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Introduction

When a Lie group G operates on a differentiate manifold M as a Lie

transformation group, the orbit of a point p in M under G, or the G-orbit of

pf is by definition the submanifold G(p) - {G(p) g&G}. The purpose of this

paper is to characterize the structure of a non-compact manifold M such that

there exists a compact orbit of dimension (n - 1), n = dim Λf, under a connected

Lie transformation group G, which is assumed to be compact or an isometry

group of a Riemannian metric on M. When G is compact there exists on M

a G-invariant Riemannian metric, and so we shall always consider G as an

isometry group. In order to state our main theorem we need another definition*,

a Riemann manifold M is said isotropic (or H-isotropic) at a point p in M

when there exists an isometry group H of M such that, for any two unit

vectors X and Y at p, H contains an isometry carrying X to Y (Some authors

use this terminology in a different sense). Now the main theorem (Theorem 3)

reads: If there exists a compact (n -1)-dimensional G-orbit then M admits a

fibre bundle structure over a compact orbit B = G(b), £ e B, associated with

the principal bundle (G, G/H, H) where H is the isotropy subgroup at b, the

fibre being diffeomorphic to the euclidean space on which the structure group

H operates as a linear group. The fibre is a submanifold of M containing b

and HΛsotropic at b, if dim B>n — 1. The hypothesis of the theorem can be

replaced by a more geometric one: G leaves invariant and operates transitively

on a connected component of any submanifold consisting of the points at a

constant distance from a fixed compact submanifold.

P. S. Mostert proved a similiar theorem [5] in a different formulation (see

Received June 18, 1958.
Revised September 7, 1958.

25



26 TADASHI NAGANO

Corollary 5.8) in case G is compact and M had not necessarily a differentiate

structure. J. L. Koszul [2] showed the existence of the bundle structure in a

neighborhood of an orbit of an arbitrary dimension when G is compact.

Our formulation allows us to derive, for instance, a theorem of Montgomery

and Zippin (see Corollary 5.4) and will be convenient for our purpose: in

forthcoming papers [6], [7] we shall determine 1) M as a differentiate

mnaifold (compact or not) under an additional condition that there exists a

O-dimensional G-orbit and 2) G as a transformation group under another ad-

ditional condition that M is homeomorphic to a sphere.

Contents of various sections. In 1 we shall explain conventions and

definitions together with known properties on geodesies. Existence of an

in- 1)-dimensional orbit will turn out to be equivalent to existence of a G-orbit

B such that G, operating naturally on the tangent bundle of M, is transitive

on a connected component of the set of unit vectors normal to B (Corollary 4.9).

In 2 we shall establish that for any point p in M there exists a geodesic of the

minimum length joining p to B (Theorem 1). Section 3 is devoted to demon-

strate that such a geodesic is unique unless B is in- 1)-dimensional and two-

sided (Theorem 2). (The G-orbits are (n - 1)-dimensional and two-sided

except at most one orbit). From these two theorems follows the main

theorem (Section 4). In the last section one will find several corollaries to the

main theorem.

The author thanks to Professor K. Yano for his constant encouragement

and instructions. He also appreciates valuable advices of Professor K. Nomizu

and the referee.

1. Preliminaries

The letter M will be reserved for a connected differentiate manifold of

differentiability class C3, whose dimension will be denoted by n. G will denote

a connected Lie group which operates on M as a (^-transformation group.

Without special mention, G is assumed to be an isometry group of a Riemannian

metric on M of differentiability class C2 (The condition that G is a Lie .group

is superfluous because of a theorem of Myers and Steenrod and that of

Kuranishi and Yamabe). A submanifold is said compact when it is compact

in its inner topology. Given a connected submanifold B of M, we denote by
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Nf(B) the set of all unit normal vectors of B i.e. every vector X in N'iB)

has its origin on B and is orthogonal to the tangent space of B. N'iB) is

given the topology induced from the tangent bundle TiM) of M. N'iB) is a

compact submanifold of T(M) when B is compact. We call N'iB) the normal

bundle of £ . N'iB) has at most two connected components, any one of which

is called a connected normal bundle of B, denoted by NiB). G operates

naturally on T(M). If B is a G-orbit then NiB) is invariant under G. If

N(B) is a G-orbit then so is the other component of N'iB).

Given a (piecewise differentiable) curve a we write lαrί for the length of a.

For two points p and q we put dl£, <?) ^ t h e distance between them= inf a joining/) to a

\a\, and dip, B) = the distance from p to B = infbς=n dip, b)y which is denoted

by J(^>) when no ambiguity is to fear. By definition a minimum geodesic γ

(from ί to 5 ) is a geodesic joining p to some point b in B with γ = */(/>).

Then & is called the initial point of γ, and p is said to admit a minimum

geodesic. More generally, by a perpendicular r (to 5 ) we mean a geodesic

issuing from a point b in B and orthogonal to Z? at b. 7 has not always the

end point but b, while a minimum geodesic is compact. For a curve 7 having

two points p and q on it, γ(pt q) will denote the subarc of 7 lying between

them, which will be well defined always when considered in the sequel. For

a non-negative number c, Nc shall denote the set {q&M\ d{q) - c), which

depends on B. Given a point p in M> we write N{P) for the connected com-

ponent containing p of Ndφ).

Denoting by Tf the set of all unit vectors on M - U*e=.uM{#}), and by

i?- the set of all non-negative numbers, we here recall three well known

properties of geodesies, for which we need C2-differentiability of the metric

tensor on M :

(G. 1) Given l E T ' and sG /?+, the point p is uniquely determined (if p

exists) by the condition that p lies on a geodesic with X as the initial tangent

and at the arc length s from the origin of X.

(G. 2) The above defined map φ: iX, s) -+ p is continuous, the definition

domain of ψ being a neighborhood W of V x {0} in V x R±.

(G. 2 a) φ is differentiable on W- T x {0}.

(G. 3) There exists an open covering {ΓΛ} of M such that every two points

p and # in a £7λ are joined by a geodesic r with Iri = dip, q). γ is the unique
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curve with this property.

Further we need two known properties:

(G. 4) If a curve a joining two points p and q in M satisfies | α | = dip, q),

then a is a geodesic.

This follows immediately from (G. 3).

(G. 5) A minimum geodesic γ to a submanifold B is a perpendicular.

We give an outline of the proof. Let b be the initial point of γ. Consider

a normal coordinate system v with center b, a diffeomorphism of a neighborhood

U of b onto an open subset V of the euclidean space, and note that the given

Riemannian metric tensor μ is asymptotic to the metric μ' induced by v from

the euclidean metric on V if U is sufficiently small. We have μ(0) = μ'(Q).

μ and μ1 have in common the geodesies starting at b and the angle β between

γ and B. There exist point sequences {pk) on γ and {bk) on B both converging

to b such that lim[d'(£, bk)/d'(b, pkΏ-sin β where d' is the distance function

corresponding to μ'. One concludes sin β = 1 from this together with three

relations: d'{b, pk) = dib, pk), limld'ib, bk)/d(b, bk)l = 1, and dipk, b)^d(pk, b)

(due to the assumption on γ).

2. Existence of minimum geodesies.

THEOREM 1. Let G be a connected isometry group of a Riemann manifold

M, and B a compact submanifold of M. If a connected normal bundle N(B)

is a G-orbit then any point of M admits a minimum geodesic to B.

We shall prove this by establishing several lemmas.

(2.1) Let N be the subset of M consisting of the points p such that any

point q with d{q)^dip) admits a minimum geodesic. Since N contains B

which is of course assumed to be nonvacuous, N is nonvacuous.

(2.2) An arbitrary point p in the closure N of N admits a minimum geodesic

to B.

Let {pk) be a point sequence in N which converges to p. If we have dip)

*= dipk) for some k then p admits a minimum geodesic by the definition of N.

We thus assume dipk) <dip) for all k. Belonging to N, pk admits a minimum

geodesic, r&. The initial unit tangent vector Xk of γk belongs to N'iB)

by (G. 5). Since N'{B) is compact, one may assume that all Xk belong to.
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NiB) and the sequence {Xκ>} converges to some X in NiB). From the fact that

the connected Lie group G is transitive on the manifold NiB), it follows that

there exists a sequence {gk} in G converging to the identity such that each gk

carries Xk to X. The isometry gk carries γu into the maximal geodesic, γ, with

the initial tangent X by (G. 1), γ being maximal in the sense that any geodesic

with the initial tangent X is contained in γ. The point gkipk) is the end point

of gkϊkCγ other than the origin b of X. The point sequence ig,cipk)} on γ

converges to p. Further the arc length \gkiϊk)\ which equals in-1 = dipk)

converges to dip). Hence p belongs to γ and we have \γip, b)\ - dip) in

other words rip, b) is a minimum geodesic from p.

(2.3) N is closed.

Let p be an arbitrary point in N-B and q a point of Λί- B with d( q) ~ dip).

There exists a point sequence iqk) C M converging to q and satisfying d^qκ^

<diq) for all k, [because otherwise there would exist a positive number c<d(q)

such that any point x with d(x, q)<e satisfies diq) ?== dix). Then any curve

joining q to B must be longer than d\q) + c, contrary to the fact that d\q)

equals the greatest lower bound of the length of such curves]. Hence we have

diqk) <dip). Since p belongs to ΐV, this shows that qk belongs to ΛΓ. Thus <y

adheres to N, and so q admits a minimum geodesic owing to (2.2V This gives

that Λ7 contains p.

(2.4) Nc is compact, r e / ? . , if NCΠN is jwnυacuotis.

Nc is then contained by N. The map ψ in (G. 2) commutes with any

element g of G\ i.e. one has φigX, s) =gφiX, s). Since G is transitive on

NiB), it follows that φ is defined on N'iB) x {c ) or on its connected component

and has Nc as its image or a connected component of its image. Hence Nc, a

continuous image of a compact set, is compact.

(2.5) ΛΓ is open.

Let p be an arbitrary point of N. Set c =• dip). Nc is then contained in

A7. To establish (2.5) it is sufficient to show that a neighborhood of λ\: is

contained in A7. An arbitrary point q of Ar

f belongs to some open set U— Uf

mentioned in (G.3). Denote by V(q) a neighborhood C U of q such that every

point x in Viq) satisfies 2dix, qXdix, r) for any boundary point r of U.
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There exists then a point v in Nc with d(x, y) = d(x, Nc) by (2.4). v belongs

to U, for otherwise any curve a joining x to y intersects the boundary of U

and so we have 2d(x, y) <= 2d(x> q) < \a\t which is a contradiction. Hence, by

the definition of U, there exists a geodesic r> joining x to y with In I = d(x, y)

= d(x, Nc). Belonging to NCCN, y admits a minimum geodesic γ2 to B. We

consider the curve γ = γι\Jr2- When d{x)>c, γ will turn out to be a minimum

geodesic to B. In fact any curve a joining x to a point p of B must then

intersect Nc at a point, z> and we have In I = d(x, Nc) = \a(χ, z)\ and 17-21 = c

^ \a(zy p) |. Hence one has irI = d(#) thus γ is a minimum geodesic by (G. 4).

We have proved that any point in V(q) admits a minimum geodesic. The

compact set Nc is covered by U Qς=xcV(q). Therefore Nc is contained in the

interior of N.

Now Theorem 1 is clear; by (2.1), (2.3) and (2.5), ΛΓ coincides with M.

COROLLARY 2.1. Let G be a connected isometry group of a Riemann

manifold M, and B be a compact submanifoΐd of M. Then the folloiυing these

conditions are equivalent:

1) A connected normal bundle N(B) is an orbit under G;

2) For any point p of M the set Ntp) is a compact G-orbit

3) For any number e>0 there exists a point p with 0<d(p)<e such that

{p) is a G-orbit.

Put dip) =c. Assuming 1) we will prove 2). By Theorem 1, Nφ) is the

0-image of Nf(B)xc or its connected component N(B)xc. Hence N(P) is

compact. Denoting by X the initial unit tangent of a minimum geodesic from

p, we get G(p) = Gφ(X, c) = <p(G(X), c) = ψ(N(B), c). In the latter case above

we thus obtain G(p) = Nφ). In the former case we have Nφ) = φ(N{B)> c)

Uφ(N'{B) - MS), c), and φ(N'(B) - N(B), c) is compact. Hence G(p)

= ψ{N(B), c) contains an open subset of Nφ). Since G is an isometry group

of Nφ) it follows that G(p) = Nφh and 2) is proved. 2) implies 3) obviously.

Finally we shall derive 1) from 3). Since B is compact, there exists by (G. 3)

a neighborhood V such that any point in V admits a minimum geodesic -to B.

Let γ be a minimum geodesic from a point q in V. By 3) we may assume

that there exists a point p on r, 0<dip) =c <d(i[)i such that Nφ) is a G-orbit

contained by V. For an arbitrary point in Nφ) the minimum geodesic is
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unique. We may prove this for β only. Suppose that γι and γ > are different

minimum geodesies fromβ to B. Then r(q,β)Urι and γ{β, </)U/2 are minimum

geodesies. Hence they are geodesies, contrary to ( G . I ) . Denote by λΓ{B) the

connected normal bundle of B containing the initial tangent of γ. φ is defined

on N(B) x c and a one-to-one map onto Nψ^ Since <ρ commutes with each g

in G, this gives that Λr{B) is a G-orbit.

3. Uniqueness of minimum geodesies

THEOREM 2. Under the hyβothesis of Theorem 1, assume that the normal

bundle N'(B) is connected and M is not compact. Then every point oj M

admits only one perpendicular to B.

The fact N'(B)=N(B) and (G.I) give:

(3.1) For two perpendiculars n and γ>i to B there exists an isomctry g in G

such that gγi contains or is contained by γ2.

(3.2) Every βerβendicular γ to B is a minimum geodesic to B.

Proof. We may assume that γ is maximal. Let γ' be the maximal subarc

of γ such that, for any point β of f, the subarc γ(β, b), b being the initial

point of γ, is a minimum geodesic from β to B. Patently γ' contains b, and γ'

is nonvacuous. It is easy to see that γ' is closed in γ (in its inner topology).

Assume that γ'^γ. Then γ1 is compact. Since N'(B) is also compact, VJκ^gγ'

is compact. M being non-compact, it follows from Theorem 1 that there

exists a minimum geodesic γ" to B with \γ'\ < \γ"\. .By (3.1), some isometry

g in G carries γ" into γ, and gγ" contains γ' as a proper subset, contrary to the

definition of γf.

From this proof one deduce:

(3.3) Any minimum geodesic is a proper subset of another minimum geodesic.

(3.4) Every point β of M admits only one minimum geodesic.

Proof. Assume that β admits two minimum geodesies n and γ2. By (3.3)

M is a proper subset of another minimum geodesic γ. Denote by γQ the subarc

of r such that r = 7oUn and roΠri^iβ}. Since IroU^! = Irol + !r2i = Iro!

-f In I "- IroUn!, we find that r^Uγz is a minimum geodesic. But roUr2 is not

differentiable at β, contrary to (G. 4).

Now Theorem 2 follows from (3.2) and (3.4).
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Remark 3.1. N'(B) is connected if dim B<n-l.

COROLLARY 3.2. If a non-compact Riemann manifold M is isotropic at a

point o, then M is homeomorphic to the euclidean space.

Put B = 0. N(B) is an orbit of some connected isometry group G of M.

If Kn, N({B) is connected and Theorems 1 and 2 imply that the normal

coordinate system v with center o extends to a homeomorphism of the whole

space M. When n = 1, M is obviously C^diffeomorphic to the euclidean space.

Remark 3.3. If further M is homogeneous, then the isotropy subgroup

of the isometry group of M is irreducible. Since M is not compact, one can

apply Matsushima's theorem (unpublished) which states that M is then

symmetric. The corresponding compact symmetric space Mc is isotropic at

each point. Hence Mc is one of the spaces determined by Wang [9]. Modifying

his method and using Yamabe's theorem one can easily obtain the same

conclusion for a locally and finitely compact metric space. But more general

results have already been obtained by J. Tits [8] and H. Freudenthal [ l j

4. The main theorem

When H is a closed subgroup of a Lie group G, (G, G/H, H) shall denote

the principal bundle over GlH relative to the projection of G onto GlH.

THEOREM 3. Let G be a connected isometry group G of a non-compact n

dimensional Riemann manifold M with an (n - 1)-dimensional compact orbity

then M has a fibre bundle structure such that 1) the base space is a compact

G'orbity 2) the associated principal bundle is (G, G/Hf H) tϋhere H is the isotropy

subgroup of G at a point b of B, 3) the fibre E {containing b) is a submanifold

of M which is Cι-diffeomorphic to the euclidean space of dimension n-dim B,

4) the structure group H acts on E as a linear group in terms of some coordinate

system of Ey and finally 5), if dim B<n- 1, then H acts transitively on the {unit

sphere with center b~EC\B in the tangent space toEatb; E is thus isotropic at b.

(4.1) Every G-orbit is compact by Corollary 2.1.

We distinguish two cases

Case I : All G-orbits are {n - 1)-dimensional.

Case I I : There exists a G orbit B of dimension < n - L



TRANSFORMATION GROUPS ?>:)

In case I, we fix an arbitrary point p and denote by E the union of the

two perpendiculars to P = Gip) issuing from p. E is a geodesic without end

points. If E contains a point q of Pother than p we denote by b the middle point

of the subarc E(p, q) otherwise we put b-p. We set B-Gib). In case II,

we fix an arbitrary point b in B, and denote by E the union of all perpendicular

to B issuing from b.

(4.2) G is transitive on N(B) and, in case /, N(P).

In case I, the orbits B and P being (n — 1)-dimensional, G is transitive on

NiB) and N(P). In case II, B adheres to the union of (n - 1)-dimensional orbits

as is easily seen. If Gip) is in - 1)-dimensional, Gip) is open in the subset N(P)

which is left invariant by the isometry group G. Hence λΓ<p> coincides with

Gip). Corollary 2.1 shows that G is transitive on λτ(B).

(4.3) The set A = BΠE contains b only.

Case I. If A contains two points, the set EΠP contains at least three points,

piii = 1, 2, 3). Assume that p2 lies on minimum geodesic γ to P by Theorem

1 which applies due to (4.1) and (4.2). An isometry transforming the initial

point of γ to p2 transforms γ into Eipu pz). As in the proof of (3.2), we can

infer that M is compact, contrary to the assumption.

Case II. If A contains a point x other than l\ then E contains a geodesic

γ joining x to b by the definition of E Hence there exist two perpendiculars

γ and x from x to B, contrary to Theorem 2 which applies owing to (4.1),

(4.2) and Remark 3.1.

(4.4) Let h be an isometry in G. If hiE) intersects E, then hiE) coincides

with E.

In case / they are maximal geodesies. (4.4) follows from the fact that a

geodesic γ, which is orthogonal to the orbit under a connected isometry group

G a t a point, is orthogonal to the G-orbit at any point of γ ([10]; p. 48). In

case II, h(E) is the union of all perpendiculars to B issuing from hib). Hence

if hib) = b then hiE) = E. If a point x belongs to hiE) Γ\ E, then there exist

perpendiculars from x to b and to hib). By Theorem 2, we have hib) = b.

(4.4) is proved.

Let (0 be a map of G x E into M defined by pig, x) =gix).
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(4.5) p is onto.

Given a point y in M there exists a minimum geodesic γ to B. Let g be

the isometry in G which carries b to the initial point of γ. Then x = ^"^v)

belongs to 2s" and we have p(g, x) -y.

(4.6) We have pig, x) = p(g', *') //' Λ/ίrf ow/y if h = £~V belongs to H and

Assume pig, x) = p(#', #'). Then # = ft(#') and x belongs to ECλhiE).

Hence we find h(E) = E by (4.4). This gives that h(b) belongs to E(~]h{B)

= E(~]B. By (4.3) we get h(b) =b\ i.e. h belongs to H. The converse is

evident.

Now from (4.5) and (4.6) we conclude that M is a fiber bundle with

fibre E and associated with the principal bundle (G, G/H, H) we have

proved 1) and 2).

(4.7) The assertion 3) in Theorem 3 is true.

In case I, 3) is obvious. In case II we consider a normal coordinate system

v with center b, a Cι-diffeomorphism of a neighborhood V of b in M onto an

open subset of the w-dimensional euclidean space. W = E Γ\ V is a closed

submanifold of V. The restriction z/ of v to W extends to E in such a way

that every perpendicular to {b} is isometrically mapped to a geodesic in the

eudlidean space of dimension in - aim B). This extension p" is well defined

and one-to-one due to Theorem 2. v" is diffeomorphic owing to the facts

that p"'1 is differentiate by (G. 2 a) and that a neighborhood of any N{p)f p

φB, is the direct product (as a differentiate manifold) of N(p} and a geodesic

orthogonal to Λr(£) by (G. 2 a).

(4.8) The assertion 4) in Theorem 3 is true.

v" can be regarded naturally as a map into the tangent space T to E at b.

The operations of H on E correspond to the operations of the linear isotropy

group on T (wτhich we confound with H).

(4.9) The assertion 5) in Theorem 3 is true.

The unit sphere in T coincides with TΓλN(B). MB) is a G-orbit. An h

of H is characterized in G by the property that h carries a vector in T to

another in Γ It follows that H is transitive on TDN(B),
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5. Corollaries to the main theorem

COROLLARY 5.1. Let G' be a compact C3-transformation group of an n-

dimensional connected non-compact paracompact differentiable manifold M of

class C3. // there exists a Gf-orbit of dimension n - 7, then the conclusion of

Theorem 3 holds good.

In fact there exists on M a G'-invariant Riemannian metric of class C2 by

Whitney's theorem and compactness of G. Further the identity component G

of Gf admits an in — 1)-dimensional compact orbit because G' is compact. Thus

Theorem 3 applies.

COROLLARY 5.2. In Theorem 3, any point x of M can be joined to B by

exactly one perpendicular γx.

In case dim B<n~l> this is nothing but Theorem 2. In case dim B = n — 1,

our corollary follows from Theorem 3; γx is contained in (hence coincides

locally with) the fibre containing x.

COROLLARY 5.3. In Theorem 3 the subspace B is a strong deformatioyi

retract of M. In particular the singular homology groups of B and M are

isomorphic't H(B) =H(M). (So are their homotopy groups).

Let / be the retraction, which is the projection of the bundle space M onto

the base space B. Given t in the closed interval [0, 1] and x in M, D(t, x)

shall denote the point on the perpendicular γx (from x) at the distance td(x)

from B. D is well defined due to Corollary 5.2. The composition of / and

the inclusion map B -> M is homotopic to the identity by D. In fact for an

arbitrary point pe M there exists a neighborhood U of f(p) in B, a local cross-

section c: U-+G> and a continuous map e: f~\U) -> E such that we have

x = p(cf{χ), e(x))y p being defined above (4.5). We get a similarity transfor-

mation with multiplicity H^O) if we restrict the transformation XELM-* D(ty x)

ε M t o E (more precisely, if one further induces this restricted map to the

tangent space T to E at b). It follows D is continuous on [0, 1] x E. On [0, 1]

xf~ι(U) we have D{t, x) = p{cf(x), D(t, e(x)) and find that D is continuous,

whence D is a homotopy. Therefore B is a strong deformation retract of M

COROLLARY 5.4. //, in Theorem 3, M is homeomorphic to the euclidean

space En, then G admits a fixed point and G is a linear group. (Montgomery



:6 TADASHI NAGANO

and Zippin [4j proved an analogous theorem assuming compactness of G and no

differentiability of G and M. (See [3] also*.

By Corollary 4. 3, we have

H(B) = H(M) = H(En) = Ho(En), i.e. H(B) = H0(B) = the integers, where

Ho denotes the O-dimensional homology group. B is a compact manifold and

again by Corollary 4.3, B is simply connected in particular B is orientable.

It follows that B contains just one point.

COROLLARY 5.5. (The converse of the preceding corollary). If, in Theo-

rem 3, G admits a fixed point then M is diffeomorphic to the euclidean

space.

Then B contains just one point and we get M=E (the fibre).

COROLLARY 5.6. In Theorem 3 the normal bundle N'(B) is connected if

and only if M — B is connected. When this is the case, N(p) —G(p), pξΞM—By

is a k-sphere bundle over B, k = n — dim B — Z, the structure group being transitive

on the fibre. In the other case M is a trivial bundle - BY (a straight line).

(A zero-dimensional sphere is understood to consist of two points).

COROLLARY 5.7. In Theorem 3 the isotropy subgroup Hb at a point b in

B is characterized by the property to be maximal in the sense that if the isotropy

subgroup Hx at a point x contains Hb then it coincides ivith Hb. The other

isotropy subgroups are all conjugate to each other.

COROLLARY 5.8. In Theorem 3, the orbit space M/G is homeomorphic to

ii) an open interval or (it) the half open interval J = (0, 1). The case (i)

occurs if and only if M—B is not connected. In case (ii) there exist subgroups

H and K with KCH such that Mis homeomorphic to (G/K) xjivith (G/K) x {0}

identified to G/Hx{0} by the relation (gK, 0) = (hK, 0) if h^gH. (Mostert

[5] proved an analogous theorem in assuming compactness of G and no

differentiability of M).

In fact M/G can be identified with E if M - B is not connected, and -with a

maximal perpendicular γ to B if M-B is connected. Let H be the subgroup

in Theorem 3, and K the isotropy subgroup at' a point on γ - B. Then our

corollary will be evident.
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COROLLARY δ.9. Let G be a connected isometry group of a Riemann mani-

fold M of dimension n. Then the following three conditions are equivalent.

a) All orbits C are compact, and G is transitive on N{C).

b) There exists a compact G-orbit B such that G is transitive on a con-

nected normal bundle X(BK

c) There exists an in— 1)-dimensional compact orbit.

Clearly a) implies b). Assume b). Consider a non-compact G-invariant

neighborhood V of B. Applying Corollary 5.6 to V, we find c) deduced.

Finally assume c\ Then Theorem 3 applies to M if M is not compact and to

M— A if M is compact where A is a G-orbit such that the isotropy subgroup

at a point of A is maximal, M—A being then connected. By Corollary 5.6 all

orbits but B and A are compact and (;/ - 1)-dimensional. Hence G is transitive

on their connected normal bundles. By Corollary 2.1 G is transitive on λr{B).

Considering M- B instead of M we also find that G is transitive on ΛrL4).

Question 1. I do not know whether the assumption of compactness in

Theorem 3 is indispensable or not.

" * Question 2. It would be desirable to generalize the whole theory to the

case where M is a topological manifold wτith a metric such that there exist

geodesies satisfying local prolongeability, uniqueness of prolongation, etc. and

M is locally convex, etc.
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