q), the case <? = 0 included. Now we will show that we can choose Bn

with the following p r o p e r t i e s : For any ξ in Jόfs

p such that \ξχ(Q)\<a, if

V λ = T χ { ς ) =it(Y>Aχ%-iiη](x, ς ( X ) ) (di(1)ξ) ' Oi{q)ξ))Xp + ι

are convergent then -η = (rn, . . . , ηs) is the unique solution of (Σ) with the

initial condition ς, and vice versa. In the above expression, the termes q = 0
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mean A\,n(x, £(#)). We define Bn by induction on n. B° consists of Ax,0

= yκ. We assume that Z?°, . , . , Bn~ι are already defined. Then we can find

Aλ,1«"ί(<7) by formally differentiating the equation (Σ) with respect to Xp+i n-~l

times and by remarking that we are considering the special case mentioned

above.

(I. ii) Assume that the members of Bn are defined for \xr\<U2, \yμ\<U2.

Then there exist positive real numbers w3 < u2 and v3 such that, for }xr\, ly^l

\ATn"i{Q)(xi y)\< (myn^(vs)ιn)+ "+tίQ)+\

w h e r e /(*) = \i(t)\s.p.

Proof. Let Jf1, uu vi, Uu v\ be such as stated in the beginning of the

proof of our Theorem. We can assume that vu ui<U2 and that u[<u\. Then

if £ is in Jύfp(ul9 Vi), TΛξ) = JT\^) & cJVp+Λuί, v[), and so

(16) I Σ A ' 5 - ^ U , ξ{χ)) ( a α ) f ) •(di(Q)ξ)\<(u[Γnv[

for | ^ r | < M i . Take a sufficiently large real number b such that bp <4(b -l)p.

Then, for any \xϊ\<uu \yl\<4~ιvu and \y°i\ < (2 mb)'1 4"1 vi where / = U'Uf/>,

there is f in ^ ( « , , ^i) such that ?μ(Λ;ϋ) =>'° and [3/?] U°) =^, ?. Therefore,

by (16), if \xr\<ui and | ^ μ | < Min (4"^i , u[) then

Hence it is sufficient to put ws = Min(4~1^Ί, u[, 1) and e;3 = Max(fί, 2 « A 1).

(I. iii) Introduce an indeterminate Yi for each distinguished element hi

such that |*Ίs f£>0. Set fn(Y) -ΈJYUD* ' * YHQ) where the summation is with

respect to all Yία, Y, ( g ), (^ = 1,2, . . . ), such that U'(l)U,/,+ * +|f(^)U,/,

= n. Denote by /„ the value of M Y) when Y; = 2"/, / = I i U, /». We set / 0 = 1.

T h e n / ί r t ) =

Proof. Set ^n( Y) = Σ Y/, where the summation is with respect to all

!ίU./, = w. Set ^ ( Y ) = l + ^ i ( Y ) + +gn(Y)+ * . Then g(Y)n = Σ

ai(D...ήQ) y. ( j ) . . . y . ^ h w h e r e αία> . . ^ ) > 0 . Therefore, when we denote by ftΛ(ί)

the formal power series in t obtaind by putting Y, = U/2)', l=\i\s,p> in/ Λ (Y) ,

we see that the coefficient of tn in hn(t) is less than that in (1 - {tl2))~spn.

Because /„ is equal to the coefficient of tn in hn(t), it follows that fn <2spn.
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(I. iv) By the choice made in (ii), « 3 < 1 and #3>:1. Take ~ in

v), (u, υ<m). Since |3/f| < {ul2)~ιv for \xr\<(u/2)i using (ii), we find that,

for \xr\<(u/2).

< ivV u\) ^ ( Σ '
< (Uv*)'1 (ulu))~nv,f{n) < (wuΓnvf

where w= (2sp¥2Vz)~ιu\ and v' = 2spvs. Therefore T λ ( f ) e ^ + 1 ( Λ 2 v')f w'

= (w/2). This means that for u, v<uz ,2f : JC<j>(u, v) 3 ^ (Γi(ς), . . . , Ts(f))

e c / J f i ( Λ 2z/) is a regular mapping equivalent to ciΓ\ Thus our Theorem

is proved in our special case.

(II) The general case. A\ being given, consider the following system of

partial differential equations:

- § ^ _ = Aλ(Xu . . . , Xp+U y u . m . , y s 9 . . . 9 y r

μ 9 . . . ) ,

Byrx _ dA

where ^i, . . . , ys, . . . , yr

μ, . . . are unknown functions. Since partial derivatives

of unknown functions appear only linearly in (2"M, we know by (I) that there

is a germ Fi of analytic mappings of <Jύ<s/+s into J^3/+\s such that representa-

tives of Fi give the solutions with initial conditions. Denote by Fo, F 2 the

germs of everywhere defined analytic mappings: J f ^ C - * (C, . . . , dCμ/Bxr,

. . . ) e Jiff*, J&VS 3 < . . . . *λ, . . . , . . . , *x, . . . ) - > {Vlf . . . , Tis)

respectively. Now, let J ^ 1 be the regular mapping of J&%{uu vθ into

iu'y v1) such as in the beginning of our proof. Then, because of the uniqueness

of solutions of (Σ') under initial conditions, 3'ι is a representative of the germ

F 2°Fi°Fo. This finishes the proof of Theorem I. 8.

(F) Let Bxf λ = 1, . - . , 5, be analytic functions in variables xu . , xp+i,

vi» >ys> . . , yμ, - , zu , zs', where μ - 1, . . . , 5 and r= 1, . . . , p.

Assume that B\ are defined when the absolute values of all the variables are

less than a. Assume also that the values of J5λ are zero when all variables,

except xu . . . , Xpv\, are zero. Now, for any ζ in J^%^ such that |C σ (0) |<β

for a - 1, . . . , 5', consider the following system of partial differential equations:.
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( 2 ) ?.y; - = B , ( x u . . . , xp-u y u . . . , * , . . . , -f*-, . ,
cλfy + i * σΛr

ίlίΛΓi, . . . , Xpri), - - . , ίs'(ΛΓj, , ty-i))

THEOREM I. 9. 77z#r£ 25 « unique germ F 0/ analytic mappings of
spv\ into Jt/p±ι with the following properties: For any regular mapping

Jf of Jtfs

p(u, v) -i-cJz/p+Λu, υ) into J^%^iu\ v'), representing F, and such

that v, u~iv<a, ^~(ς, O is the unique solution of (2V) with the initial condition

ζ, where ξtaj&'piu, υ) and C6j/ s/+ 1(w, v).

Proof. Introducing a new variable ί, consider the following system of

partial differential equeations:

όϋ-λ- = BΛxu > Xp+u yu . . ,^s, . . , / μ , . . . , 2 i 2s'),
( 2 W )

 a ^ - ^ ^

dXp,\ ~ dt > U - l , . . . , 5 , , ; - l , . . . , S ) ,

where ΛTI, . . . , Xpf t, Xp+i are independent variables and ylf . . . , vs, zu . . . 9 zs>

are unknown functions. The unique solution of the equation: dz/3xp-i = dz/dt

with the initial condition: (z(xu - . , Xp, t, Xp+i))Xp.x~o - C(xίt . . . , xp, t) is

equal to C(xu . . . , xp, t + Xp+i). Therefore for ξxixu - , xp)t ZΛxu . . . , # / > ,

t) such t h a t l ? λ ( 0 ) ! , | O f λ / a * r ) * = o ! , | C ^ ( 0 ) ! < « , the solution of (2*') with the

initial condition : (^x)*p+1=o = ίx, ( 2 a ) ^ f l = o = Cσ must be necessarily of the form :

Vx = a\(xu . . , Xp, ty xp+i), z^ = C0U1, . . . , jfy, ί + Λ>+I). Hence ^ λ = aΛxu

. . . , Xp, 0, xp+1) is the solution of {Σζ) with the initial condition ξ. Thus,

applying T h e o r e m I. 8 to (Σ")t we can easily prove T h e o r e m I. 9.

Chapter II. Formal Lie (F)-groups and (F) -algebras

Using the formal analytic mappings, we define the notion of formal Lie

(F)-groups and formal Lie (F)-algebras and establish the one-to-one cor-

respondence between the isomorphic classes of formal Lie (F)-groups and of

formal Lie (F)-algebras. If the parameter (F)-vector spaces are of finite

dimension, formal Lie (F)-algebras are usual Lie algebras. If, moreover, the

multiplications are convergent, a formal Lie (F)-groups are local Lie groups.

Thus our theory generalizes the classical theory of correspondence between

local Lie groups and Lie algebras. Since our arguments closely follow that of
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the classical theory, only sketches of proofs will be given. A field K of

characteristic zero will be fixed throughout this chapter.

1. Definitions

DEFINITION II. 1. Let H be a (F)-vector space. A formal analytic mapping

G of H-t-H into H is called a formal Lie {F)-group in the parameter space H,

if it satisfies the following conditions:

(1°) The multiplication CG of CH is associative and 0 is the unit element.

We shall write a β in stead of cG(a, β), where or, β^9H\

(2°) There is a formal analytic mapping J of H into itself such that, for

and a in CH, cJ(a) is the inverse of a. We shall write a'1 instead of cJ{a).

We shall use the same letter CG to denote the group structure defined in
CH by the above multiplication.

Let Gi and G2 be formal Lie (F) -groups in parameter spaces Hi and H2,

respectively. If there is a formal analytic mapping F of Hi into Hi such that
CF is a homomorphism of the group cGι into CG2, then CF is called a represen-

tation of Gι into Go. Let G3 be a formal Lie (F)-group. If F1 is a represen-

tation of G2 into G3, then it is clear that Ff°F is a representation of Gi into

G3. Gi and G2 are said to be isomorphic if there are representations F and

F1 of Gι into G3 and of G2 into Gi, respectively, such that F'°F and F ° F ; are

the identity mappings.

Let G be a formal Lie (F) -group in the parameter space H. Let us use

letters a, #, r> . . to denote elements in CH. In the remainder of this section,

we shall keep G fixed and shall use the same notations. Then there are formal

analytic mappings V and W of H-\-H into H such that

cV(a, β)=-

(For the meaning of the above d/du, consult the sentences following Theorem

I. 5). We have

(17) a uβ = aΛ-ucV{a, β) (mod u2),

(18) a + uβ = a (ucW(a, β)) (mod u2),

(19) [a/aw(« (£ + wr))]«=o = r F U & cW(β, r)
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From these formulae one finds easily that

(20) cV(a, cW(a, β)) =cW(a, cV(a, β)) = β.

For any element a = ξit +ξ2t
2 + - - + ςιtι + - - in CH, where ξr are in

H for r = 1, 2, . . . , and for any u in if, denote by a w the element (w?i)f+

• + (uιξι)tι+ - - - in CH. A curve a in i7, that is, an element in CH, is

called a one-parameter subgroup of G if for any uι and w2 in ϋΓ we have the

equality:

(a uι) (a U2) - oc (uiΛ U2).

A formal Lie (F) -group is said to be under a canonical coordinate system, if

for any ξ in H> cς is a one-parameter subgroup, where cς is the curve ξt.

THEOREM II. 1. Let G be a formal Lie (F) -group. Then there is a formal

Lie (F)-group G' which is isomorphic to G and ivhich is under a canonical

coordinate system.

Proof. By Theorem I. 5 there is a formal analytic mapping F of H into

itself such that

c r ) , a)

Set Hi = Hi = HΆ - H. Denote by F' and F" the formal analytic mapping of

Ά + H* into H'A such that cF'(a, 0)=cF(a + $) and cF"(a, β) = cF(a) cF(/9),

respectively. Fix ί in i f and set a - cς u\ = ^ i Γ ί , β = cζ. Then, by (*) we

find that 9/3w c F'(α:, w^) = r F ( F ' ( α r , «j3), β), and by (*) and (19) that d/du
cF"(a, uβ) =cV(cF"(a, uβ), β). Since cF'{a, 0) -cF"(«r, 0) =cFia), Lemma

I. 1 implies that cF'(at uβ) =cF"(a, uβ) for any u in K. Hence cF(Γς) is a

one-paramenter subgroup of G for any f in H. Since cF(0, α) = α for any a

in ci7, (JF)o is the identity mapping. By Theorem I. 2, F is an isomorphism

of H onto itself. Then it is clear that there is a formal Lie (Fj-group G' in

the parameter space H such that F is an isomorphism of G' onto G. Then it

is easy to see that G1 is under a canonical coordinate system.

One finds easily the following:

PROPOSITION II. 1. // G is under a canonical coordinate system, then for

any a in CH}

, a) = a.
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DEFINITION II. 2. A formal analytic mapping L of H+H into H is called

a formal Lie (F) -algebra in the parameter space H if, by the multiplication CL

in CH, CH forms a Lie algebra. We shall write, as customary, [α:, β] instead of
cLλa, β).

Because L is bilinear, one can see easily that L is everywhere defined

with respect to the discrete topology of K, so we identify L with the bilinear

mapping of H+H into H. We shall write [£, 77] instead of L(ξ, -η) for any £,

η in H. We define representation and isomorphisms of formal Lie (F) -algebras

in the obvious way.

A formal Lie (F)-group G being given, we consider a formal analytic

mapping VΊ of H + H into H such that

cV1(a, β) = ld/ducV(ua, βXL-o.

We define a formal analytic mapping L of H + H into H by the formula:

(21) cL(a, j9)= -cVΛa, β)+cVι(β, a).

We shall show that L is a formal Lie (F)-algebra in the parameter space H

L is called the formal Lie (F)-algebra associated with the formal Lie (F)-

group G.

Since c7(0, a) = a, it is clear that (ua) (uβ) =ua + uβ + u2cVi(a, β) -f

• . Therefore we can write

(22) (ucc) (uβ) = ucc + uβ + u2cVιU9 β) + u*Y(a, β) (mod u4).

LEMMA II. 1. For any a, β, and γ in CH>

VΛa, cV1(β, r))- ίW7iU, β), r)

, β)-Y(β, r) + Y(« + β, r)-Yia,

Proof. Calculating the both side of the equality: iua) ί{uβ) (uγ))

= ({ua) (uβ)) (uγ) modulo u* by the formula (22) and equating the coefficients

of u3, we obtain the formula.

THEOREM II. 2. The formal analytic mapping L defined by (21) is a

formal Lie (F) -algebra.

Proof. It is clear that L is bilinear and skew-symmetric Therefore it is

sufficient to prove Jacobi's identity:
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[[>, Pi rl + ΓCft rl «] + Kr, «Ί, £1 = 0.

for any a, ft and r in r # . Now set Z(«, ft r)=rV1(a, cVi(β, r))+dVΊ(ft cVl

(r, a))+cVι(r,
 cVΊ(α, /3))~ cK1rF1(^, j9), r ) - W f i ί f t r), α ) - W P Ί ( r , «),

j3). Then by Lemma II. 1 one find that Z(a, ft r) = (Y(a + β, γ) - Y(r, α + ^))

+ (F(3 + r, α) + y U + r, /9))-'(l r(α, β + r) + F(ft α + r)). Therefore we see

that Z(ay β, γ) ~Ziβ> a, γ). Now if we express the left hand side of Jacobi's

identity in terms of the function CVU then we find that it is equal to-Z(ar, β,

y a, r ) = 0 .

2. The fundamental theorems

THEOREM II. 3. Let Gr be a formal Lie (F)-group, ( r = l , 2). Denote by

Lr the formal Lie (F)-algebra associated zvith Gr. Let F be a representation of

Gι into Go. Then (dF)o is a representation of L\ into Lz.

Proof. Since CF is a homomorphism of the groups, it is easy to see that
cV(cF(a')y {dcFh(β)) = dcFίa', cV(a', β)). Putting a'= ua and differentiating

with respect to u, one finds that cVι((dcF)Λcc), (dcF)o(β)) = (dcF)0(
cVl(a, β))

+ td/du(dcF(ua, β))lu = o. Then the theorem follows, because ld/du(dcF(ua,

Let G be a formal Lie (F)-group in the parameter space H. Denote by

ta, β] the commutator in the associated formal Lie (F)-algebra L. Denote by

W a formal analytic mapping of H+H+H into H defined by the formula:

cW'(a; ft r)

LEMMA II. 2. For any ay ft and γ in CH,

-cW'(a; ft r)+cW'(a; r, β) = lcW(a, r ) , cW(a, β)l

Proof. Set Y{u, υ) = α"1- (α + uβ + vγ). Then by (19), Ld/dvY(u, v)l>--o

= cV{ucW(a, β), cW(a, r)+ucW'U; β, γ)) modulo «2. Therefore ίd/dud/dv

Y(u} vΏu-v^ = cV1{
cW{at β), cW(a, r))+cW'(a; β, γ). Because d/dvθ/du

Y(uf v)) = d/du(d/dvY(u, v))> we have the required equality.

Putting a = 0 in Lemma II. 2, we find the formula:

(23) [α, /9] - cWΛcc, 0) - cWi(β. a).

where cWΛa, β)=-cW'(0; a, β).
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PROPOSITION II. 2. Set cZ(a) =cW(<xf a). Then

dcW((ai β), (*, β)) = -lcW(a, β), cZ(a)l + dcZ{ccy β).

Proof. Calculate ld/ducZ{a + uβ)l and apply Lemma II. 2. In particular

we have

PROPOSITION II. 2'. If G is under a canonical coordinate system, then

(**) dcW((a, β), (or, β)) = ~lcW(ac, β), al+β.

Proof Apply Proposition II. 1 to the above formula.

THEOREM II. 4. Let Gr be a formal Lie (F)-group ( r = l , 2). Denote by

Lr the formal Lie (F) -algebra associated with Gr. Let F be a representation

of Li into Li. If both Gι and G2 are under canonical coordinate systems, then

F is also a representation of Gι into G2.

Proof. Denote by H and W the parameter space of Gi and G2, respectively.

Let A and B be formal analytic mappings of H+H into H1 such that cA(cc,

β)=cF(cW(a. β)) and cB(at β) =cW(cF(a), cF(0))t respectively. Operating
CF on both side of (**), we find that dcA{(a, 0), (α, β)) = -ΓcA(αr, β), cF(cc)l

+ cF(β). Replacing a and β in (**) by cF(a) and cF(β)t respectively, we see

that dcB((a, β)9 {a, β)) = - lcB(a, β)9

 cF{a)l + cF{β). By Theorem I. 5, cA(a,

β)=cB(a, β), i.e. cF{cW(a, β)) =cW(cF(β)). Operating cV{cF(cc), ) on both

sides of the just proved formula and replacing β by cV(a, γ), we find that
cF{cV(a, r))=cV{cF(a), cF(γ)). Then by (19) and Theorem I. 6, one sees

easily that F is a representation of Gi into G2.

THEOREM II. 5. Let L be a formal Lie (F)-algebra. Then there is a formal

Lie (F)-group G such that L is the formal Lie (F)-algebra associated with G.

Proof. Let H be the parameter space of L. By Theorem I. 5 there is a

formal analytic mapping W of H+H into H such that

(24) d°W{U, β), (αf β))=ZcW(a, β),

By construction cW(0, a) — a and cW(a, β) is linear with respect to the

variable β. Set cW'(cc\ β, r) =ΐd/ducW(a + uβ, r)3«=o. Replacing a in (24)

by cc 4- uγ and differentiating by u, we find that
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(25) [d/ducW'(a + ua; γ, /9)]«=0

= -2cW'(a; r, β) + lcW'(a; γ, β),«l + lcW(<χt β),rl

Putting a = 0, we see that lβ, r ] = 2cFΓt(r, 0), where cP7i(αr, 0) = cFT(0 or, 0).

Since the commutator is skew-symmetric, it follows that

(26) la, βl = cWΛβ, a)-cWΛa, β).

Set Hi^H+H, H2= H, and Ά^H. Let F' be the formal analytic mapping

of H. + Hz into Hz such that cF'(α, r, β)=cW'(*; β, r)-cW'U; r, β)-lcW

(a, r), c ^ ( ^ , ^ ) ] for any (or, r)^Ά and βt=H2. Then (25), (26), Jacobi's

identity, and the definition of W imply that

dcF'((cc, r, β), (0, 0, j 3 ) )= -2cF'(a, γ, 0)+lcF'(a, r, β), β ] ,

that is,

ud/dueF'(a, r, uβ)+2cF'{ai γ, uβ) = LcF'(af γ, uβ\ uβl

Moreover cF'(a, γ, 0) = 0 by (26). On the other hand, denoting by O the zero

mapping of Hι + H?. into H^ we see that cG'(a, r, uβ) satisfies the same dif-

ferential equation as cF'{a, γ, uβ). Therefore, by Lemma I. 2., we find that

FHat Tf β) = 0 , i.e.

(27) cW'(a; β,r)-°Wf(a; r , β) =tcW(a, r ) , cW(a, β)l

By Theorem I. 3 there is a formal analytic mapping V of H-\-H into 7/ such

that

(28) β = cV{a, c W ( a , β)) =cW{a, cV{ccy β)).

Set cV'(a; β, γ) = ld/ducV(a + uβ, r)lu-o. Replacing a by a + ucV(ay γ) in

the first equality in (28), differentiaing with respect to u, and replacing β in

the resulting equality by cV(cc, β), we find that cV'(a; cV{a} γ), β) = -cV(a,
cW'(a; cV(a, β), 'Via, γ)). Then by (27), we have the formula

(29) cV\ct\ cV(a, β), r)-cV'(«; cV(a, γ), (3) = cV(a, lβt γl).

Let Y be the formal analytic mapping of H + H+H into H such that cY(a,

β, γ) =cV(a, cW(β, γ)). Then (27) and (29) imply that Y satisfies the con-

ditions in Theorem I. 6. Therefore there is a formal analytic mapping G of

H+H into H such that
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dcG((«, β\ (0, γ)) = CY{CGU, β), β, r)

= cV(cG(a, β), cW(βy γ))>
cG(a, 0 ) = α .

Then we find that G is a formal Lie (F)-group under a canonical coordinate

system such that the given L is the formal Lie (F) -algebra associated with G.

A Formal Lie (F)-group G, or a formal Lie (F)-algebra Ly is said to be

convergent if the formal analytic mapping G, or Lt is convergent. If G is

convergent, then the associated formal Lie (F)-algebra is convergent. However,

the converse is not always valid.
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