NOTE ON COMPLETE COHOMOLOGY OF A QUASI-FROBENIUS ALGEBRA

TADASI NAKAYAMA

Let A be a quasi-Frobenius algebra over a field K. A has a complete (co)homology theory which may be established upon an augmented acyclic projective complex, i.e. a commutative diagram

of A-double-modules with exact horizontal row, projective X_p , and with epimorphic resp. monomorphic & and .. Negative-dimensional cohomology groups, over an A-double-module, are expected to be in close relationship with (ordinary positive-dimensional) homology groups. Indeed, in case A is a Frobenius algebra the cohomology groups $H^{-n}(A, M)$, -n < -1, over an A-double-module M may be identified, connecting homomorphisms taken into account, with the homology groups $H_{n-1}(A, M^*)$ over an A-double-module $M^* = (M, *)$ obtained from M by modifying its A-right-module structure with an automorphism * of A belonging to the Frobenius algebra structure of A, and, moreover, the cohomology groups $H^0(A, M)$, $H^{-1}(A, M)$ are described explicitly in terms of commutation and norm-map, so to speak, defined by a certain pair of dual bases of A. In the present note we want to give the corresponding description of the 0- and negative-dimensional cohomology groups of a quasi-Frobenius algebra A. In doing so, we shall deal with a certain A-double-module M^{\S} which is obtained from M by a certain construction but which is in general not Aleft-isomorphic to M contrary to that M^* in case of a Frobenius algebra is Aleft-isomorphic to M. Further, our construction will strongly rely upon the relationship of A with its core algebra A_0 which is a Frobenius algebra. In fact, the (co)homology theory of an algebra can, generally, be reduced to that of its core algebra, and this principle applies also to the complete (co)homology of a quasi-Frobenius algebra. However, description and construction in terms

Received February 28, 1958.

of a given quasi-Frobenius algebra itself, rather than of its Frobenius core, as those we shall obtain in the followings, are perhaps of some interest and use too.

1. A-double-module M^{\S} . Let A be a quasi-Frobenius algebra over a field K, and

(2)
$$1 = \sum_{\rho=1}^{r} \sum_{i=1}^{f(\rho)} e_i^{(\rho)}.$$

be a decomposition of its unit element 1 into mutually orthogonal primitive idempotents, where $e_i^{(\rho)} \approx e_j^{(\sigma)}$ if and only if $\rho = \sigma$. For each $\rho = 1, \ldots, r$ there is in A a system of matrix units $c_{ij}^{(\rho)}$ ($c_{ij}^{(\rho)}$ $c_{i'j'}^{(\rho)} = \delta_{ji'} c_{ij'}^{(\rho)}$) with $c_{ii}^{(\rho)} = e_i^{(\rho)}$. Put

(3)
$$1_0 = \sum_{\rho=1}^r e_1^{(\rho)}, \qquad A_0 = 1_0 A 1_0.$$

 A_0 the so-called core algebra (or basic algebra) of A, has 1_0 as its unit element, and is a Frobenius algebra. Let $*: x \to x^*$ $(x \in A_0)$ be an automorphism of A_0 belonging to its Frobenius algebra structure. Thus, if (a_1, \ldots, a_k) is a K-basis of A_0 , there is a non-singular parastrophic matrix $P = (\mu(a_k a_k))$ belonging to the basis (a_k) such that for $x = \sum a_k \xi_k$ $(\xi_k \in K)$

(4)
$$x^* = \sum_{\kappa} a_{\kappa} \xi_{\kappa}^*, \qquad (\xi_1^*, \ldots, \xi_k^*) = (\xi_1, \ldots, \xi_k) P' P^{-1};$$

there is a permutation π of $(1, \ldots, r)$ such that $e_1^{(\rho)^*} \equiv e_1^{(\pi(\rho))}$ modulo the radical of A_0 for every $1, \ldots, r$, and by a suitable choice of * (or of the decomposition (2) and matrix units $e_{ij}^{(\rho)}$ if we fix *) we may, and shall, assume

(5)
$$e_1^{(\rho)^*} = e_1^{(\pi(\rho))}$$
 for every $\rho = 1, \ldots, r$.

The basis $(b_1, \ldots, b_k) = (a_1, \ldots, a_k)(P')^{-1}$ is said to be dual to (a_{κ}) and has the property that the left regular representation of A_0 defined by (a_{κ}) coincides with the right regular representation defined by (b_{κ}) and, moreover, the product of * with the left regular representation defined by (b_{κ}) coincides with the right regular representation defined by (a_{κ}) .

Let M be a unitary A-double-module. Then $M_0 = 1_0 M 1_0$ is a unitary A_0 -double-module. The map

(6)
$$\nu_0: u \to \sum_{\kappa} a_{\kappa} u b_{\kappa} \qquad (u \in M_0)$$

is a K-endomorphism of M_0 and we have

(7)
$$\nu_0(M_0) \subset M_0^{A_0} = \{ u \in M_0 \mid xu = ux \text{ for all } x \in A_0 \},$$

(8)
$$ux^* - xu \in \text{Ker } \nu_0 \quad \text{for all} \quad u \in M_0, x \in A.$$

On denoting by $M_0^* = (M_0, *)$ the A_0 -double-module which coincides with M_0 as A_0 -left-module and whose A_0 -right-module structure is defined by that ux ($u \in M_0^*$, $x \in A_0$), under the structure of M_0^* , is ux^* under the old structure of M_0 , we construct a new A-double-module

(9)
$$M^{\S} = \sum_{p, \sigma=1}^{r} \sum_{i=1}^{f(p)} \sum_{j=1}^{f(\sigma)} c_{i1}^{(p)} e_{1}^{(p)} M_{0}^{*} e_{1}^{(\sigma)} c_{ij}^{(\sigma)},$$

where $c_{i1}^{(\rho)}e_1^{(\rho)}M_0^*e_1^{(\sigma)}c_{ij}^{(\sigma)}$ is the K-module consisting of all expressions $c_{i1}^{(\rho)}vc_{ij}^{(\sigma)}$ with $v\in e_1^{(\rho)}M_0^*e_1^{(\sigma)}$ (K-module structure inheriting that of $e_1^{(\rho)}M_0^*e_1^{(\sigma)}$), where the summations are formal direct ones, and where the A-double-module structure of M^{\S} is defined by (the distributivity and) the relations: if $v\in e_1^{(\rho)}M_0^*e_1^{(\sigma)}$, $x\in e_1^{(\rho')}Ae_2^{(\sigma')}$, then

(10)
$$xc_{i1}^{(\rho)} vc_{ij}^{(\sigma)} = \delta_{\sigma'\rho} \delta_{j'i} c_{i'1}^{(\rho')}((c_{1i'}^{(\rho')} xc_{i1}^{(\rho)}) v) c_{ij}^{(\sigma)},$$

$$c_{i1}^{(\rho)} vc_{ij}^{(\sigma)} x = \delta_{\rho'\sigma} \delta_{i'j} c_{i}^{(\rho)}(v(c_{1i}^{(\sigma)} xc_{i'1}^{(\sigma')})) c_{ij'}^{(\sigma')},$$

If in particular A is a Frobenius algebra, then (and only then) $f(\pi(\rho)) = f(\rho)$ for $\rho = 1, \ldots, r$. In this case the K-linear map:

(11)
$$x(\in e_i^{(\rho)} A e_j^{(\sigma)}) \to c_{i1}^{(\pi(\rho))} (c_{1i}^{(\rho)} x c_{j1}^{(\sigma)})^* c_{1j}^{(\pi(\sigma))}$$

gives an automorphism of A and is readily seen to be a such belonging to the Frobenius algebra structure of A. Our module M^{\S} is, in this case, obtained from M by retaining its A-left-module structure but modifying its A-right-module structure with this automorphism of A, and thus coincides with the module considered in [3] (with this choice of automorphism of A belonging to its Frobenius algebra structure).

Contrary to this Frobenius algebra case and contrary to that in particular M_0^* is A_0 -left-isomorphic to M_0 , our module M^{\S} in general case is not, in general, A-left-isomorphic to M, as we wish to remark.

2. Map $\bar{\nu}: M^{\S} \to M$. For $u = c_{i1}^{(\rho)} v c_{1j}^{(\gamma)} \in e_i^{(\rho)} M^{\S} e_j^{(\sigma)}$ with $v \in e_1^{(\rho)} M_0^* e_1^{(\sigma)}$, consider v as the corresponding element of M_0 , indeed of $e_1^{(\rho)} M_0 e^{(\pi(\sigma))}$, and construct $\nu_0(v)$ in M_0 , with ν_0 given in (6). Put

(12)
$$\overline{\nu}(u) = \delta_{ij} \sum_{\tau=1}^{r} \sum_{q=1}^{f(\tau)} c_{q1}^{(\tau)} \nu_0(v) c_{1q}^{(\tau)} \in M.$$

This defines a K-linear map $\bar{\nu}$ of M^{\S} into M. We assert

(13)
$$\overline{\nu}(M^{\S}) \subset M^{A} = \{ u \in M \mid ux = xu \text{ for all } x \in A \}.$$

Indeed, let $x \in e_i^{(p')} A e_j^{(p')}$. Then, with u as above and with i = j, we have, on observing (7)

$$\begin{split} \overline{\nu}(u) \, x &= c_{i'1}^{(\rho')} \, \nu_0(v) \, c_{1i'}^{(\rho')} \, x = c_{i'1}^{(\rho)} \, \nu_0(v) \, c_{1i'}^{(\rho')} \, x c_{j'1}^{(\rho')} \, c_{1j'}^{(\sigma')} \\ &= c_{i'1}^{(\rho')} \, c_{1i'}^{(\rho')} \, x c_{i'1}^{(\sigma')} \, \nu_0(v) \, c_{1j'}^{(\sigma')} = x \overline{\nu}(u). \end{split}$$

We have also

(14)
$$ux - xu \in \operatorname{Ker} \overline{\nu} \quad \text{for all} \quad u \in M^{\S}, \ x \in A.$$

To see this, let, again, $u = c_{i1}^{(p)} v c_{ij}^{(\sigma)} \in e_i^{(p)} M^{\S} e_j^{(\sigma)}$ with $v \in e_1^{(p)} M^{\S} e_1^{(\sigma)}$ and $x \in e_i^{(p')} A e_i^{(\sigma')}$. Then we compute readily

$$\overline{\nu}(ux) = \delta_{\sigma p'} \delta_{ji'} \delta_{ij'} \sum_{\tau=1}^{r} \sum_{q=1}^{f(\tau)} c_{q1}^{(\tau)} \nu_0(v(c_{1j}^{(\sigma)} x c_{j'1}^{(\sigma')})) c_{1q}^{(\tau)},
\overline{\nu}(xu) = \delta_{\sigma' p} \delta_{j'i} \delta_{i'j} \sum_{\tau=1}^{r} \sum_{q=1}^{f(\tau)} c_{q1}^{(\tau)} \nu_0(c_{1i'}^{(p')} x c_{j'1}^{(\sigma')}) v) c_{1q}^{(\tau)}$$

(where in the first equality we operate $c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')}\in A_0$ on v as an element of M_0^* (and not as such of M_0) and then consider the result as an element of M_0 to form its image by v_0). So $\overline{v}(ux-xu)=0$ if $j\neq i'$ or $i\neq j'$. Let j=i and i=j'. If $\sigma\neq\rho'$ and $\rho\neq\sigma'$, then $\overline{v}(ux-ux)=0$ too. So, suppose $\sigma=\rho'$ but $\rho\neq\sigma'$ firstly. Then $\overline{v}(ux-ux)=\overline{v}(ux)=\sum\limits_{\tau=1}^r\sum\limits_{q=1}^{f(\tau)}c_{q1}^{(\tau)}v_0(v(c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')}))c_{1q}^{(\tau)}$ and here the argument of v_0 is equal to $v(c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')})-(c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')})v$ since $\rho\neq\sigma'$. But $v_0(vy-yv)=0$ for all $v\in M_0^*$, $y\in A$ ((8)). Thus $\overline{v}(ux-ux)=0$. The same holds similarly in case $\sigma\neq\rho'$, $\rho=\sigma'$. Suppose finally $\sigma=\rho'$, $\rho=\sigma'$. Then $\overline{v}(ux-xu)=\sum\limits_{\tau=1}^r\sum\limits_{q=1}^{f(\tau)}c_{q1}^{(\tau)}v_0(v(c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')})-(c_{1j}^{(\sigma)}xc_{j'1}^{(\sigma')})v))c_{1q}^{(\tau)}$ and this vanishes again by (8). This proves (14).

3. Cohomology groups. Having proved (13) and (14) we set

(15)
$$H^0(M) = M^A/\overline{\nu}(M^\S),$$

(16) $H^{-1}(M) = (\text{Ker } \bar{\nu})/(K\text{-submodule of } M^{\S} \text{ generated by the elements of form } ux - xu \text{ with } u \in M^{\S}, x \in A).$

Set further $H^{-n}(M) = H_{n-1}(A, M^{\S})$ for $-n \le -2$ and $H^{n}(M) = H^{n}(A, M)$ for $n \ge 1$. With an exact sequence $0 \to P \to M \to Q \to 0$ of A-double-modules, we define $\widetilde{\delta}_{0}$, $\widetilde{\delta}_{-1}$, $\widetilde{\delta}_{-2}$ to be the maps: $H^{0}(Q) \to H^{1}(P)$, $H^{-1}(Q) \to H^{0}(P)$, $H^{-2}(Q)$

 $\rightarrow H^{-1}(P)$ induced by the maps: $u(\in M) \rightarrow (\text{standard } 1\text{-cochain } x(\in A) \rightarrow ux - xu), \ \overline{v}: u(\in M^\S) \rightarrow \overline{v}(u), \ (\text{standard } 1\text{-chain } x \otimes u(\in A \otimes M^\S)) \rightarrow ux - xu$ $(\in M^\S)$. The maps $\widetilde{\delta}_p$ with p > 0 or < -2 are defined as the usual connecting homomorphisms of cohomology or homology groups. Then the groups $H^p(M)$ and the maps $\widetilde{\delta}_p$, with varying M and exact sequence, (or, more precisely, covariant functors H^p and connecting homomorphisms $\widetilde{\delta}_p$ ([2])) are easily seen to satisfy the axioms (I) – (IV) of cohomology groups (given in [1] for ordinary case and in [3], § 6 for complete case) with a normalization axiom (V') $H^1(M) = H^1(A, M)$, for example (cf. [3], § 6). So we have: the groups $H^n(A, M)$ $(n \ge 1)$, $H^{-n}(A, M) = H_{n-1}(A, M^\S)$ $(-n \le -2)$ and the groups $H^0(A, M) = H^0(M)$, $H^{-1}(A, M) = H^{-1}(M)$ in (15), (16) form, with connecting homomorphisms defined as above, the complete system of cohomology groups on the quasi-Frobenius algebra A in M.

4. Case of a Frobenius algebra. Suppose that our quasi-Frobenius algebra A is in particular a Frobenius algebra, i.e. $f(\pi(\rho)) = f(\rho)$ for all $\rho = 1, \ldots, r$. We first consider a K-basis (a_{κ}) of the core $A_0 = 1_0 A 1_0$ such that each a_{κ} lies in some of the modules $e_1^{(\rho)}A_0e_1^{(\sigma)}$. Let (b_{κ}) be a basis dual to (a_{κ}) . We see readily, by the cited property of dual bases with respect to regular representations, that if $a_{\kappa} \in e_1^{(\rho)} A_0 e_1^{(\sigma)}$ then $b_{\kappa} \in e_1^{(\sigma)*} A_0 e_1^{(\rho)} = e_1^{(\pi(\sigma))} A_0 e_1^{(\rho)}$. So, we then construct the products $c_{i1}^{(\rho)} a_{\kappa} c_{ij}^{(\sigma)}$, $c_{j1}^{(\pi(\sigma))} b_{\kappa} c_{1i}^{(\rho)}$ $(i=1,\ldots,f(\rho);j=1,\ldots,f(\sigma))$ $(=f(\pi(\sigma)))$. With $\kappa=1,\ldots,k$, we order these two families of elements by the lexicographic order of (κ, i, j) , for example, to obtain a pair of dual bases $(c_{i1}^{(\rho)}a_{\kappa}c_{ij}^{(\sigma)}), (c_{j1}^{(\pi(\sigma))}b_{\kappa}c_{1i}^{(\rho)})$ of A belonging to the Frobenius algebra automorphism defined by (11). With this last choice of automorphism our module M^{\S} is obtained directly from M by modifying its right-module structure with this automorphism (but retaining its left-module structure), and with this choice of dual bases our map $\bar{\nu}: M^{\S} \to M$ is readily seen to be the product of the thus existing trivial A-left-isomorphism $M^{\S} \to M$ and the K-endomorphism of M denoted by σ in [3], §2.

After this observation with respect to the above specific dual bases of A, we consider the general case of an arbitrary pair of dual bases (a_{κ}) , (b_{κ}) of the core A_0 . By a K-linear transformation we can come to a basis with the above specific property that each member belongs to some $e_1^{(p)}A_0e_1^{(q)}$. The contragredient transformation turns (b_{κ}) to a dual to this basis (with respect

to the same *). By the transition to this pair of dual bases the map ν_0 is left unchanged, and so is the expression in the right-hand side of (12). Applying then the above consideration to the newly constructed bases, we obtain that (in case A is a Frobenius algebra) the above statements in italics concerning M^{\S} and $\bar{\nu}$ are valid also with a given arbitrary pair of dual bases of the core A_0 and with a suitable dual bases of A (with respect to the automorphism of A given by (11)) (Thus M^{\S} coincides with M^* in [3] when our automorphism of A is denoted also by *, and $\bar{\nu}$ coincides with σ , in [3], up to a trivial transformation).

We repeat, however, that in case of a general quasi-Frobenius algebra the module M^{\S} is not, in general, A, left-isomorphic to M and our rather complicated construction of M^{\S} and $\bar{\nu}$ is rather inevitable.

5. Remarks. With a quasi-Frobenius algebra A we retain our notations as $e_i^{(\rho)}$, $c_{ij}^{(\rho)}$, A_0 , (a_{κ}) , (b_{κ}) and *. The A_0 -double-module $A_0^{\circ} = \operatorname{Hom}_K(A_0, K)$ has a K-basis (β_{κ}) with $\beta_{\kappa}(b_{\lambda}) = \delta_{\kappa\lambda}$. By $a_{\kappa} \to \beta_{\kappa}$ we obtain an A_0 - A_0 -isomorphism of $A_0^{\circ} = (A_0^{\circ}, *)$ (cf. [3], §§2, 3). This is extended to an A-A-isomorphism of the modules $\sum c_{i1}^{(\rho)} e_1^{(\rho)} A_0 e_1^{(\sigma)} c_{ij}^{(\sigma)}$ and $\sum c_{i1}^{(\rho)} e_1^{(\rho)} A_0^{\circ *} e_1^{(\sigma)} c_{ij}^{(\sigma)}$ of the similar construction as of (9). Here the former module is nothing but A while the latter is (A-A-)isomorphic to $A^{\circ \$} = (\operatorname{Hom}_K(A, K))^{\$}$ as we readily see from the A_0 - A_0 -isomorphism $\sum e_1^{(\rho)} A^{\circ} e_1^{(\sigma)} \approx A_0^{\circ}$.

Now, let $0 \leftarrow A \leftarrow X_0 \leftarrow X_1 \leftarrow \dots$ be the standard (say) complex of A. From this we obtain an augmented acyclic projective (in fact free) complex $0 \leftarrow A_0 \leftarrow (X_0)_0 \leftarrow (X_1)_0 \leftarrow \dots ((X_n)_0 = 1_0 X_n 1_0 = \sum e_1^{(\rho)} X_n e_1^{(\sigma)})$ of A_0 , which is, however, not the standard one. We obtain then, by dualization and $(\ ,\ *)$, an injective resolution $0 \rightarrow A_0^{\circ *} \rightarrow (X_0)_0^{\circ *} \rightarrow (X_1)_0^{\circ *} \rightarrow \dots$ of the A_0 -double-module $A_0^{\circ *}$; the modules $(X_n)_0^{\circ *}$ are $(A_0 \cdot A_0 \cdot)$ projective too. On observing $\sum c_{i1}^{(\rho)} e_1^{(\rho)} (X_n)_0^{\circ *} e_1^{(\sigma)} c_{ij}^{(\sigma)} \approx X_n^{\circ \$}$ we obtain further the exact sequence $0 \rightarrow A^{\circ \$} \rightarrow X_0^{\circ \$} \rightarrow X_1^{\circ \$} \rightarrow \dots$ Combining this with the standard complex of A, which we have started with, through the A-A-isomorphism of A and $A^{\circ \$}$ constructed above, we obtain an augmented acyclic projective complete complex (1) with $X_{-n-1} = X_n^{\circ \$}$, where, thus, ε is the original augmentation in the standard complex and ϵ is the product of our (A-A-)isomorphism $A \rightarrow A^{\circ \$}$ with the monomorphism $A^{\circ \$} \rightarrow X_0^{\circ \$}$. We see readily that this construction corresponds to our description of cohomology groups in 3, and indeed gives a second derivation of

the result there.

We remark here that we do not need to start with the standard complex of A; any projective resolution of the A-double-module A will do, except that the choice of X_0 in the standard complex makes the description of the 0- and -1-cohomology groups easy. (For instance we may use the resolution such that $0 \leftarrow A_0 \leftarrow (X_0)_0 \leftarrow (X_1)_0 \leftarrow \ldots$ is the standard complex of A_0 .) We note also that we then need not use the negative-dimensional part derived, by the above construction, from the positive-dimensional part, but may combine a given positive-dimensional part with a negative-dimensional part derived, by our construction, from another positive-dimensional part. Important is, however, that they are combined through our A-A-isomorphism $A \rightarrow A^{\circ \$}$.

A further remark is that another description of the cohomology groups H(A, M), which is more economical than ours, is the one as those of the Frobenius core A_0 in M_0 i.e. $H^p(A, M) \approx H^p(A_0, M_0)$ (where the right-hand side is known in [3]). (This is verified either in axiomatic way or by complexes.)—It is indeed a general useful principle that the (co)homology theory of an algebra may be reduced to that of its core algebra.—But our description refers directly to A and A-double-modules, which is perhaps of use and interest too.

REFERENCES

- [1] H. Cartan, Séminaire de topologie algébrique, 1950-51.
- [2] H. Cartan-S. Eilenberg, Homological Algebra, Princeton 1956.
- [3] T. Nakayama, On the complete cohomology theory of Frobenius algebras, Osaka Math. J., 9 (1957), 165-187.

Nagoya University