ON UNRAMIFIED SEPARABLE ABELIAN p-EXTENSIONS OF FUNCTION FIELDS I

HISASI MORIKAWA

1. Let k be an algebraically closed field of characteristic $p>0$. Let K / k be a function field of one variable and L / K be an unramified separable abelian extension of degree p^{r} over K. The galois automorphisms $\varepsilon_{1}, \ldots, \varepsilon_{p^{r}}$ of L / K are naturally extended to automorphisms $\eta\left(\varepsilon_{1}\right), \ldots, \eta\left(\varepsilon_{p^{r}}\right)^{1)}$ of the jacobian variety J_{L} of L / k. If we take a svstem of p-adic coordinates on J_{L}, we get a representation $\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ of the galois group $G(L / K)$ of L / K over p-adic integers.

The aim the present note is to determine the p-adic integral representation $\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ for cyclic L / K (as a representation over p-adic integers). Use will be made of the results in our previous paper [2].
2. Let $\left\{H_{0}, H_{1}, \ldots, H_{s}\right\}$ be the set of all the subgroup of $G(L / K)$ such that $G(L / K) / H_{i}(i-0,1, \ldots, s)$ are cyclic, where H_{0} means $G(L / K)$. We denote by $L_{I_{i}}$ the subfield of L corresponding to H_{i}.

We use the following notations:
$p^{\nu_{i}}$: the degree of $L_{i_{i}}$ over K,
$J_{L_{I I}}$: the jacobian variety of $L_{1 /} / k$,
$\pi L_{L^{\prime} / L^{\prime \prime}}$: the trace mapping of $J_{L^{\prime}}$ onto $J_{L^{\prime \prime}}$, where $L^{\prime} \supset L^{\prime \prime},{ }^{\prime \prime}$,
$B_{L^{\prime} / L^{\prime \prime}}$: the irreducible component of $\pi L_{L^{\prime} / L^{\prime \prime-}}(0)$ containing $\{0\}$,
$A_{L^{\prime} / L^{\prime \prime}}$: the quotient abelian variety of $J_{L^{\prime}}$ by $B_{L^{\prime} L^{\prime \prime}}$,
$\alpha_{L^{\prime} / L^{\prime}}$: the natural homomorphism of $J_{L^{\prime}}$ onto $\bar{A}_{L^{\prime} / L^{\prime \prime}}$,
$\bar{\pi} L_{L^{\prime} / L^{\prime \prime}}$: the homomorphism of $A_{L^{\prime} / L^{\prime \prime}}$ onto $J_{L^{\prime \prime}}$ such that $\pi_{L^{\prime} / L^{\prime \prime}} \alpha_{L^{\prime} / L^{\prime \prime}}=\pi_{L^{\prime} / L^{\prime}}$,
$\rho_{L^{\prime} / L^{\prime \prime}}$: the cotrace mapping of $J_{L^{\prime \prime}}$ into $J_{L^{\prime}}$,
$\bar{B}_{L^{\prime} / L^{\prime \prime}}$: the quotient abelian variety of $J_{L^{\prime}}$ by $\rho_{L^{\prime}, L^{\prime}}\left(J_{L^{\prime \prime}}\right)$,
$A(n)$: the group consisting of all points t on A such that $n t=0$, where .1 is an abelian variety.

[^0]1) 2) See 1.2 in [2].
3. When the order of $A(p)$ is p^{r}, we say, for the sake of simplicity, that the p-dimension of .1 is γ. We denote by $\gamma(.1)$ the p-dimension of. .

The next Šafarevič's lemma is fundamental for our study:
Lemma 1 (Šafarevič). ${ }^{3)}$ Let K be a function field of one variable over an algebraically closed field k and K^{\prime} be a separable normal extension of p-power degree over K, where p is the characteristic of k. Let γ_{K} and γ_{K}, be respectively the number of independent unramified separable cyclic extensions of dogree p over K and K^{\prime}. Then we have

$$
\gamma_{K^{\prime}}=\left[K^{\prime}: K\right]\left(\gamma_{K}-1\right)+1
$$

On the other hand, the number of independent unramified separable cyclic extensions of degree p over K equals to the p-dimension $\gamma\left(J_{K}\right)$ of $J_{K}([2])$. Therefore we get:

Lemma 2. If $L \supset L_{H_{i}} \supset L_{H_{j}} \supset K$, we have

$$
\begin{align*}
& r\left(J_{L}\right)=\left[L: L_{H_{i}}\right]\left(r\left(J_{L_{H_{i}}}\right)-1\right)+1=p^{r-\nu_{i}}\left(r\left(J_{H_{i}}\right)-1\right)+1, \\
& r\left(J_{H_{i}}\right)=\left[L_{H_{i}}: L_{I_{j}}\right]\left(r\left(J_{H_{j}}\right)-1\right)+1=p^{\nu_{i}-\nu_{j}}\left(r\left(J_{H_{j}}\right)-1\right)+1 . \tag{1}
\end{align*}
$$

If x is a generic point of $J_{H_{i}}$ over k, then $\left(\delta_{J_{I / i}}-\eta\left(\bar{\varepsilon}_{J_{i}}\right)\right) x$ is a generic point of $B_{L_{l_{i}}} / K$ over k, where $\delta_{J_{H_{i}}}$ is the identity automorphism of $J_{L_{I_{i}}}$ and $\eta\left(\bar{\varepsilon}_{H_{i}}\right)$ is the extension of a generator $\bar{\varepsilon}_{H_{i}}$ of the galois group $G\left(L_{H_{i}} / K\right)$ of $L_{H_{i}} / K$. Therefore we may denote

$$
B_{L_{I_{i}}} / K=\left(\delta_{J_{L_{H_{i}}}}-\eta\left(\bar{\varepsilon}_{H_{i}}\right)\right)\left(J_{L_{H_{i}}}\right) .
$$

Lemma 3. $\quad \gamma\left(B_{L_{H_{i}}} / K\right)=\left(\gamma\left(J_{K}\right)-1\right)\left(\left[L_{I_{i}}: K\right]-1\right)$

$$
=\left(r\left(J_{K}\right)-1\right)\left(p^{\nu_{i}}-1\right)
$$

Proof. $\quad \rho_{L_{l_{i}} / K}\left(J_{K}\right)$ and $B_{L_{L_{i}} / K}$ generate $J_{L_{L_{i}}}$ and $\rho_{L_{L_{i}} / K}\left(J_{K}\right) \cap B_{L_{L_{i}} / K}$ is a finite group. Hence we have

$$
\begin{aligned}
r\left(B_{L_{I_{i}} / K}\right) & =r\left(J_{L_{L_{i}}} / \rho_{L_{L_{i}} / K}\left(J_{K}\right)\right)=r\left(J_{L_{I_{i}}}\right)-r\left(\rho_{L_{l_{i}} / K}\left(J_{K}\right)\right) \\
& =\left(\left[L_{H_{i}}: K\right]\left(r\left(J_{K}\right)-1\right)+1\right)-r\left(J_{K}\right) \\
& =\left(r\left(J_{K}\right)-1\right)\left(\left[L_{I_{i}}: K\right]-1\right)=\left(r\left(J_{K}\right)-1\right)\left(p^{\nu_{i}}-1\right) .
\end{aligned}
$$

4. First we shall show that $\rho_{L_{i / L} / l_{i}}$ and $\rho_{L_{l_{i}} / K}$ are purely inseparable.
${ }^{3}$) See $s 3$ in [3].

Lemma 4. $\quad \rho_{L / L_{H_{i}}}\left(\rho_{L_{H_{i}} / K}\right)$ is purely inseparable.
Proof. Assume that $\rho_{L / L_{H_{i}}}^{-1}(0)\left(\rho_{L_{H_{2}} / K}^{-1}(0)\right)$ constains a $L_{H_{i}}(K)$, non-zero element t. Then there exists an element f in $L\left(L_{I_{i}}\right)$, not in such that $f^{p^{r-\nu} \nu_{i}}\left(f^{p^{\nu} i}\right)$ is contained in $L_{I_{i}}(K)$. This contradics with the separability of $L / L_{H_{i}}\left(L_{H_{i}} / K\right)$.

Lemma 4. If $G\left(L_{i} / K\right)$ is cyclic, the paddic representation $M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)$ is equivalent to the direct sum of $\left(r\left(J_{K}\right)-1\right)$ times of the regular representation and the identical representation as a representation over p-addic numbers.

Proof. We shall prove the proposition by the induction on the degree p^{r} of L / K. If $r=0$, the proposition is clearly true. We assume that the proposition is true for the subfield L_{H} such that $L / L_{I I}$ is of degree p. Let ε be a generator of $G(L / K)$. Then the subgroup H corresponding to L_{H} is $\left(\varepsilon^{p p-1}\right)$. Since $\eta(\varepsilon)\left(\rho_{L / L_{H}}\left(J_{L_{H}}\right)\right)=\rho_{L / L_{H}}\left(J_{L_{H}}\right), \eta(s)$ induces an automorphism $\eta^{*}(s)$ on $J_{L} / \rho_{L^{\prime} L_{H}}\left(J_{L_{H}}\right)$. On the other hand $B_{L^{\prime} / L_{I I}}=\left(\delta_{J_{L}}-\eta\left(\varepsilon^{p^{r-1}}\right)\right)\left(J_{L_{L}}\right)$ and $J_{L /} / \rho_{L / L_{H}}\left(J_{L_{I I}}\right)$ is isogeneous with $B_{L / L_{H}}$, hence $\eta^{*}\left(\varepsilon^{p^{r-1}}\right) \neq \delta_{J_{L} / \rho_{L} / L_{I}}\left(J_{L_{H}}\right)$. By virtue of lemma 3 the p-dimension of $B_{L / L_{H}}$ is $(p-1)\left(\gamma\left(J_{L_{H}}\right)-1\right)=(p-1) p^{r-1}\left(\gamma\left(J_{K}\right)-1\right)$. Therefore, since $B_{L / L_{H}}=\left(\partial_{J_{L}}-\eta\left(\varepsilon^{p^{r-1}}\right)\right)\left(J_{L}\right)$, we observe that the p-adic representation $\left\{M_{p}\left(\eta^{*}\left(\varepsilon^{\nu}\right)\right)\right\}$ of $\left\{\eta^{*}\left(\varepsilon^{\nu}\right)\right\}$ is equivalent to $\left(\gamma\left(J_{K}\right)-1\right)$-times of the faithful irreducible representation of $G\left(L_{/}^{\prime} K\right)$ over p-adic integers as a representation over p-adic numbers. This shows that $\left\{M_{p}\left(\eta\left(\varepsilon^{\nu}\right)\right)\right\}$ is equivalent to the direct sum of $\left(\gamma\left(J_{n}\right)-1\right)$-times of the regular representation and the identical representation as a representation over p-adic numbers.

Proposition 1. The p-adic representation $\left\{M_{p}\left(\eta\left(s_{,}\right)\right)\right\}$of $G\left(L^{\prime} K\right)$ is equivalent to the direct sum of $\left(\gamma\left(J_{K}\right)-1\right)$-times of the regular representation and the identical representation as a representation over p-adic numbers.

Proof. Since $G(L / K)$ is abelian, $\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ is equivalent to a direct sum of p-adic irreducible representations of cyclic factor groups of $G(L / K)$. By virtue of lemma $4,\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ contains at least $\left(\gamma\left(J_{K}\right)-1\right)$-times of the p-adic irreducible faithful representation of any non-trivial cyclic factor group of $G\left(L^{\prime} / K\right)$. On the other hand the degree $p^{r}\left(\gamma\left(J_{K}\right)-1\right)+1$ of $\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ is equal to that of the direct sum of $\left(r\left(J_{K}\right)-1\right)$-times of the regular representation and the identical representation. Moreover the latter sum contains
exactly $\left(\gamma\left(J_{K}\right)-1\right)$-times of p-adic irreducible faithful representation of any non-trivial cyclic factor group of $G(L / K)$ and $r\left(J_{K}\right)$-times of the identical representation. This shows that $\left\{M_{p}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ is equivalent to the sum of $\left(r\left(J_{K}\right)-1\right)$-times of regular representation and the identical representation as a representation over p-adic numbers.

Proposition 2. $\quad \rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap B_{L_{H_{i}} / K}=\rho_{L_{H_{i}} / K} \pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}\left(p^{\nu_{i}}\right)\right)$

$$
=\left(\delta_{J_{B_{L_{L_{i}}} / K}}-\eta_{B_{L_{L_{i}} / K} / K}\left(\bar{\varepsilon}_{H_{i}}\right)\right)^{-1}(0),
$$

where $\eta_{B_{L_{H_{i}} / K}}\left(\bar{\varepsilon}_{H_{i}}\right)$ is the restriction of $\eta\left(\bar{\varepsilon}_{H_{i}}\right)$ on $B_{L_{H_{i}} / H}$.
Proof. Since $\pi_{L_{H_{i}} / K} \rho_{L_{H_{i}} / K}=\bar{\pi}_{L_{H_{i}} / K} \alpha_{L_{H_{i}} / K} \rho_{L_{H_{i}} / K}=p^{\nu_{i}} \delta_{J_{K}}$, we have $\rho_{L_{H_{i}} / K} \bar{\pi}_{L_{H_{i}} / K}$ $\left(\bar{A}_{L_{H_{i}} / K}\left(p^{\nu_{i}}\right)\right)=\alpha_{L_{H_{i}} / K}^{-1}(0) \cap \rho_{L_{H_{i}} / K}\left(J_{K}\right)=B_{L_{H_{i} / K}} \cap \rho_{L_{H_{i}} / K}\left(J_{K}\right)$. On the other hand $\pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}\left(p^{\nu_{i}}\right)=\bar{\pi}_{L_{H_{i}} / K}\left(\bar{A}_{L_{H_{i}} / K}\left(p^{\nu_{i}}\right)\right)\right.$, hence we have $\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap B_{L_{H_{i}} / K}=\rho_{L_{H_{i}} / K}$ $\pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}\left(p^{\nu_{i}}\right)\right)$.

From $\left(\delta_{J_{L_{H_{i}}}}-\eta\left(\bar{\varepsilon}_{H_{i}}\right)\right) \rho_{L_{H_{i}} / K}\left(J_{K}\right)=0$, we observe that $\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap B_{L_{H_{i}} / K}$ $C\left(\delta_{B_{L_{H_{i}} / K}}-\eta_{B_{L_{H_{i}} / K}}\left(\bar{\varepsilon}_{H_{i}}\right)\right)^{-1}(0)$. Therefore it is sufficient to prove that the order of $\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap B_{L_{H} / K}$ equals to that of $\left(\varepsilon_{R_{L_{H_{i}}} / K}-\eta_{B_{L_{H_{i}} / K}}\left(\bar{\varepsilon}_{H_{i}}\right)\right)^{-1}(0)$. Since $J_{K}\left(p^{\nu_{i}}\right) / \rho_{L_{H_{i}} / K} J_{L_{H_{i}}}\left(p^{\nu_{i}}\right) \cong G\left(L_{H_{i}} / K\right)$ and $\rho_{L_{H_{i}} / K}$ is purely inseparable, the order of $\rho_{L_{H_{i} / K}}\left(J_{K}\right) \cap B_{L_{H_{i}} / K}$ is $p^{\left(T\left(J_{K}\right)-1\right) \nu_{i}}$. On the other hand, by virtue of proposition 1, the p-adic representation $\left\{M_{p}\left(\eta_{B_{L_{H_{i}} / K}}\left(\bar{Э}_{H_{i}}\right)\right)\right\}$ of $G\left(L_{H_{i}} / K\right)$ is equivalent to ($\left.\gamma\left(J_{K}\right)-1\right)$-times of the sum of all the non-trivial irreducible p-adic representations of $G\left(L_{H_{i}} / K\right)$ as a representation over p-adic numbers. This shows that the order of $\left(\delta_{J_{B_{L_{H_{i}} / K}}}-\eta_{B_{L_{H_{i}} / K}}\left(\bar{\varepsilon}_{H_{i}}\right)\right)^{-1}(0)$ is $p^{v_{i}\left(\tau\left(J_{K}\right)-1\right)}$. We have proved proposition 2.
5. Using proposition 2, we shall determine the structure of J_{L}.

Proposition 3. Let H_{j} be the subgroup of H_{i} such that H_{i} / H_{j} is a cyclic group of order p. Then $\rho_{L / L_{j}}\left(B_{L_{j} / L_{i}}\right)$ is the invariant abelian subvariety for $\left\{\eta\left(\varepsilon_{\nu}\right)\right\}$ on J_{L} such that the p adic representation $\left\{M_{p}^{*}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ of $\left\{\eta\left(\varepsilon_{\nu}\right)\right\}$ on $\rho_{L / L_{H_{j}}}\left(B_{L_{H_{j}} / L_{H_{i}}}\right)$ is equivalent to $\left(\gamma\left(J_{K}\right)-1\right)$-times of the p-adic irreducible. representation $\left\{M_{p}^{H_{i}}\left(\eta\left(\varepsilon_{\nu}\right)\right)\right\}$ of $G(L / K)$ whose kernel is H_{j}, as a representation over p-adic numbers.

Proof. By virtue of proposition 1, the multiplicity of $\left\{M_{p}^{H_{i}}\left(\eta\left(\varepsilon_{,}\right)\right)\right\}$in
$\rho_{L / L_{H_{j}}}\left(J_{L_{I_{j}}}\right)$ is $\left(\gamma\left(J_{K}\right)-1\right)$ and that in $\rho_{L / L_{I_{i}}}\left(J_{L_{I_{i}}}\right)$ is zero. This proves the proposition.

We denote by $B_{I_{j}}$ the above $\rho_{L / L_{H_{j}}}\left(B_{L_{I_{j}} / L_{H_{i}}}\right)$. Namely $B_{I_{j}}$ means the invariant subabelian variety on J_{L} for $\left\{\eta\left(\varepsilon^{\nu}\right)\right\}$ such that the p-adic representation of $\left\{\eta\left(\varepsilon_{\nu}\right)\right\}$ on $B_{H_{i}}$ is equivalent to $\left(\gamma\left(J_{K}\right)-1\right)$-times of the p-adic irreducible representation of $G(L / K)$ whose kernel is H_{j}, as a representation over p-adic numbers. Then we get

Theorem 1. J_{L} is isogeneous with $B_{H_{1}}+\ldots+B_{H_{s}}+\rho_{L / K}\left(J_{K}\right)$ and the subvarieties $B_{I_{1}}, \ldots, B_{H_{s}}$ and $\rho_{L / K}\left(J_{K}\right)$ satisfy the following conditions:

$$
\begin{gather*}
\rho_{L / K}\left(J_{K}\right) \cap B_{H_{i}}=\rho_{L / K} \pi_{L_{H_{i}} / K}\left(J_{H_{l}}(p)\right), \tag{1}\\
\text { if } L_{H_{i}} \cap L_{H_{j}}=L_{H_{l}}, \tag{2}
\end{gather*}
$$

then

$$
\begin{aligned}
B_{H_{i}} \cap B_{H_{j}} & =\rho_{L / L_{H_{l}}}\left(\pi_{L_{H_{i}} / L_{H_{l}}}\left(J_{L_{H_{i}}}(p)\right) \cap \pi_{L_{H_{j} / L L_{l}}}\left(J_{L_{I_{j}}}(p)\right)\right. \\
& =\rho_{L / L_{H_{l}}}\left(J_{L_{H_{l}}}\right) \cap B_{H_{j}} \cap B_{H_{j}} .
\end{aligned}
$$

Proof. The first assertion has been proved in proposition 1. Let H_{i}^{\prime} be the subgroup of $G(L / K)$ such that H_{i}^{\prime} / H_{i} is a cyclic group of order p. Then, by virtue of theorem 2 in [2], we observe that $J_{K}\left(p^{v_{i}-1}\right) / \pi_{L_{H_{i}^{\prime}} / K}\left(J_{L_{H_{i}}} p^{v_{i}-1}\right)$) $\cong G(L!K) / H_{i}^{\prime}$ and $J_{K}\left(p^{\prime i}\right) / \pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}\left(p^{{ }^{\prime} i}\right)\right) \cong G(L / K) / H_{i}$, hence $J_{K}(p) / \pi_{L_{H_{i}^{\prime}} / K}$ $\left(J_{L_{H^{\prime}}}(p)\right)$ and $J_{K}(p) / \pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}(p)\right)$ are isomorphic. On the other hand $\pi_{L_{H_{i}}^{\prime} / K}\left(J_{L_{H_{i}}}(p)\right) \subseteq \pi_{L_{I_{i}} / k}\left(J_{L_{H_{i}}}(p)\right)$, therefore we have $\pi_{L_{H_{i}} / K} J_{L_{H_{i}}}(p)=\pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}(p)\right)$ for $L_{I_{i}{ }^{\prime}} \neq K$. Moreover, since $\left[J_{L_{H_{i}}}(p): \pi_{L_{H_{i}} L_{H_{i}}}\left(J_{L_{H_{i}}}(p)\right)\right]=p$ and $\rho_{L_{H_{i}} / K} \pi_{L_{H_{i}} / K}$ $\left(J_{L_{H_{i}}}(p)\right) \subseteq \rho_{L_{H_{i}} / K}\left(J_{K}(p)\right)$, we have $\rho_{L_{H_{i}} / K} \pi_{L_{H_{i}}^{\prime} / K}\left(J_{L_{H_{i}}}(p)\right)=\rho_{L_{H_{i}} / K} \pi_{L_{H_{i}} / K}\left(J_{L_{H_{i}}}(p)\right)$ $=\rho_{L_{H_{i}} / K}\left(I_{K}\right) \cap \pi_{L_{H_{i}} / L_{H_{i}}}\left(J_{L_{H_{i}}}(p)\right)$.

On the other hand, by virtue of proposition 2 and the pure inseparability of $\rho_{L / K}$, we have

$$
\begin{aligned}
& \rho_{L / K}\left(J_{K}\right) \cap B_{H_{i}}=\rho_{L / K}\left(J_{K}\right) \cap \rho_{L / L_{H_{i}}}\left(B_{L_{H_{i}} / L_{H_{i}}}\right) \\
& =\rho_{L / L_{H_{i}}}\left(\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap\left(\rho_{L_{H_{i}} / L_{H_{i}^{\prime}}}\left(J_{L_{H_{i}}}\right) \cap B_{L_{H_{i}} / L_{H_{i}}}\right)\right) \\
& =\rho_{L / L_{H_{i}}}\left(\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap \rho_{L_{H_{i}} / L_{n_{i}}} \pi_{L_{H_{i}} / L_{H_{i}}}\left(J_{L_{H_{i}}}(p)\right)\right. \\
& =\rho_{L / L_{H_{i}}}\left(\rho_{L_{H_{i}} / K}\left(J_{K}\right) \cap \pi_{L_{H_{i}} / L_{L_{i}}}\left(J_{L_{H_{i}}}(p)\right)\right) .
\end{aligned}
$$

This proves (1).
By virtue of (1) we have

$$
\rho_{L: L I_{i}}\left(J_{L_{I_{i}}}\right) \cap B_{I_{j}}=\rho_{L / L_{I_{i}}} \pi_{L_{I_{i}} \cap I_{j}^{\prime} L_{H_{i}}}\left(J_{L_{I I_{i}} \cap I_{\jmath}}(p)\right)
$$

and

$$
\rho_{L_{i}^{\prime} L_{I / j}}\left(J_{L_{I_{j}}}\right) \cap B_{I_{i}}=\rho_{L / L_{I I_{j}}} \pi_{L_{I I_{i}} \sim I_{j}^{\prime}}^{L_{I I_{j}}}\left(J_{L_{I I_{i}} \cap I_{j}}(p)\right)
$$

On the other hand $\rho_{L / L_{I I_{i}}}\left(J_{L_{H_{i}}}\right) \cap \rho_{L^{\prime} L_{I_{j}}}\left(J_{L_{I I_{j}}}\right) \subset \rho_{L_{i}^{\prime} L_{I I_{i}} \frown L_{I I_{j}}}\left(J_{L_{I_{i}} \cap L_{L_{j}}}\right)$ hence

$$
\begin{aligned}
& B_{I I} \cap B_{H_{j}}=\rho_{i / L L_{H_{i}}} \pi_{L_{I_{i}} \frown H_{j} / L_{H_{i}}}\left(J_{L_{I_{i}} \cap H_{j}}(p)\right) \\
& \cap \rho_{L / L_{H_{j}}} \pi_{L_{I_{i}} \frown H_{j} / L_{I_{j}}}\left(J_{L_{I_{I_{i}}} \frown H_{i}}(p)\right) \subset \rho_{L / L_{H_{i}} \frown L_{H_{j}}}\left(J_{L_{H_{i}} \frown L_{I_{j}}}\right) .
\end{aligned}
$$

This shows that

$$
B_{I_{i}} \cap B_{I I_{j}}=B_{H_{i}} \cap B_{I_{j}} \cap \rho_{L / L_{I_{i}} \cap} L_{H_{j}}\left(J_{L_{H_{i}} \cap L_{H_{j}}}(p)\right)
$$

Therefore, if $L_{H_{i}} \cap L_{l_{j}}=L_{H_{l}}$, we have

$$
\begin{aligned}
B_{H_{i}} \cap B_{H_{j}} & =\left(\rho_{L / L_{H_{l}}}\left(J_{L_{H_{l}}}\right) \cap B_{H_{i}}\right) \cap\left(\rho_{L / L_{H_{l}}}\left(J_{L_{H_{l}}}\right) \cap B_{H_{j}}\right) \\
& =\rho_{L / L_{H_{l}}}\left(\pi_{L_{H_{i}} / L_{H_{l}}}\left(J_{L_{H_{i}}}(p)\right) \cap \rho_{L_{H_{j}} / L_{H_{l}}}\left(J_{L_{H_{j}}}(p)\right)\right) .
\end{aligned}
$$

6. In this section we shall study some p-adic integral representations of cyclic groups.

Lemma 5. Let $\left\{R\left(\varepsilon^{\prime}\right)\right\}$ be a regular representation and $\left\{M\left(\varepsilon^{\prime}\right)\right\}$ be any representation of a cyclic group (ε). Then a p-adic integral representation

$$
\left\{\left(\begin{array}{cc}
M\left(\varepsilon^{\nu}\right) & 0 \\
A\left(\varepsilon^{\nu}\right) & R\left(\varepsilon^{\nu}\right)
\end{array}\right)\right\}
$$

is equivalent to

$$
\left\{\left(\begin{array}{cc}
M\left(\varepsilon^{\prime \nu}\right) & 0 \\
0 & R\left(\varepsilon^{\nu}\right)
\end{array}\right)\right\}
$$

as a p-adic integral representation.
Since the group ring $Z_{p}[G]$ over p-adic integers is projective as a left G-module, this lemma is clearly time.

Lemma 6. Let $G=(\varepsilon)$ be a cyclic group of order p^{r} and G_{r-1} be the subgroup ($\left.\varepsilon^{p^{r-1}}\right)$. Let $\left\{N\left(\varepsilon^{p^{r-1}}\right)^{v}\right\}$ be the non-trivial irreducible p integral representation of G_{r-1}. Let $\left\{\hat{M}(\varepsilon)^{\prime}\right\}$ be the representation of G induced by
$\left\{N\left(\varepsilon^{p^{r-1}}\right)^{v}\right\}$ and $\left\{R_{r-1}(\bar{\varepsilon})^{\text {c }}\right\}$ be the regular representation of G / G_{r-1}. Then any p-adic integral representation of the following type

$$
\left\{\left(\begin{array}{cc}
E_{n} \times \hat{M}(\varepsilon) & 0 \\
A(\varepsilon) & E_{n} \times R_{r-1}(\bar{\xi})
\end{array}\right)^{\nu}\right\}
$$

is equivalent to

$$
\left\{\left(\begin{array}{cc}
E_{n} \times \hat{M}(\varepsilon) & 0 \\
\mathfrak{a} & 0
\end{array} E_{n} \times R_{r-1}(\bar{\Sigma}),{ }^{\prime}\right)\right\}
$$

as a representation over p-adic integers, where $\bar{\varepsilon}$ is the class of ε in G / G_{r-1} and a is a p-adic integral ($n p^{r-1}, n(p-1)$)-matrix.

Proof. Since $\left\{\hat{M}(\varepsilon)^{\nu}\right\}$ is the induced representation of G by $\left\{N\left(\varepsilon^{p^{r-1}}\right)^{\nu}\right\}$, we have

$$
E_{n} \times \hat{M}(\varepsilon)=\left(\begin{array}{lcc}
0 & E_{n(p-1)} & 0 \ldots 0 \\
0 & \bigcirc & E_{n(p-1)} \\
0 & & E_{n, p-1)} \\
E_{n} \times N & O \ldots & \ldots .0
\end{array}\right)
$$

where $N=N\left(\varepsilon^{p^{r-1}}\right)$. We put

We choose p-adic integral matrices $X_{i j}$ such that

$$
X_{i, 0}=0, X_{i+1,1}=A_{i, 1}, X_{i+1, j}=A_{i, j}-X_{i, j-1}
$$

$\left(i=0,1, \ldots, p^{r-1}-1 ; j=1,2, \ldots, p^{r-1}-1\right)$, where $X_{p^{r-1}, j}=X_{0, j}$ and $X_{i,-1}$ $=X_{i, p^{r-1-1}}$. Then we have

$$
\times\left(\begin{array}{cc}
E_{n p^{r-1}(p-1)} & \\
X_{01} \cdots \cdots \cdots X_{0 p^{r-1-1}} & \\
\cdot & E_{n p^{r-1}} \\
\cdot & \\
\cdot & \\
X_{p^{r-1}-1,0} \cdots X_{p^{r-1-1, p^{r-1-1}}} &
\end{array}\right)=\left(\begin{array}{l}
E_{n} \times \hat{M}(\varepsilon) \\
a_{0} \\
a_{1} \\
\cdot \\
\cdot \\
\cdot \\
a_{p^{r-1-1}}
\end{array}\right.
$$

where

$$
a_{i}=\Lambda_{i, 0}+X_{i+1,0}\left(E_{n} \times N-E_{n(p-1)}\right)
$$

This proves the lemma.
Lemma 7. In the notations in lemma 6, let
(*)

$$
\left\{\left(\begin{array}{cc}
E_{n} \times \hat{M}(\varepsilon) & \\
A^{\prime}(\varepsilon) & R_{r-1}(\bar{\varepsilon})
\end{array}\right)^{\nu}\right\}
$$

and
(**)

$$
\left\{\left(\begin{array}{c}
E_{n} \times \hat{M}(\varepsilon) \\
\Lambda^{\prime \prime}(\varepsilon)
\end{array} E_{n} \times R_{r-1}(\bar{\varepsilon})\right)^{\nu}\right\}
$$

be p-adic integral representations of (ε) whose restrictions on the subgroup ($\varepsilon^{p^{r-1}}$) are equivalent (as p-adic integral representation). Then the representations (*) and (**) are equivalent (as p-adic integral representations).

Proof. By virtue of lemma 6, we may assume that

$$
\Lambda^{\prime}(\varepsilon)=\left(a^{\prime}, 0\right) \text { and } \Lambda^{\prime \prime}(\varepsilon)=\left(a^{\prime \prime}, 0\right)
$$

with p-adic integral $\left(n p^{r-1}, n(p-1)\right)$-matrices a^{\prime} and $a^{\prime \prime}$. From the assumption of the lemma, we have

$$
\begin{aligned}
& \Lambda^{\prime \prime}\left(\varepsilon^{p^{r-1}}\right)=\Lambda^{\prime}\left(\varepsilon^{p^{r-1}}\right)+E_{n} \times R_{r-1}\left(\varepsilon^{p^{r-1}}\right) X-X \cdot E_{n} \times \hat{M}\left(\varepsilon^{p^{r-1}}\right) \\
& \quad=\Lambda^{\prime}\left(\varepsilon^{p^{r-1}}\right)+X-X\left(\begin{array}{c}
E_{n} \times N\left(\varepsilon^{p^{r-1}}\right) \\
\cdot \\
\cdot \\
\quad \cdot \\
\quad E_{n} \times N\left(\varepsilon^{p^{r-1}}\right)
\end{array}\right)
\end{aligned}
$$

with a p-adic integral matrix X.
On the other hand we observe that

$$
E_{n} \times \hat{M}(\varepsilon)=\left(\begin{array}{ccccc}
0 & & E_{n(p-1)} & 0 & \cdots \\
\cdot & \cdot & & 0 \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
0 & & \cdot & \cdot & \cdot \\
E_{n} \times N\left(\varepsilon^{p^{r-1}}\right) & & & E_{n(p-1)}
\end{array}\right)
$$

and

$$
\begin{aligned}
& A^{\prime \prime}\left(\varepsilon^{p^{r-1}}\right)-A^{\prime}\left(\varepsilon^{p^{r-1}}\right) \\
& \\
& \quad=\sum_{\nu=0}^{p^{r-1}-1} E_{n} \times R_{r-1}(\bar{\varepsilon})^{p^{p-1}-1-\nu}\left(A^{\prime \prime}(\varepsilon)-A^{\prime}(\varepsilon)\right) E_{n} \times \hat{M}(\varepsilon)^{\nu} .
\end{aligned}
$$

Therefore, putting

$$
A^{\prime \prime}\left(\varepsilon^{p^{r-1}}\right)-A^{\prime}\left(\varepsilon^{p^{r-1}}\right)=(\overbrace{P,}^{n(p-1)} \overbrace{Q}^{n\left(p^{r-1}-1\right)(p-1)}),
$$

we have

$$
P=E_{n} \times R(\bar{\varepsilon})^{p r-1-1}\left(\mathfrak{a}^{\prime \prime}-a^{\prime}\right) .
$$

On the other hand, if we put

$$
X=(\overbrace{Y,}^{n(p-1)} \overbrace{Z}^{n\left(p^{r-1}-1\right)(p-1)}),
$$

we have

$$
P=Y\left(E_{n(\phi-1)}-E_{n} \times N\left(\varepsilon^{p^{r-1}}\right)\right) .
$$

This shows that

$$
\begin{aligned}
\mathfrak{a}^{\prime \prime}-\mathfrak{a}^{\prime} & =E_{n} \times R_{r-1}(\bar{\varepsilon})^{1-p^{r-1}} Y\left(E_{n(p-1)}-E_{n} \times N\left(\varepsilon^{p^{p-1}}\right)\right) \\
& =E_{n} \times R_{r-1}(\bar{\varepsilon}) Y\left(E_{n(p-1)}-E_{n} \times N\left(\varepsilon^{p^{p-1}}\right)\right)
\end{aligned}
$$

Hence, putting $Y_{1}=E_{n} \times R_{r-1}(\bar{\varepsilon}) Y$, we have

$$
\left.\begin{array}{l}
\left(\frac{E_{n} \times \hat{M}(\varepsilon) \mid}{\Lambda^{\prime \prime}(\varepsilon)} E_{n} \times R_{r-1}(\bar{\varepsilon})\right.
\end{array}\right)=\left(\begin{array}{l}
\frac{E_{n(p-1) p^{r-1}}}{Y_{1} 0} E_{n p^{r-1}}
\end{array}\right)^{-1} .
$$

7. In this section, using proposition 2 and lemma 7 , we shall prove the main theorem.

Lemma 8. If $G(L / K)$ is a cyclic group of order p, the p-adic representation $\left\{M_{p}\left(\eta\left(\varepsilon^{\nu}\right)\right)\right.$ \} of the galois group is equivalent to the direct sum of $\left(\gamma\left(J_{k}\right)\right.$ -1)-times of the regular representation and the identical representation as a representation over p-adic integers.

Proof. First we notice that there exist only two inequivalent p-adic integral representations of $G(L / K)$

$$
\left\{\left(\begin{array}{c|c}
\frac{1}{1} \\
0 \\
\cdot & \\
\cdot & N(\varepsilon) \\
\cdot &
\end{array}\right)^{\nu}\right\} \text { and }\left\{\left(\begin{array}{ll}
1 & \\
0 & N(\varepsilon)
\end{array}\right)^{2}\right\}
$$

which have the same irreducible components 1 and $\left\{N(\varepsilon)^{2}\right\}$, where $\left\{N(\varepsilon)^{2}\right\}$ is the non-trivial irreducible representation. ${ }^{11}$

By virtue of proposition 2, we observe that

$$
\rho_{L / K}\left(J_{K}\right) \cap B_{L / K}=\left(\delta_{B_{L / K}}-r_{i}(\varepsilon)_{B_{L / K}}\right)^{-1}(0) .
$$

This shows that $\left\{M_{p}(\eta(\varepsilon))^{\prime}\right\}$ contains no

$$
\left.\left\{\begin{array}{cc}
1 & 0 \\
0 & N(\varepsilon)
\end{array}\right)^{\nu}\right\}
$$

as a component. Namely there exists a system of p-adic coordinates on J_{L} such that

$$
\left.M_{p}(\eta(\varepsilon))=\left\{\begin{array}{ccc}
R_{1}(\varepsilon) & & \\
& \cdot & \\
& \cdot & \\
* & & \\
& & \\
R_{1}(\varepsilon)
\end{array}\right\} \gamma\left(J_{K}\right)-1\right)
$$

where $\left\{R_{1}(\varepsilon)^{2}\right\}$ is the regular representation of $G(L / K)$. By virtue of lemma 5 , there exists a system of p-adic coordinates on J_{L} such that

$$
\left.M_{p}(\eta(\varepsilon))=\left(\begin{array}{ccc}
R_{1}(\varepsilon) & & \\
& \cdot & \\
& & \\
& & R_{1}(\varepsilon)
\end{array}\right\} r\left(J_{K}\right)-1\right)
$$

[^1]Theorem 2. If $G(L / K)$ is cyclic, the p-adic representation $\left\{M_{p}\left(\eta\left(z^{\prime}\right)\right)\right\}$ of the galois group $G(L / K)$ is equivalent to the direct sum of $\left(\gamma\left(J_{K}\right)-1\right)$-times of the regular representation and the identical representation as a representation over p-adic integers.

Proof. Let ε be a generator of $G(L / K)$ and H_{i} be the subgroup ($\varepsilon^{p^{2}}$) $(i=1,2, \ldots, r)$. We shall prove the theorem by the induction on $G(L / K) / H_{i}$. If $i=1$, by virtue of lemma 8 , the theorem is true. We assume the theorem on $G\left(L / L_{l_{r-1}}\right)$. Then, since G has only one faithful irreducible p-adic integral representation $\left\{\hat{M}(\varepsilon)^{\nu}\right\}$ and any p-adic integral representation of the following type

$$
\left\{\left(\begin{array}{cc}
\hat{M}(\varepsilon) & 0 \\
1(\varepsilon) & \hat{M}(\varepsilon)
\end{array}\right)^{\nu}\right\}
$$

is equivalent to

$$
\left\{(\hat{M}(\varepsilon) \quad \hat{M}(\varepsilon))^{2}\right\}
$$

there exists a system of p-adic coordinates on J_{I} such that

$$
M_{p}(\eta(\varepsilon))=\left(\begin{array}{ccc}
E_{\because, K i-1} \times \hat{M}(\varepsilon) & & \\
A(\varepsilon) & E_{\because, K-1} \times R_{,-1}(\bar{\Xi}) & \\
b(\varepsilon) & & 1
\end{array}\right)
$$

where $\left\{\hat{M}(\varepsilon)^{2}\right\}$ is the representation of $G(L / K)$ induced by the non-trivial irreducible representation $N\left(\varepsilon^{p^{r-1}}\right)$ of $\left(\varepsilon^{p^{r-1}}\right)$ and $\left\{R_{r-1}(\bar{\varepsilon})^{2}\right\}$ is the regular representation of $G(L / K) / H_{r-1}$.

On the other hand, by virtue of lemma 8 ,

$$
\begin{equation*}
\left\{M_{p}\left(\eta\left(\equiv^{t^{\prime \prime}-1}\right)^{\prime}\right)\right\} \tag{*}
\end{equation*}
$$

is equivalent to the direct sum of $\left(r\left(J_{k}\right)-1\right) p^{r-1}$-times of the regular representation of $\left(\varepsilon^{p^{p-1}}\right.$) and the identical representation. The latter representation is equivalent to the restriction on $\left(\Xi^{p^{r-1}}\right)$ of the direct sum of $\left(\gamma\left(J_{\Lambda}\right)-1\right)$-times of the regular representation of $G(L / K)$ and the identical representation. Therefor, by virtue of lemma 5,7 , we have a system of p-adic coordinates on J_{L} such that

$$
\left.M_{p}(\eta(\varepsilon))=\left(\begin{array}{ccc}
R_{r}(\varepsilon) & & \\
& \cdot & \\
& & \\
& & R_{r}(\varepsilon)
\end{array}\right) r\left(\begin{array}{l}
1
\end{array}\right) r\left(J_{K}\right)-1\right) \text {, }
$$

where $\left\{R_{r}(\varepsilon)^{2}\right\}$ is the regular representation of $G(L / K)$.

References

[1] Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Hamb. Sem. Bd. 13 (1940).
[2] H. Morikawa, Generalized jacobian varieties and separable abelian extensions of function fields, Nagoya Math. Jour. vol. 12 (1957).
[3] Šafarević, On p-extensions, Math. Sbornik N.S. 20 (62), (1947).

[^0]: Received May 8, 1958.

[^1]: ${ }^{\text {1) 5) }}$) Since $\left[Q_{p}\left(p^{r} \sqrt{1}\right): Q_{p}\right]=p^{r-1}(p-1)$ and the class number of $Q_{\mu}\left(p^{r} \sqrt{1}\right)$ is one, there exists only one faithful p-adic integral irreducible representation. Moreover $G=(\varepsilon)$ is cyclic, hence a p-adic integral representation

 $$
 \left.\left\{\begin{array}{cc}
 \hat{M}(\varepsilon) & \hat{M}(\varepsilon)
 \end{array}\right)^{2}\right\}
 $$

 with an irreducible representation $\left\{\hat{M}(\varepsilon)^{\circ}\right\}$ is equivalent to

 $$
 \left\{\left(\begin{array}{ll}
 \hat{M}(\varepsilon) & \hat{M}(\varepsilon)
 \end{array}\right)^{\prime}\right\}
 $$

 as a representation over p-adic integers. See $\S 4,6$ in [1].

