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Introduction

Let M be a connected metric space and H an isometry group of M which

leaves fixed a point p in M. M is said Hisoίropic at p when, for any two

points Q and r of M at the same distance from p, there exists an isometry in

H which carries q to r. When H coincides with the maximum isometry group

leaving p fixed, M is said merely isotropic at p.

Assuming further that M is compact and the isometry group of M is transi-

tive, H. C. Wang [26] proved that M is a homogeneous space of a compact Lie

group and that the homogeneous space is one of the spaces: a sphere, a (real,

complex or quaternion) projective space and the Cayley projective plane.

J. Tits [25] and H. Freudenthal [11] succeeded in determining the homo-

geneous space M under weaker conditions. Here are Freudenthal's hypotheses

on M, which are more general than those of Tits. M is a connected locally

compact Hausdorff space. M admits a transitive group I of topological trans-

formations having the properties (S), {V) and iZ\

(S): Given a compact subset A and a closed subset B of M with A Γ\ B

^<ρ (the empty set), there exists an open set U •* φ such that for any r in /,

τ(U) Π A --V ψ implies τ(U) Γ\ B = ψ.

By (S), M has an /-invariant uniformity, from which he defines a uni-

formity on I so that 7 is a topological group.

(V) : /is complete.

(Z) : / denoting the isotropy subgroup of / at a point p, there exists an

orbit /(</), q^M, such that M-J{q) is not connected.

/ is compact. Using Yamabe's theorem, Freudenthal showed that / is a

Lie group, and so M admits an /-invariant Riemannian metric. M is then J-

isotropic at p. He determined /, / and M - 11J by studying the Lie algebras
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of / and /.

On the other hand R. Bott [6] proved that, if all the geodesies of a

Riemannian manifold M, 2 *= dim M, are simply closed and of the same length,

then M is compact and two cases are possible: 1) the fundamental group of

M is of order two and the universal covering of M is a homological sphere,

or 2) M is simply connected and its Poincare polynomial over any field is of

the form 1 + tk+ι + ?{k*l) + +1™*1"**1*.

For the proof he used the Morse theory and theory of spectral sequences.

Now our main theorem states:

THEOREM 1. Let M be a connected manifold with a Riemannian metric of

class C2. If M is isotropic at a point p, then there exists a Cι-diffeomorphism

δ of M onto one of the spaces: a euclidean space, a sphere, a real elliptic space,

a complex elliptic space, a quaternion elliptic space and the Cayley elliptic plane.

Further δ induces an isomorphism of the isotropy group J at p into the isotropy

group at δ(p), where the euclidean space and the sphere are given the usual

metrics, and the elliptic spaces are the projective spaces with the metrics of

irreducible symmetric spaces of rank 1 i.e. the last three Riemannian homo-

geneous spaces are U(m + I)/(U(l)xU(m)), Sp(m +1) / {Sp(D xSpim)), and

F4/Spin (9). (See [8] for these notations but Cartan's notation F4.)

The condition to be "isotropic at p" can be replaced by a seemingly

weaker one: the linear isotropy group induced from / on the tangent space

at p is transitive on the unit sphere, according to the preceding paper [21].

The assumption of Theorem 1 is equivalent to the condition: M is a connected

paracompact differentiable manifold of class C3 on which a compact Lie trans-

formation group admits an (n — 1)-dimensional orbit and a fixed point, n being

the dimension of M (Corollary 1.1).

When M is not compact Theorem 1 follows from results in [21], which

will be summarized in Section 1. When M is compact, F shall denote the set

of the farthest points from p. The assumption gives that F is a /-orbit.

M-{p} will turn out to have a differentiable fiber bundle structure over F.

The bundle is determined by some subbundle S. S is a homogeneous sphere-

bundle (whose bundle space S is) homeomorphic to a sphere, where, unlike

certain other authors, we mean by a homogeneous bundle a fibre bundle on

which a connected Lie group of bundle automorphisms operates transitively.
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Based on this fact we shall investigate topological properties of F in Sections

2 and 3. In particular the Poincare polynomial of F will be found in the form:

Pit F) = l + tk+1 + + fm(*+1), k denoting the dimension of the fibre of S.

It will further turn out that k is odd and the Euler characteristic 7ΛF) of the

homogeneous space F is positive. The last property is important for the de-

termination of F.

We shall next determine all homogeneous sphere-bundles homeomorphic to

spheres. The associated principal bundle of any such bundle is a Lie group G

fibered by a closed subgroup H. Not only G but H is transitive on a sphere.

The local structures of such groups were enumerated by Zλ Montgomery-

H. Samelson [18] and A. Borel [1]. In Section 4 we shall determine the local

structures of G and H. Their global structures and the operation of H on the

fibre Sk, therefore the bundle S, will be determined in Section 6 (Theorem 3).

For this purpose we need the following theorem.

THEOREM 2. Let H be a compact Lie group which operates effectively and

transitively on a simply connected homological sphere S of dimension n — lt H{)

be the identity component of H, and C be the centralizer of H in the group of

topological transformations of S. Moreover let H' be a closed connected subgroup

of the orthogonal group O(n) such that H' is transitive on the unit sphere Sn~ι

and locally isomorphic to H. Then there exists a homeomorphism of S onto

S71'1 which induces an isomorphism ofH C into O(n) carrying H° onto H1.

Given H, there always exists the group H1 ([18], [1]). A part of this

theorem was announced by A. Borel without a full proof [3] (See also his

review on [17] in Zentralblatt Math. 42, p. 259). A similar result was ob-

tained by Y. Matsushima [17] in the case of homological sphere over ra-

tionals with a finite number of exceptions for HQ. Our theorem implies that

for any transitive group H1 locally isomorphic to H° there exists an iso-

morphism of H° onto Hf carrying the isotropy subgroup of H° onto that of

H1 i.e. the operations of compact connected groups transitive on the sphere

are determined by their local structures.

In Section 5 we shall prove the part of Theorem 2 which will be used

in Section 6 to prove Theorem 3. By this theorem the bundle S is all given

and so is the bundle M—{p) M-{p) will turn out to be equivalent to
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M' — {p'}, M1 denoting one of the spaces mentioned in Theorem 1. In par-

ticular there exists a diffeomorphism δ of M-{p) onto M'-{pf}.

In Section 7 we shall complete the proof of Theorem 2 in order to

show that δ extends to M and that δ induces an isomorphism of the iso-

tropy group /. Theorem 1 will thereby be established in 7.

In Section 8 we shall determine the Riemannian metric (and the

isometry group) of M under the assumption of Theorem 1 added to the

hypothesis that M is Riemannian homogeneous. This gives another proof of

the above mentioned result of Wang, Tits and Freudenthal under the assump-

tion that the isometry group is a Lie group. Thanks to the topological study

of M and F in the non-homogeneous case, the proof is very simple.

Differentiability class. Since geodesies on M play an essential role, M

must be of differentiability class C3. If one formulates P. S. Mostert's theorem

[20] in the form shown in Section 1, one will be able to generalize Theorem 1

to the case where M i s a topological manifold, the map δ in the conclusion

being then not a diffeomorphism but a homeomorphism. That M is a topologi-

cal manifold one cannot derive from FreudenthaΓs hypotheses except transitivity

of /.

In Appendix we shall prove an unpublished theorem of Matsushima which

will be used in Section 8.

The author wishes to express his hearty thanks to Professor Kentaro Yano

for his instruction and encouragements. He feels deeply grateful to his friend

A. Hattori for his aids given to the author to surmount several obstacles.

Further he thankfully acknowledges many valuable suggestions given by Pro-

fessor N. Iwahori and his friends M. Ise, M. Sugiura and I. Tamura. Professor

Iwahori kindly read the manuscript.

1. Preliminaries

In this section we summarize the results obtained in the preceding paper

[21] which we shall need in the sequel.

Let N be a connected non-compact differentiate manifold with a Riemannian

metric of class C2, and G be a compact connected isometry group of N. n shall

denote the dimension of Λr. Throughout this section we shall preserve the

assumption:
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(1.1) There exists an (n — 1)-dimensional G-orbit and a G-orbit B - G(b), b<ΞB,

such that the complement N-B is co>ιnected,

By a perpendicular to B (ending at r^B) we mean a geodesic ending at

a point r of B and orthogonal to B at r.

(1.2) Given a point q in N, there exists a unique perpendicular to B ivhich

starts at q.

(1.3) Given a point b in B, the union E of all the perpendiculars to B ending

at b is a submanifold on ivhich a normal coordinate system ivith .center b is valid

all over. Furtheremore E is H-isotropic at b where H is the isotropy subgroup of

G at b.

In particular E is C'-diffeomorphic with a euclidean space. H is a linear

group on E in terms of the normal coordinates.

From (1.2) it follows that

(1.4) N has a (differentiate) fibre bundle structure over B associated ivith

(G, G/H, H), i.e. G fibered by H.

From (1.3) and (1.4) follows

(1.5) For an arbitrary point q in N-B, the orbit G{q) is of dhnension n-1

and has a sphere-bundle structure associated ivith (G, G/H, H). A sphere is

understood to consist of two points when it is zero-dimensional. This bundle is

a subbundle of N.

(1.6) The manifold N and the bundle structure on N is determined uniquely by

the subbundle G(q) and the transformatio?ι group G in the sense that if (1) G

operates also on another non-compact Riemann manifold N' satisfying (1.1), (2)

H is the isotropy subgroup at a point b' of B'CN', and (3) there exists a diffeo-

morphism of the sphere H(q) onto the sphere H(q'), qf e Nf - Bf, which induces

an automorphism of H, then Λ7 is diffeomorphic to Nf and the bundle structures

on N and N1 are equivalent. Eventually

(1.7) The dijfeomorphism of N onto Nf can be so chosen that each perpendicu-

lar to B is mapped to a perpendicular to B'.

2. The subspace F of M

In this section we preserve the hypothesis of Theorem 1.
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We may assume that the dimension n of M is greater than 1, because

otherwise Theorem 1 is clear. M-{p) is then connected. By a well known

theorem of Dantzig-Waerden, the maximum isometric isotropy group / at p of

M is compact. For a small number e the totality S of the points of M at the

distance e from p is homeomorphic to the in - 1)-sphere. Since / is transitive

on S, so is the identity component J°. A simple connected and compact sub-

group G is therefore transitive on S by a theorem of Montgomery and Samelson

[18].

(2.1) Theorem 1 is true when Mis not compact.

When M is not compact, we put M= N, {p} = B, J° = G. (1.1) holds good

and we have (1.4). The base space B being a point, the bundle space M coin-

cides with the fibre E. By (1.3), a normal coordinate system v with center p is

valid on M. v induces an isomorphism of / onto the linear isotropy group which

can be considered as a subgroup of O(n)= the group of all linear transfor-

mations preserving the quadratic form on T defined by the Riemannian metric

tensor.

M has a metric d defined by the Riemannian metric. Denote by F the set

of all the farthest points from p. The distance function d(q) = dip, q) then

attains its maximum value on F.

(2.2) F is a compact and connected submanifold with 0 = dimF< n.

Since F is a /°-orbίt, F is a compact connected submanifold. M being

compact, F is not empty. Finally, if dim F = n, F is open and closed, which

leads to a contradiction F= M.

(2.3) M- F is connected.

M being compact, any point q in M can be joined to p by a geodesic r(q)

of arc length equal to dip, q). If q belongs to M-F, then γiq) contains no

points of F by the definition of F. Hence M- F is connected.

(2.4) S is a homogeneous sphere-bundle over F with bundle space homeomorphic

to the in-1)-sphere. (For the definition of a homogeneous bundle, see the

introduction.)

Putting M- {p} = N, F= B, /° = G, we find the condition (1.1) satisfied due

to (2.3). Hence (1.5) applies. Each element of G is clearly a bundle-auto-

morphism.
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(2.5) In case 2 < n, the fundamental group πι(M) of M is isomorphic to

In fact we have πi(Δf) = πi(M-{p}) because the fundamental group is

determined by the 2-skeleton. From (1.3), (1.4) and the proof of (2.4), we

deduce that M- {p} is a fibre bundle over F with fibre homeomorphic to a eu-

clidean space. Hence we have πi(M~ {p}) --= 7Γi(F).

3. Topological properties of F

Some of the facts proved in this section are known. Throughout this

section we assume:

(3.0) S is a sphere-bundle ivhose bundle space, denoted also by S, is a simply

connected (n — 1)-dimensional homological sphere. The dimension of the base F

satisfies the inequality 0 < dim F < n — 1. A homological sphere is by definition

a compact space whose integral homology group is isomorphic wτith that of a

sphere.

Let k be the dimension of the fibre. We have 0 < k.

(3.1) F is simply connected, because S is simply connected and the fibre is

connected.

(3.2) The i-th homotopy group τr, (F) = 0, if i-Kk or if k = l and 2<i<n-l.

We have m(S)=0 for i<n — l by Hurewicz' theorem and (3.0). Now

(3.2) follows from the exact sequence ([24] p. 91):

>7Γ, ( S ) -7Γ, ( F ) ->7Γ, - , ( S * ) -> TΓi-l(S) ">

By (3.0) and (3.1) we obtain Gysin's sequence ([23] p. 470):

> HHF) -* H f '(S) -> H^iF) -> H^HF) ->••-,

where Hι{X) is the ί-th cohomology group of X over the integers. We thus

have

(3.3) Hi'k(F)=Hi"1(F) ( 0 < ί < w - 2 ) .

Combining this with (3.2), we get from Hurewicz' theorem

(3.4) F is free of torsion and has the Poincare polynomial of the form:

Pit F ) = l + f* + 1 + - +tmkbl), m{k+l)=άimF.

(3.5) The number n-l is odd.
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If n-1 is even, Leray's theorem ([15] P. 190) giving the relation

the Euler characteristic ΪΛS) = 7ΛSk)X(F)

implies that k is even, contrary to the following (3.6).

(3.6) The number k is odd.

The isomorphism in (3.3) is given by

h : x^H^iF) -+x Ω^-Hι+ι(F),

where Ω is the (β-f 1)-dimensional characteristic class of Whitney. If k is even,

2Ω is known to vanish. Then h cannot be an isomorphism of H°(F) =Z onto

(3.7) The Euler characteristic X(F) of F equals (dim F)/(A + 1) + 1 hence it

is positive.

From (3.4) and (3.6) we find 'X(F) = P( - 1 F)=m + l>0. Finally (3.4)

gives

(3.8) k<άϊmF.

4. The homogeneous space F

We preserve the hypothesis (3.0) and the notation k throughout this sec-

tion. Further we assume that S is a homogeneous bundle. Since S is compact

and simply connected there exists a compact and connected group of automor-

phisms which is transitive on S (Montgomery-Zippin [19] p. 226). S being a

simply connected homological sphere, a theorem of Montgomery and Samelson

(See the proof of Theorem 1' in [18]) tells us that

(4.1) Some simple connected and compact Lie group G of automorphisms is

transitive on S.

G is considered to be effective on S. Denote by H the subgroup of G which

leaves invariant a fibre Sk. We have GlH— F.

(4.2) The bundle S is associated with the principal bundle (G, G/H, H). The

structure group H is transitive on the fibre Sk of S.

( 4 . 3 ) τii(H) = 7 r / ( G ) , if Q<i<k or if k = l and 2 < i < n - 2.

This follows from (3.2) and the exact sequence:

τr, (G) -> τr, (F) -* -.
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(4. 4) If l< k, H is semi-simple.

Since G is semi-simple (because d i m S > l ) , πι(G) is finite. Hence (4.3)

implies (4.4). (As regards literatures on the topology of Lie groups we refer

the reader to [22] and [4].)

(4.5) If 4<k, H is simple.

In fact we have π3(H) = π*(G) = Z

(4.6) The rank of G equals that of H.

This is a consequence of (3.7) and a theorem of Hopf and Samelson.

(4.7) A compact connected and simple transformation group operating on

a (2r-1)-sphere is Dr, r>2; Ar-ι\ Cr/2, r^even: or Br/4+2, r = 4 or 8.

(These notations of Cartan, A, By C, D concern the local structures of groups

only.)

See D. Montgomery-H. Samelson [18] and A. Borel [1], or H. Freudenthal

[11]. (Later in Section 5 we shall give a brief sketch of a proof.)

(4.8) 7Γ5(Dr + i) =πs(Br/i+2) = 0, 7 Γ G ( Λ - I ) = Z, 7Γ5(Cr/2) = Z 2 , 7T5(B2)=Z2, 7Γ5(Λ)

= Zι -f Z2, π-ADz) = Z, ivhere r is greater than 2 and Zι is the group of order 2.

These relations are found in Bott's table [5], except the last three [24],

(4.9) If 5 < ky then k = 7 and G is B4 and H is D,.

With G, H is simple by (4.5). Hence H is almost effective on Sk by (4,2).

On account of (3.5) and (3.6) together with (4.1) and (4.2), we can apply (4.7)

to G and H. On the other hand H must be D 3 or DA by (4.3), (4.6), (4.8) and

the inequality dim G - dim H > 0. Dz must be excluded because of (4.7) and

the inequality.

(4.10) 5*k.

Assume 5 = &. H is simple by (4.5). H is Dz or At by (4.7). Hence the

rank of G is 3 or 2. n - 1 is not less than 11 by (3.8). Therefore G is C3. It

is known ([24] p. 132) that πΛCs) = Z2, while πt(Ds) - πάAz) - 0, contrary to

(4.3).

In order to investigate the remaining cases k = 3 and k = 1 we need some

other known facts. Denoting the Poincare polynomial (over the real field) of G

and H by 77,(1 + f5*"1) and 77,(1+ fr'"1) respectively, we assert:

-f S ί ), 0 < w,
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This follows from (3.1), (3.4), (4.6) and Leray's theorem ([2] p. 191):

(4.11') If H is a closed connected subgroup of a compact connected Lie group G

and if H has the same rank as G, then the Poincarέ polynomial PiG/H t) of

G/H equals 77(1 - ts*)/Π(l - f * ) .

(4.12) Let Ls be a proper closed subgroup of a compact simple group δΛδ = A,

B, C, D) such that

1) rank Ls - rank δr = r,

2) the center of Ls is of dimension ^ 1,

3) Ls is simple or a local product of two simple groups.

Then locally

LA is T x Ar-i.'

LB is Bi x Bι (r = 2), Dr x Br-j (2 < j ^ r\ Dj x Dr-j (2 < j < r- 2),

T X Ar-i, Γ X Dr-i Or T X Sr-l ί

Lc is Cy x Cr-y (0 < j < r), T x Ar-i, or T x Br-i

Lj) is D; x Dr-y ( 2 < y < r - l ) , TxΛ r -i , T x Dr-u

where T is the one-dimensional toral group. (See Theorem II in Wang [27]).

(4.13) In case k = 3, G is CM/4 and H is Ci x C/4-i (8 ^ w).

Since G is simple, the coefficients of £2 and ί4 in (4.11) equal 0 and - 2

respectively. The number (m+l)(k+l) being greater than 4, it follows that

.77 is semi-simple and a local product of two simple subgroups. One of them is

of rank 1 because H is transitive on S3. Inspecting the tables in (4.12) and

(4.7), one finds that

1) G is Cn/4 and H is Ci x C«/4-i, or

2) G is Bi and 77 is D3 x JBi.

But the case 2) does not occur, as we find by substituting the known Betti

numbers of G and H into (4.11) or by calculating the dimensions:

dim Bi - dim ( f t x f t ) = 18, while

dim G- dim H= dim F= (n- 1) -k = 15 - 3.

Wang [27] proved that

(4.14) If a compact connected Lie group G has the same rank a$ H and if the-
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factor space F=G/H is simply-connected, then the homogeneous space F is de-

termined by the local structure of G and H, i.e. if G and another analogous group

G' operate effectively on F and F' = G'IHΊ (which is also simply-connected)

respectively and if G and H are locally isomorphic onto G1 and H' respectively,

then there exists an isomorphism a of G onto G' carrying H onto H1.

(4.15) If k = 1, three cases are possible:

1) G is Λi and H is T,

2) G is A«/2-i and H is T x A«/2-2, and

3) G is CniA and H is T x C»/4-i.

F is ffcws diffeomorphic to a complex projective space.

By (4.11), the center of H is one-dimensional. When H is T, G is Ai by

(4.11) or (4.6), and we obtain the case 1). When H is not T, H is a local pro-

duct of T and a simple semi-simple group. Hence (4.12) applies to H. As in

the preceding cases, we get the possibilites 2), 3) and

4) G is Bι and H is Γ x 5 3

by using (4.7), Lemma 4 in [18] (if w - l = 5), (4.3) (if w - l > 5 ) and (4.8).

The same results are obtained with another method. The Euler characteristics

of the spaces dr/Lδ defined by Lσ= (T x 3f

r-i) in (4.12) in that order are r + 1 ,

2r, 4r, 2r, 2r, 2r, 2 r + 1 and 2r, owing to Theorem VII in Wang [27]. On the

other hand, if the rank of G equals r, we see from (3.7) and (4.7) that the

Euler characteristic of F is r + 1 , 4 r - 8 , 2r or r according as G is Ar, Br, Cr

or Dr. Comparing these values of the Euler characteristic calculated in two

ways, we have 2), 3) and 4) again. In case 4), (4.14) shows that F is the

Grassmann manifold SO(9)/(SO(2) xSO(7)). (For the notations SO, SU, etc.,

see [8]). Applying C. Ehresmann's method [7], we find that the 3rd torsion

group of F is not trivial, contrary to <3. 4). Now only 2) and 3) remain. In

case 3), G is mapped into SU(n/2) by a natural isomorphism ([8] p. 21), which

sends H to the isotropic subgroup £7(1) x SU(n/2 - 1 ) . Hence F is diffeomor-

phic to the complex projective space SU(n/2)/(U(l) x SU(n/2-l)).

Summarizing the above results, we get

(4.16) Let F be the base space of a homogeneous sphere-bundle S ivhich is

a homological sphere. If dim S = n - 1, 0 < dim F <n-\ and S is simply
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connected, then as a homogeneous space F is isovwrphic to (1) the S-sphere

SO(9)/SO(8), (2) the quaternion projectiυe space Sp(n/4:)/(Sp(l) x Spin/4-1)),

8<n, (3) the 4-sphere Sp(2)/(Sp(l) x Sp(D), (4) the 2-sphere SO(3)/SO(2),

and (5) the complex projectiυe space SU(n/2)/(U(ί) *SU(n/2-D).

These spaces correspond to (4.9), (4.13) (8< n), (4.13) (8 = w), (4.15; 1),

and (4.15; 2). See (4.14) also.

5. The homogeneous homological spheres

In this section we shall establish a part of Theorem 2 (in the introduction):

(5.0) Assume that two compact connected and simple Lie groups H and Hf

operate transitively and effectively on simply connected homological spheres of

the same dimension k. If H and H1 are locally isomorphic, then there exists an

isomorphism of H onto H1 carrying the isotropy subgroup of H onto that of H'

in particular the two homological spheres are homeomorphic.

Before the proof we recall the representation theory of Lie algebras.

Let G be a compact connected simply connected semi-simple Lie group of

rank r. Given a basis of the Cartan subalgebra of the Lie algebra of G, one

can determine the simple roots ai and the fundamental weights Li (1 ^ i ^ r),

which are elements of the dual space of the Cartan subalgebra. Then an irre-

ducible representation p : G -> GL(n, C) corresponds to a linear combination

L = *ΣpiLi, pi being non-negative integers, in a one-to-one way up to the equiva-

lence by Cartan's theorem [13]. In the sequel we shall confound p with L. Let

deg L be the degree n of p and d be the sum of all L 's. Then WeyΓs theorem

([28]. See [10] also.) states:

(5.1) άegL=n = Tl -7>- λ

where the product is taken over all positive roots and the parentheses mean the

inner product

(5.2) (Li, 2<xj) = (aj, <xj)δij, 1 ^ i, j ^ r,

where δij is Kronecker's δ. aι, Li and these inner products were calculated

by E. Cartan (See his Oeuvres completes, I vol. 1). In particular we have

deg(L-fZ/) > degL. Actually the definition of δ in (5.1) is different from the

one in [28], but it is justified by the following proposition,
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(5.3) For a semi-simple Lie algebra, 2d equals the sum of all positive roots.

This is known, but we prove it here. Let 2/9 be the sum of all positive

roots and Si the reflection with respect to ou. If a = *Σntjaj is a positive root

other than or/, Si(a) is also positive, because we have

Si(a) =a -2(a, ai)aci/(ai, <Xi)

and some mj (j ±? i) is positive. It follows that

Si(2β-aci) =2β~ca.

Hence we get &(/9) = 0 - α, /2 + S,(*ί)/2, whence Si(β) = β- α/. From St(β)

= /2-2(j9, <xi)ai/(aci, cci) we deduce 2(β, a,-) = (a/, a:/), while we have 2(5, α, )

= (#z, α:,) by (5.2) therefore we obtain β = 5 or (5.3).

(5.4) Lei G #£ O(«) or U(n), and V and W be subgroups of G. If the repre-

sentations of V and W obtained by restricting the natural injection of G into

GL(n, C) are (absolutely) irreducible and equivalent, then they are conjugate

in G.

There exists an element μ in GL(n, C) such that we have μa = βμ for any

a^V and βe W. Assume that G = O(n). Then we get μa = βμ, μ being the

complex conjugate of μ. μ/Γ1 commutes with any a in H. By Schur's lemma,

β is μ multiplied by a complex number a2 of unit modulus. Observing aμ instead

of μ, we can suppose that μ is real. In the same way it is proved that the

transposed matrix *μ~γ is μ multiplied by a positive number b2. bμ belongs to

O(n) and we find that bμV— Wbμ. In case G- U(n), it is verified in the same

way that tβ~1 is μ multiplied by a number b2. b2 is real and positive. Hence bμ

belongs to U(n) and bμV= Wbμ.

Now we begin the proof of (5.0). Let K denote the isotropy subgroup of

H. When k - dim (H/K) is even, the Euler characteristic of H/K is positive.

Since H/K is simply connected, K is connected. Hence Leray's theorem (4.110

applies; given H, the local structure of K is determined. (The Betti numbers

of compact simple groups are all known.) Thus in this case (5.0) follows from

Wang's theorem (4.14).

Remark. Using the same method and (4.8), one can determine H also.

The pair (H, K) is locally (Br, Dr), & = 2r, or (G2, A2), * = 6.

In case k is odd, K is not rationally homologous to zero in H by Samelson's
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theorem (which follows directly from Theorem 18.4 in Koszul [14]). Hence the

rational homology ring of G is isomorphic to that of (H/K) x K. By this fact

combined with (4.7) and (4.8), the pair (H, K) is locally (Dr, ft-i), 1 £rl

(Λr-u Ar-2)\ (Cr/2, Cr/2-i), r = even (£,, J33), ft = 15 or (5 3, G2)> ft = 7;

where we have put ft = 2 r - 1.

The case {Dry Br-i) can easily be treated with the method applied for

other cases in the sequel or with the method of differential geometry. The

details are omitted. To study other cases, we assume that H is simply con-

nected and prove that H is effective. Then K is simply connected, because we

have π2(H/K)=0 by ft > 2.

Case I: (H, K) = Ar, Ar-i). For the Lie algebra of Am we deduce from

(5.1)

άegLk = m+iCjfe, deg2Z,£ = m + 2C* m+iC*/(ft + 1), deg (Li + Lm) = m+ιC2.

Let p be the natural isomorphism of H onto SU(r+l). Restricting p to K we

obtain a representation of degree r+1. In case 2 < r, an irreducible represen-

tation of K with degree ^ r + 1 is of degree r by the above and (5.4). Hence

p(K) fixes a direction. Since St/(r-f 1) is transitive on the unit sphere, it

follows that p(K) is conjugate to I+SU(r) in SU(r + l), where I+SU(r) is

the set of all special unitary matrices with the (1, j)-elements equal to δij.

Also in the sequel, the sign -f between two matrix groups will denote their

direct product in the diagonal block form, i.e. -f- means the notation of Hurwitz

4-. Note that the identity group / in the above cannot be replaced by a group

other than /, for K is simple and connected. In case 2 = r, if p{K) is irreducible,

p is not faithful, contrary to the assumption of p. Hence ρ(K) fixes a direction

and the situation is analogous to the above. If r - 1, p(K) reduces to the identi-

ty. Since p is an isomorphism onto, the proof for Case I is completed if H is

shown to be effective. If N is a normal subgroup of H contained in Ky p(N) is

contained in the center of the simple group p(H) = SZ7(r +1). Since p is ab-

solutely irreducible the subgroup piN) consists of matrices of diagonal form by

Schur's lemma. On the other hand p(N) is contained in p(K) conjugate to

I+SU(r). Therefore p(N) is trivial and G is effective.

Case II: (Hf K) = (Z?4, £ 3). For Bm we have degL& -2mtiCk> k < m,

άegLm=2m and deg2Zi = m(2m + 3). In case m = 3, the degrees of Lu L2f

Lc, and 2Zi, are respectively 7, 21, 8, and 27. Moreover we need the facts;
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deg (Li-f Lu) = 64 and deg2L3 = 40. Let p be the natural homomorphism of H

onto SO(9). The'kernel of p is Z2. p(K) admits an invariant space of dimen-

sion 7 or 8. But the former is impossible, for otherwise p(K) leaves fixed two

real independent vectors and so is conjugate to /+SO(7) in SO(9), as is easily

seen, whence HlK must be the Stiefel manifold p{H)/p(K) = SO(9)/(/+SO(7))

= Vy,2. On the other hand we know π:(V%2) = Z2 ([24] p. 132), while πΊ(H/K)

= 7Γ7(S15)=0, which leads to an obvious contradiction. Hence p is the spin

(therefore faithful) representation of K, if the operations of p(K) are restricted

to the 8-dimensional invariant space. Now (5.0) in Case II follows from (5.5)

and the simple connectivity of H (and Hf), if we show that H is effective. Let

N be a normal subgroup of H contained in K p{N) is then isomorphic to N

and contained in the center of p(H) = SO(9). Hence N is trivial.

Case III: (H, K) = (]33, G2). For G2 the degrees of Lu L2 and 2Z2 are 14,

7 and 27 respectively. Let p be the natural homomorphism of G onto SO(7).

The representation of K induced from p must be unique up to an equivalence

because of the above fact. On account of (5.5) it follows that any subgroup of

// isomorphic to K is carried to K by an automorphism of H. H is effective on

S, because the adjoint group of class G2 is known to be simply connected and so

K cannot contain a discrete normal subgroup.

Case IV: (H, K) = (C r, G-i) (2 < r). Let p be the natural injection of H

into SU(2r). p(H) is characterized in SU(2r) by the property: p(G) leaves

invariant a regular 2-form / ([8] p. 22). For Cr-u we have deg2Li = 2r2 + r - 1

and degZ,/, = 2rCh (r — h)/r(l ^ h < r). In case 3 < r, the irreducible represen-

tation of K obtained from p is therefore of degree 2r - 2 = degZ,t. Hence p(K)

is conjugate to I+Sp(r- 1) in SU(2r). This holds in S£(r) = p(H) as one sees

from the facts that Sp(r) is transitive on the unit sphere, and that a trans-

formation in Sp(r) which fixes a non-zero vector x, fixes the vector complex

conjugate (with respect to some real base) to J(x), which is linearly independent

of x. The effectiveness of H is proved as in Case I. In case r = 3, the degrees

of Lu L2, Li-fZ,2, 2L2 are 4, 5, 16, 10 and 14 respectively. But L2 is not the

case, for otherwise p(K) would fix only one direction, contrary to the above

fact. Hence the proof is the same as in the case 3 < r.

Case V: (Hy K) - (C2, d). Let p be the natural projection of H onto

SO(5) p is a local isomorphism with kernel Z2. p(K) is thus isomorphic either
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to Sp(l) or SO(3). If p(K) is isomorphic to K=Sp(l), then p, restricted to ΛΓ,

admits an irreducible invariant subspace of dimension 4 and p(K) is conjugate

to I+Sp(l). If p(K) is isomorphic to SO(3), X contains the kernel of p.

Hence SO(5)/p(/Π must be homeomorphic to the 7-sphere, contrary to the

following proposition.

(5.5) (A. Hattori) Let K be any subgroup of SO(r), 4 < r, which is isomorphic

tvith SO(3). Then the homogeneous space B - SO(r)/K is not a simply connected

homology sphere.

Assume the contrary. Since then m(B) -0 and the i-th cohomology group

(over Z2) Hι{B> Z*) = 0, 0 < i < 3, we have an exact sequence of Serre (Propo-

sition 5 p. 468 [23])

H\By Z2) -> H3(SO(r)y Z2) -» H\K, Z2).

By Proposition 23.1 in Borel [2] this sequence reads

HZ(B, Z2) -* Z2 + Z2-+ Z2 (exact).

Hence HS(B, Z2) cannot vanish, contrary to the assumption.

Remark. It is known that B is a homological sphere over the rationals.

Hence, in case m(B) =0, the 3rd torsion group of B is not trivial.

We have just accomplished the proof of (5.0), a special case of Theorem 2.

Assuming Theorem 2 to be true, we have corollaries to it.

COROLLARY 2.1. A simply connected homological sphere S is homeomorphic

and diffeomorphic to a sphere with the usual differentiable structure, if S is a

homogeneous space.

COROLLARY 2.2. //* a compact connected and simple Lie group G is transitive

on the (n -1)-sphere, then G is isomorphic to SO in) or simply connected.

Let N be the subgroup of G consisting of the identity transformations.

Then Q = G/N operates effectively and transitively on S. By (5.0), G' is simply

connected or is isomorphic to SO(n). Since ΛΓ= πi(Gf), we obtain Corollary 2.2.

COROLLARY 2.3. If a compact connected Lie group L operates transitively

on a sphere S, then there exists on S an L-invariant Riemannian metric of con-

stant curvature.

This will be used in 6 before the complete proof of Theorem 2, There,
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however, L will be simple, and in this case Corollary 2.3 follows from (5.0).

For later use we shall establish a lemma:

(5.6) Let G be a compact connected Lie group. Let p be a real orthogonal

faithful representation of G of degree n. If p{G) is transitive on the unit sphere

S, then p is unique (up to an equivalence).

This was proved by H. Freudenthal [11]. But we give a proof for the sake

of completeness. There exists a simple closed connected normal subgroup H of

G such that p(H) is transitive on S, Unless H is An/2-i or Cniu p\H is abso-

lutely irreducible and unique by (5.5) and the proof of (5.0). (The case

H=SO(2n) can be treated directly or in the same way as other cases.) In

particular we have G = H, and (5.6) is proved in this case. If p is not abso-

lutely irreducible, then p is the real representation corresponding to an irreduci-

ble complex representation p of degree n/2. Assume H= Ani2-i. The center

of H is of order n/2. Since p is faithful, this gives that p is not absolutely irre-

ducible. The complex representation p is Lγ or Lnιz. But these two represen-

tations are complex conjugate to each other. Hence p\H is unique. We have

aim G/H ^ 1 and it is easy to see that p is unique. In case H— Cn/2, non-trivial

complex representation of H of degree ^ n is unique (of degree n/2). The

centralizer of ρ(H) in O(n) is isomorphic to Sp{l). Now p is unique because

of the fact that any one-parameter subgroup of Sp(l) can be transformed into

any other one-parameter subgroup by some inner automorphism.

6. Homogeneous sphere bundles

This section is devoted to the proof of

THEOREM 3. Let S be a homogeneous k-sphere bundle whose bundle space, S

alsOy is an (n - 1)-sphere. Then the principal bundle is (G, H), F= GlH, where

we are in one of the following cases: (1) G = H, F is a point, k = n-l, (2)

G = Spin(9), H = Spin{8), F is the 8-sphere, k = 7 = n--9, (3) G = Spin/4),

H= Spin/4: - 1) x Sp(l), F is the (n - ^-dimensional quaternion projective space,

k = 3, (4) G = SU(n/2), H=SU(n/2-l) x U(l)t F is the (n-2)-dimensional

complex projective space, k = l, and (5) S is a double covering space of F. F is

the in— 1)-dimensional real projective space, k — 0. In cases (3) and (4) the

structure group H operates on the fibre Sk as Sp(l) and U{1) respectively.

Before the proof we note that, in the cases (2), (3) and (4), H is not
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uniquely determined as a subgroup by the given conditions and yet the principal

bundle is unique as shown in the proof and that in all cases the operations of

the structure groups are unique by Theorem 2 or (5.0). Thus each condition

about (G, F, H) stated in Theorem 3 determine the bundle uniquely up to the

equivalence.

The proof of Theorem 3. First the case 0 = dim F is evident. We assume

0 < dim F < n - 1 , F being the base space. . S is then simply connected. Hence

there exists a simple compact and connected automorphism group of S operat-

ing transitively, G, by the remark at the beginning of Section 4. Let H be the

subgroup of G leaving a fibre Sk invariant. Then F is G/H and S is associated

with (G, F, H). The local structures of G and H are given by (4.16). By

Wang's theorem (4.14), the local "position" of H in G is also determined. By

Corollary 2.2, G is simply connected. Thus the pair (G, H) is determined, and

we obtain (2), (3) and (4). Then H is simple or locally the direct product of

two simple subgroups. Except the case τz = 8 in (4) (i.e. H=Sp(l) x Sp{l)), it

is obvious that H acts on Sk as one of the simple groups. The operation of H

on Sk is thus uniquely determined by the local structure mentioned in the

theorem. In the exceptional case, if H does not act on the fibre S3 as Sp(l), H

does as SO(4). Then, the bundle is the unit tangent bundle of S4 = F as is

easily seen. But the bundle space is known to be the Stiefel manifold F5 f 2,

which is not homeomorphic to a shpere because of the different homotopy types.

Thus H acts on S3 as Sp{l) and the operation is uniquely determined. The only

remaining case is now d i m F = n - l . S is a double covering space of F. F is a

real projective space due to the following proposition.

(6.1) Any homogeneous space F with a sphere S as a double covering space is

diffeomorphic to the real projective space.

There exists a compact connected and simple Lie group G which is transi-

tive and effective on S and whose arbitrary element r induces a transformation

f on F such that πτ = τπt π being the projection of S onto F. Since G is simple,

we can make use of Corollary 2.3, i.e. S admits a G-invariant Riemannian metric

of constant curvature. Denote by a the map of S onto itself such that a(p) is

the antipodal point of p for any p in S, "antipodal" ( = conjugate) being with

respect to the above metric. Identifying a(p) with p we obtain the real projec-

tive space P. Let φ be the covering transformation, i.e. ψ is another involutive
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diffeomorphism of S onto itself such that φ(p)*?p and πφ(p) -π{p) for any p

in S. Both a and φ commute with any element in G. We shall prove a = φy

though this is evident if one uses (7.1) or Theorem 2. Suppose a =* φ. Then

φ(p) * a(p) for any p in S. Hence we can define a third map of S onto S such

that δ(p) is the middle point of the shortest geodesic (which is well-defined)

r(φ(p)> a{p)) joining φ(p) to a(p). Then δφ(p) is the middle point of riφφ(p),

aφip)) =γ{py aφ(p)) =r(aa(p)t aφ(p)) which is aγ(<x{p), φ(p)) because a is

an isometry. Hence we have δφ(p) -aφip) for any p. π1 denoting the pro-

jection of S onto P, it follows that π'δπ~ι is a well defined map of F into P.

Since δ commutes clearly with any element in G, δ is a diffeomorphism of S

onto itself. Hence π'δπ'1 is a diffeomorphism of F onto P.

7. Determination of M

We will verify the first half of Theorem 1, i.e. the existence of the diffeo-

morphism δ. Because of (2.1) we may assume that M is compact. We recall

(2.4) and (1.6) where we put N-M-{p) and G is the group mentioned in

(4.1) the differentiate bundle M- {p} is determined uniquely by the subbundle

S. S is equivalent to one of the bundles in Theorem 3 (See Section 6). Repeat-

ing these arguments for the manifolds mentioned in Theorem 1, we find that for

some of the manifolds, M\ the sphere-bundle S' is equivalent to S. Hence

M - {p) is diffeomorphic to M' - {p'}. The diffeomorphism o extends to M if

one puts δ(p) =p'. δ is a homeomorphism of M onto Mf by the uniqueness of

the Alexandroff compactification. We have to prove that δ is diffeomorphic at

p. Any geodesic issuing from p arrives at F, forming a perpendicular to F

(Section 1). In fact, Mand F being compact, there exists a perpendicular to F

starting at p and moreover M is isotropic at p. The analogous holds for Mf.

By (1.7) these perpendiculars are mapped by δ to perpendiculars to F1 issuing

from p'. We may assume that the distance dip, F) equals d'(pf, F1), and δ is

an isometry if restricted to a perpendicular to F issuing from p therefore to any

of such perpendiculars.

Now we define a mapping λ of the tangent space T to M at p into the

tangent space Tf to Mf at pf. For any X in T, let γ be the geodesic with the

initial tangent X. By definition λ(X) is the initial tangent (of the same length

as X) of the geodesic δ(γ) starting at p. λ commutes with G; τλ{x) = λτ(X)

for any r e G and any X^T, where we have identified the connected simple
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group G on M with Gf on M1 (because they are isomorphic) and we have con-

founded τ with the one induced from τ on T to Tf. Consider a normal coordi-

nate system v of M with center p. v is a diffeomorphism of a neighborhood Z7

of p in Λf onto a neighborhood V of ^ in T. Let 1/ be an analogous for M'.

We assume that ί/and £7' are G-invariant and δ(U) is £/'. Restricted to F, A

coincides with v1 ° δ ° v'1. If A is linear then δ is diffeomorphic at p. By (5.7)

there exists a linear isomorphism λ' of T onto Tf which commutes with G. λ"1^

is thus a length-preserving map of T onto T ' which commutes with G and with

the multiplication by a positive number. This (therefore λ) is linear if the

following proposition (7.1) is true; i.e. the existence of δ follows from (7.1).

(7.1) Let T be an n-dimensional real vector space with a euclidean metric, and

G be a subgroup of the orthogonal group O(T) of T which is transitive on the

unit (n — 1)-sphere S. Assume that μ is a homeomorphism of T onto itself such

that

1) μ leaves invariant S,

2) μ{cX) = cμ(X) for any positive number c and any X in T,

3) μ commutes with G: μ ° τ = τ ° μ for each τ in G.

Then μ is linear.

(This is a special case of Theorem 2.)

Under this hypothesis, we assume without loss of generality that G is com-

pact connected and simple. We need some lemmas.

(7.2) If μ(X) and X are linearly dependent for some unit vector X in T, then

μ is linear.

In fact μ(X) is then equals eX where e= + 1 or - 1 . For any unit vector

Y there exists some τ in G carrying X to Y. We have

μ( Y) = μτ(X) = τμ(X) = τ(eX) = eτ(X) = eY.

Hence μ is linear.

(7.3) If a unit vector X and μ(X) are linearly independent, then

a) μ(X) is left invariant by the group K leaving X fixed and

b) there exists a non-zero G-invariant continuous vector field on S {which is

a submanifold of T with the usual differ entiable manifold structure).

For each τ in K, τμ(X) =μτ(X) = μ(X), which implies a). Let Y ( # 0) be
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a linear combination of X and μ(X) such that Y is orthogonal to X. Y is in-

variant-under K by a). Let Y1 be a vector at the point X which is parallel to

Y. y is tangent to S at the point X Since G is transitive on S, it follows that

there exists a G-mvariant vector field y on S assigning Y' to X. b) is thus

proved.

(7.4) In case G — SOin), μ is linear.

Given a unit vector X, K leaves fixed no vectors other than ± X. Hence

by (7.3) and (7.2) we get (7.4).

(7.5) If n is odd, μ is linear.

Then the Euler characteristic of S is not zero. Hence X and μ(X) are

linearly dependent by (7.3) b). By (7.2) we have (7.5).

To complete the demonstration of (7.1), it suffices to investigate the cases:

G = SUin/2), Spin/4:), Spin(7) (n = 8) or Spin(9) (Λ =. 16) owing to (4.7) and

Corollary 1.2. The first two are the usual real representations and the last two

are the spin representations.

(7.6) If G is SU(n/2) or Spin/4), μ is linear.

We prove this only in the second case the first is proved analogouly with

more ease. Then, putting n/A = ???, T can be regarded as an w-dimensional Q-

right-module Qm with the symplectic product, Q being the quaternion algebra

C8], so that G is the automorphism group of Qm. For any unit vector, the sub-

group K fixing X leaves invariant only the elements of the form Xq (#eQ)

Hence by (7.4) we have μ(X) = Xqo for some qQ. The left multiplication can

also be defined on Qm and we can identify qX with Xq for this fixed X and any

q in Q. Now we define a mapping v of Qm onto itself v : Y ^ Qm -» q0 Y. v is

not an automorphism of Qm but an automorphism of the real vector space T>

and belongs to the orthogonal group O(T) = G(w), because the norm of qύ is

unity. Further v(X) = μ{X) and v commutes with any element of G. Thus v

coincides with μ on T; in particular μ is linear.

(7.7) If G is Spin{7) or Sβin(9), μ is linear.

It suffices to prove that K leaves invariant just one independent vector.

Assume that G = Spin(9). p shall denote the spin representation of G of degree

16. The weights are ( ±λx n.λo±λz ±λΛ)/2. It follows that the multipicity of each

weight equals one. p(G) is a linear transformation group on the complexification
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of T, which will be denoted by T also. Each vector Y in T is uniquely written

as the sum of the eigenvectors YΛ belonging to the weights L(tf), 1 ^ a £ 16.

If y is left invariant by K, then each Ya is invariant by the Cartan subgroup

of K. If further YΛ is different from zero, then L{Λ) vanishes on the Cartan

subalgebra of K. This occurs for at most two values of a, because L(β) is

linearly independent of any L(P) other than ±Lia) and the difference of the di-

mensions of the Cartan subalgebras of G and K equals one. Assume that there

exist two such vectors. Then the restriction of p to K is the direct sum of two

representation; the one is trivial and of degree two, the other (of degree 14)

admitting no invariant vectors. Since K is Bz (See Case II in the proof of (5.0),

Section 5), ρf is the direct sum of two equivalent irreducible representations p"

of degree 7. From the fact that p" is not faithful, one easily finds that p is not

faithful, which leads to a contradiction. Thus K leaves fixed just one inde-

pendent vector.

In case G =• Spin(7), if K leaves invariant two vectors, K = G2 must admit a

faithful representation of degree 6, contrary to the fact shown in Case III in the

proof of (5.0).

As a corollary to (7.1) we obtain another part of Theorem 2.

(7.8) Under the assumption of Theorem 2, there exists a homeomorphism β of S

onto S*"1 which induces an isomorphism a of H° C into 0{n) carrying H° onto

H'.

Let G be a simple closed connected normal subgroup of H° which is transi-

tive on S. By (5.0) there exists a homeomorphism β1 of S onto Sn"x which

induces an isomorphism a1 of G into H1. af extends to H° C in such a way

that for each r in H° C we have a'(τ) = β'τβ'"1, which is a topological trans-

formation of S*"1. For brevity we identify S with SM~\ and neglect af and β(.

G becomes a subgroup of H'. We imbed S into the w-dimensional euclidean

space T in a natural way. Let Co be the centralizer of G in the topological

transformation group of S. For each τ in CG there exists a bomeomorphism

τr(r)=/j of T onto itself satisfying the conditions 1), 2) and 3) in (7.1). By

(7.1), μ is linear. Therefore Co is contained in 0{n) = O(T). Since we have

H° C C G Cσ, this gives that H° C is a subgroup of O(n) i.e. a1 is a

faithful representation of H°. By (5.0), H° and H' are isomorphic. Hence by

(5.7) there exists a homeomorphism β" of S71'1 onto itself which induces an
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automorphism of H° onto Hf. Now β - β"βf and a = a11 a1 are the required

mappings.

(7.9) (Cartan) Let A(G) be the automorphism group of a Lie group, and

KG) be the group of inner automorphisms of G. Then A(G) coincides with

KG) when G = Sp(m)i S0(2m-l), Spin(Ί), Spin(9), or the compact connected

group G2. A{G)IKG) is Z2 when G = SU(m), 2 < m, or S0{2m). (Gantmacher

[12]. See [11] also.)

When G = SU(m), 2 < m, an outer automorphism of G is obtained by as-

signing the complex conjugate to each element in G. When G = S0i2m), an

outer automorphism is induced by the symmetry with respect to a hyperplane.

Using (7.1) again we will complete the proof of Theorem 2. For this

purpose it is sufficient to show

(7.10) The homeomorphism β in (7.8) induces an isomorphism of H (in

Theorem 2) into O(n).

Each element τ in H defines an automorphism ad(τ) of G (defined in the

proof of (7.8). Put G = H° when H° = SO(4), w = 4) which carries λ e G to

τλτ~\ Let a(τ) denote the topological transformation βτβ~\ The automorphism

ad(τ) of G defines an automorphism of a(G), which may be written as ad(a(τ)).

By (7.9) there exists an element r' of O(n) with ad(a(τ)) = ad(a(τ')) on G.

By (7.1), μ = α:(zTV thus belongs to O(n). Therefore we have *(H) C O(n).

Obviously a is an isomorphism of H.

Now we verify the second half of Theorem 1:

(7.11) Under the assumption of Theorem 1, the diffeomorphism d, induces an

isomorphism of J into the isometric isotropy group J1 of M' = d(M) at pf = δ(p).

δ induces an isomorphism a of J into the orthogonal group O(n) of the

tangent space T' at p'. We have to show that /' contains <x(J). This is clear

when M1 is the euclidean space, a sphere, or a real elliptic space, /' being then

O(n). Let G denote a connected simple normal subgroup of / which is transi-

tive on the unit sphere. In order that /' contains <x(J), it is sufficient that /' is

the normalizer of a(G) in O(n). In case M' is the complex elliptic space, /

has two connected components and the identity component is U(n/2)9 while

a(G) =S£/(w/2). In case Mr is the quaternion elliptic space, /' is connected

and the local product of <χ(G) ^Spin/4:) and its centralizer ( =Sp{D). In case
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M' is the Cayley projective plane, we have / ' = a(G) = Spin(9). In all these

cases J1 is the normalizer of a(G) by (7.9).

We have just completed the proof of Theorem 1.

COROLLARY 1.1. If a compact and connected Cz-transformation group G of

a connected and paracompact differentiάble manifold M admits a fixed point p

and an (n — 1)-dimensional orbit, then M is C1-diffeomorphic to one of the spaces

mentioned in Theorem 1.

M admits a G-invariant Riemannian metric of class C2. We assume that n

is greater than 1. The condition (1.1) is satisfied if one puts N=M-F where

F is the farthest points from p if M is compact and otherwise F is an empty

set. From (1.5) and the fact that F is a rare set, we easily see that the hy-

pothesis of Theorem 1 is satisfied.

A metric space M is said tivo-point homogeneous if, given four points a, b,

a', bf with the distance d(a, b) = d(a', b'), there exists an isometry of M carrying

a to b and b to b'.

COROLLARY 1.2. Under the hypothesis of Theorem 1, there exists on M a

Riemannian metric so that M becomes a two-point homogeneous space.

Note that two-point homogeneity is enjoyed by all the spaces mentioned in

Theorem 1, i.e. the euclidean space, the sphere, and the elliptic spaces.

COROLLARY 1.3 The hypothesis of Theorem 1 being preserved, the set of the

conjugate points (nearest to p) of p is the empty set, one point ••* p, one-point p,

an (n-2)-dimensional complex projective space, an in-A)-dimensional qua-

ternion projective space, or the S-sphere, according as M is diffeomorphic to the

euclidean space, the sphere, the real projective space, the complex projective space,

the quaternion projective space or the Cayley projective plane.

In fact F is clearly the set, except the case M is the real projective space.

In this case the proof is easy and omitted.

Remark. In that exceptional case F is the cut locus. Using Bott's result

[6] or directly, one can readily calculate the number (counted with multiplicity)

k of the conjugate points of p on a geodesic issuing from p.
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8. The homogeneous case

Let M be an w-dimensional connected Riemannian space. Assume that a

connected isometry group 7 of M is transitive, and M is /-isotropic at p where

/ is the isotropy subgroup of 7 at a point p of M By means of the results in

Sections 1 to 3, we shall determine 7, / and the 7-invariant Riemannian metric

on M.

The linear isotropy group is irreducible. It follows from an unpublished

theorem of Matsushima (see the Appendix) that M-I/J is a symmetric space

unless M is compact. The corresponding compact symmetric space is isotropic

too.

We suppose that M is compact. Consider the case (A) where Mis diffeor-

morphic to the sphere or the real projective space. The universal covering

Riemannian space M which is diffeomorphic to the sphere (if 1 < n) is homo-

geneous and isotropic. By Corollary 2.3 there exists on M an 7-invariant

Riemannian metric of constant curvature admitting the same isotropy group.

Since the linear isotropy group is irreducible, this metric is the unique 7-invariant

one (up to a constant factor). Hence M is either a (Riemannian) sphere or

the real elliptic space.

Assume that we are not in the case (A). Let S and F be as in Section 2.

S divides M into two parts. Let Xι be the closure in M of the connected com-

ponent of M-S containing p, and X2 .be the closure of the other component.

Then we have M = I i U l 2 and S=XιΠX2. Xi is a closed cell. F is a de-

formation retract of X*. Hence by (3.4) and the Mayer-Vietoris sequence [19],

we obtain the Poincare poly nomial of M:

Pit M ) = P ( ί F) + fn = l + f*+1 + +t{m">{k¥l).

In particular the Euler characteristic of M is positive, and 7 has the same rank

as /. By Leray's theorem (4.11') the Poincare polynomial of 7 is calculated

from that of /. It follows from Theorem 3 that the pair (7, /) is locally (An/2,

Aniι-ι xT), (Cn/i+i, Cn/ ίXCi) or (Ft, Bi), where T is the one-dimensional toral

group. (The pair (Br, Cr-ι x Ci), 2 < r, is impossible because Br does not con-

tain such a group as is seen, e.g. from the fact that the least degrees of the

locally faithful real representations of B, and Cr-i are 2 r + l and 4 r ~ 4 re-

spectively.

Since M is simply connected by (2.5) and (3.1), these local structures
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determine the global structures of 7, / and M by Wang's theorem (4.14). The

invariant Riemannian metric on M is unique up to a constant factor, and we

conclude that M is the complex or quaternion elliptic space or the Cayley

elliptic plane.

Remark 1. The group of all the isometries of M has a finite number of

connected components as is clear from the above. It was determined by

Freudenthal [11].

Remark 2. There exist on M many other /-invariant metrics which are

not Riemannian (Wang [26]).

Appendix

We prove the following theorem of Matsushima:

THEOREM. Let M-GIK be a Riemannian homogeneous space, G being the

maximal connected isometry group. Assume that 1) M is not compact and 2)

the linear isotropy group is irreducible. Then M is a symmetric space. (The

proof is analogous to that of the complex case [16].)

K is compact by Dantzig-Waerden's theorem. From 1) and 2), it follows

that K is a maximal compact subgroup of C; in particular K is connected.

Mis homeomorphic to the euclidean space by Malcev-Iwasawa's theorem. If

G is semi-simple, M is a symmetric space by Cartan's theorem. Suppose that

G is not semi-simple, i.e. that the radical N is not discrete. N contains a non-

discrete connected normal abelian subgroup A of G. Since G is effective, K

does not contain A. By 2), A is transitive on M. Therefore the invariant

metric is locally euclidean. M is thus isometric to the euclidean space, which

is a symmetric space.
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