GALOIS GROUP OF THE MAXIMAL ABELIAN EXTENSION
OVER AN ALGEBRAIC NUMBER FIELD

TOMIO KUBOTA

The aim of the present work is to determine the Galois group of the
maximal abelian extension 24 over an algebraic number field 2 of finite degree,
which we fix once for all.

Let 7 be a continuous character of the Galois group of 2./2. Then, by
class field theory, the character 7 is also regarded as a character of the idele
group of 2. We call such a 7 a character of 2. For our purpose, it suffices
to determine the group X; of the characters of £ whose orders are powers of a
prime number 1.

Let L be the group of the characters ¥ of @ with #'=1; set L,=L N X/,
where »=1,2,.... We denote by », the largest number of independent ele-
ments of the factor group L.-,/L.,. A character 7 € X; is said to be divisible
if, for any power I” of I, there is a character ¢ & X; such that we have 7= ¢'".
We denote by X/, . the group of all divisible characters in X;. Let now Z(l, «)
be the group of the roots of unity whose orders are powers of . Then X7, .
has the unique subgroup X, . such that X),. is the direct product of finite
number of groups all isomorphic to Z(/, ©) and that X; ./X. . is a finite group.
Call the number dim X; of direct factors of X, . the dimension of X; and let
there be v.,, cyclic factors of order {* in the direct decomposition of X7 ../ X
into cyclic groups. Then, the structure of X; is completely determined by v,
v=,v and by dim X;. This conclusion, together with the above one concerning
the structure of X/ ., is brought by the results of Kaplansky 3], in which v,,
U, are called the Ulm invariants of X;. Thus the problem is reduced to the
determination of v,, vs,» and dim X;.

Let ¢; be a primitive /-th root of unity and let »; be the natural number
such that the field 2(¢;) contains a primitive [”-th root of unity but no primitive
I""*-th root of unity. On the other hand, let (;, i, . . . be all the prime factors
of / in 2 and let e;,, be the group of the units of 2 which are /’-th powers in

every l;-completion 2;, of 2. Then, we can prove that there is a natural number
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u such that we have ™ = (e, : e,v+1) for every sufficiently large ». Using
these constants p;, u;, the determination of v, and dim X; is done. Namely, we

have v, =0 for » <w;, v,= for » 2y and dim X;= N — , where N is the
absolute degree of 2.

We determine also the number [ of the elements of X/ . whose orders
divide 7*. It is shown that we have vws,, =2¢,—¢y,-1— ¢v+1. The number ve,,
has, however, no simple expression as v, or as dim X;. Assume, for example,
that /= 2. Let h, be the number of the ideal classes of £ whose orders divide
1¥ and let w; be the group of roots of unity in 2. Furthermore, let B be the
group of BE £ such that the principal ideal (8) is the I"-th power of an
ideal of @, and let BY’ be the group of §& B" such that § is in w;2;} for

every i. Then we have I =h, « I « (B : BY’) and therefore

ey = h% . (B(\’_l) . B(;—U)(B(w-n . B;:,Jri))
By-1hysi (B(“) . BE.:'))Z .

§ 1. Preliminaries

1. In order that a homomorphism f5, into a finite abelian group %, of a
subgroup B of a finite abelian group A is the restriction to B of a homo-
morphism f of A into ¥, it is necessary and sufficient that we have fx(B N A™)
C U™ for every natural number m. In particular, if ¥ is a cyclic group 3 whose
order is a power [” of a prime number /, then the above condition becomes
BN A" =1.

Let now I, U be the idele group and the unit idele group” of @, respec-
tively, and denote by £ the principal idéle group of 2. Then we see at once
that a character® Zy of U is the restriction to U of a character #/ with 7/(2°T")
=1 of 2°1"U if and only if we have Zu(2I°" NU) =1. Moreover, if the latter
condition is satisfied, then Yy determines / uniquely and, from what is described
above, 7' is the restriction to 2*I”'U of a character ¥ with 7" =1 of .

Let & be a finite set of places of 2 and Zu be a character of U such that

7" =1 and that the q-component® of u is trivial for every place q& S. Then

b Throughout the paper, we use the mark x to stand for the multiplicative group.
of non-zero elements of a field.

» In this paper, we settle no sign condition for the real infinite components of unit
ideles, somewhat differently from the definition of Weil [5].

$ This means an ordinary character of the topological abelian group.

4) This is naturally defined by means of local components of idéles.
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Zu is, in a natural way, regarded as a character of the group Ug,. =1 U,/ U e
ed

where Uy is the unit group of the p-completion 2p of 2. On the other hand,
set BY=0*NT"U; then B consists of the numbers 3 of 2° such that the
principal ideal (8) is the I*-th power of an ideal of 2, and, setting f=a'u
(ae I, ue U), the mapping 3 - u followed by the natural mapping of u into
Us,, gives rise to a homomorphism ¢z, of B" into Us,,. Since the natural

image of 2*¥’ N U into Ug,, coincides with ¢z, ,(B™), we have

LemMa 1. Let 1" be a power of a prime number | and let S be a finite set
of places of 2. Then the restriction to U of a character 1 with 7 =1 of 2
unramified” at every place of R outside S is characterized as a character /u
with /1{1 of U which has trivial q-component for every place G € S and which
satisfies {u(tg,,(B™)) = 1.

Let Ug,, be as above. Lemma 1 implies

LemMa 20 Let V be any subgroup of Us,, and let h, be the I’-class number
of 9, ie. theindex (I: 2°Y°U). Then the number of all characters, with 7" =1
and with 7u(V) =1, of 2 wunramified at every 3 is equal to h,- (Ug,, :
t3,,(B™Y) * V), where Xu is the restriction to U of 7.

We have also

LemMma 3. The kernel of (z,, consists of the numbers 3 € B such that j

is, for every pE S, an I'-th power in the p-completion 2y of 2.

2. Let P be the field obtained by adjunction to the rational number field
P of all 2-th roots of unity, where iz=1, 2, . ... Assume that the intersection
2N Py, is real. Then there is an integer T =2 such that 2 N\ P, . is the
largest real subfield of the field P,» obtained by adjunction to P of a primitive
27.th root of unity. In this case, we say that 2 is a radical field and, setting
Ar=4cos’27/2"", we call Ar the radical number of 2 The rational number
field P is a radical field with radical number 2.=2. Numbers T and Ar are
uniquely determined whenever £ is radical.

Denote now by I a power of a prime number / and by £'’ the group of

5) We say that Y is ramified at p if the corresponding cyclic extension of Y over Q
is ramified at p.

6 See Hasse [2], Einleitung.
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the numbers « of £ such that « is an I”-th power in the field 2P» obtained
by adjunction to £ of a primitive I*-th root of unity. Then a result” of Hasse

yields

LemMA 4. We have in general 9 =2"". Only in the special case where
=2, 2 is a radical field with radical number Ar and v =2, the factor group
2v—1

2/ Q%% is of order 2 and its only one non-trivial coset is represented by — A2
or by 327" according as 2< v =T or v>T.

Still assuming that 2 is a radical field with radical number i, it follows
from this lemma that, for every prime ideal p of 2 prime to 2, 25 (v >T) is
a 2"-th power in the p-completion 2, of £. Now, letting [;, ,, . . . be all the
prime factors of 2 in £ and 2y, be the [;-completion of 2, we say that 2 is a
strongly radical field if we have ip=1}¢; for every i, where 1; is an element of
2y, and ¢; is a root of unity in 2. The meaning of this definition is explained
by the following

LemMma 5. Assume that 2 is radical with the radical number ir. Then 2
is strongly radical if and only if 127" is a 2*-th power in every local completion

of @ for every v > T, or equivalently for v=T+ 1.

av—1

Proof. Suppose that ir=Aa¥¢; and » > T'; then we have A2 ' =3¢ If
"is a 2*th
power in 2. If @y contains a primitive 2°-th root of unity, then £, contains

£, contains no primitive 2°-th root of unity, then ¢ =1 and i3~

9P, whence, by Lemma 4, 27 is a 2°-th power in 2P» and a fortiori in 2y,

The converse is obvious.

§ 2. Structural constants

8. We begin by a reformulation of the main theorem of Wang [4].

Assuming that @ is a radical field with the radical number iz, we say that
a prime factor [ of 2in @ is even if A, is of the form A*¢, where 4 is an element
of the l-completion £ of 2 and ¢ is a root of unity in ;. Otherwise we say
that | is odd. In Wang [4], { is said to be odd if £2; does not contain any of
three numbers v —1, cos27/2""Y, V=1 cos27/2""'; otherwise, to be even. We

now show that our definition is equivalent with Wang’s one. Suppose that [ is

7) See Hasse [2], §1, Satz 1 and Satz 2.
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even. Then since ir = 4cos227r/2"3”, £2; must contain at least one of the three
numbers above. Conversely, suppose that 2; contains v—1. Then since £; con-
tains a primitive 2”-th root Cor of unity and since — ' is, by Lemma 4, a
2"-th power in £2(wr), we see that [ is even. Furthermore, if we have either
cos2n/2"" € 2y or V—1cos2r/2""" € 2y, then [ is obviously even.

After these preliminaries, it follows from the main theorem of Wang [4]
that we have

Tueorem 1. Let 7 be a character of 2 whose order I'"" (0£r =) is a
power of a prime number | and let T be a finite set of places of 2 containing
all ramification places of 7. Furthermore, denoting by 7y the p-component® of
L and by 2p the p-completion of 2, let there be given for every b € S a character
Yoy of 2y such that zp=¢£‘p. In the case where 1=2, Q is radical with the
radical number Ay, v > T and all odd prime factors of 2 in 2 are in €, suppose
that S contains all prime factors of 2 in 2 and that we have Fl;l@ﬂ/’&zp(l?f‘_l) =1.
Then there is a character ¢ of order 1" of @ such that we have /= ¢" and that

the p-component ¢y of ¢ coincides with oy for every VE .

4. Let [ be a prime number and ¢; be a primitive /-th root of unity. Denote
by »; a natural number such that the field 2(¢;) contains a primitive /*'-th root

v+l

of unity but no primitive 7"*"'-th root of unity. Then we have

LEMMA 6. Let 7 be a character of order """ of @ with 0 £ r < n,. Then

there is a character ¢ of order I’ of 2 such that we have 7 = o

Proof. If 1=2, v,=1, then the lemma is obvious. We may therefore assume
that v—1€& 2 whenever we have /=2. Let & be the set of all ramification
prime ideals of 7. Since then, for every p& &, we have Np—-1=0 (mod. /),
the p-completion 2y contains ¢; and we have consequently 2y D 2(&) = 2(¢).
From this follows Np-1=0 (mod. '), whence there is a character ¢y, of 25
such that Zp=</»§p. Hence, Theorem 1 assures that there is a character ¢ of
order I of 2 such that we have 7 = ¢", which completes the proof.

Another meaning of »; as a structural constant of the maximal abelian

extension over 2 is found in the following

LemMma 7. Let v be a rational integer with v, = ». Then there is an infinite

8 See foot-note 4.
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set M of characters of 2 satisfying the following conditions: 1) every character
1 EM is of order 1. i1) for everv ramification prime ideal b of 7 €M, we have
Np—-1=0 (mod. 1), Nb—1=0 (mod. I*''). 1iii) none of characters of M is
unramified and every two different characters of M have no common ramification
prime ideal. iv) for every J & I there is a character ¢ of 2 such that we have

1= g/»'l\wl.

Proof. Using notations in §1, 1, set BY =0 NI1"U. Let S={y, ...,
pnt be a set of prime ideals, prime to I, of 2 such that m is larger than the
rank of B”'/B™" and that we have Np;~1=0 (mod. 1), Np;—1%0 (mod. I'*")
for every i. Moreover, choose for every 7 a character ¢; of order I of U with
trivial q-component for every place q of 2 different from p;. Then since the
group Usz,, defined in §1, 1 is of type (I* ..., ") and since the rank of
tz,,(B™") is smaller than m, Ug,,/t5 ,(B"’) contains an element of order /"
Therefore a suitable muitiplicative combination ¢u = ¢ ... ¢m* is trivial on
¢z, (B"), while the order of ¢u is /. By Lemma 1, ¢y is the restriction to U
of a character ¢ of order I' of 2. Therefore, a required set M can be con-

structed as a set of characters of the form 7 =¢" ', which completes the proof.

5. We insert here a lemma concerning the structure of local fields.”

Lemma 8. Let | be a prime factor in 2 of a prime number I and let Q¢ be
the l-completion of Q. Denote by Ui the group of units u of 2y with u=1
(mod. ) and by Ny the degree of 2y over the l-completion P, of the rational
number field. Then Uy is, as a topological group, the dirvect product of Ny
groups all isomorphic to the additive group of integers of P, by the finite cyclic

group consisting of all roots of unity in 2y whose orders are powers of l.

Now, let I” be a power of a prime number / and &=1{{;, [, . . .} be the
set of all prime factors of / in 2. Denote by £;, the [;-completion of 2 and by

B{”' the kernel of the homomorphism ¢z, of §1, 1. Then we have

LemMa 9. Let e be the unit group of 2. Then the index (B : eBf{”)

becomes constant for sufficiently large v.

Proof. It follows from the finiteness of the class number of 2 that, for

sufficiently large », B'*'/e2*" is isomorphic to B"“""/e2*"”"" and that the iso-

9 See Hasse [1], §15, p. 177.
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morphism is given by B & 3" - 3" e B""". Furthermore, by Lemma 2,
the image of eB}’'/e by the isomorphism is in eB”""’/e. This means that the
index (B™ : eB{”’) is monotonously decreasing for such a », from which at
once follows our assertion.

Still using same notations, we now prove

Lemma 10. Set e,.=e N B{. Then the index (e, : e, v:1) becomes con-

stant for sufficiently large v.

Proof. It follows from Lemma 8 that, for sufficiently large », a unit ¢ of
2 is an I"-th power in 2y if and only if ¢ is an /*"“-th power in 2. Therefore,
for such a p, the I-th power =" € ej,,+; of an element ¢* € ey, is not in eg vz
unless we have ¢ & e;,,+;. This means that we have (e;, : es.+1) = (en, 41
er,,-2). Since from the finiteness of the dimension of e follows the boundedness
of the index (e;. @ e;v+1), the lemma is proved.

By this lemma, we have a new constant & with (e, : e;v+1) =" for suf-
ficiently large ». The meaning of # as a structural constant of the maximal

abelian extension over 2 lies in the following

LemMma 11. Let I” be a power of a prime number | and S ={l, o, . ..} be
the set of all prime factors of | in 2. Denote by T, the group of the characters
L of @ such that the order of 7 divides 1" and that every ramification place of
Y isin S Then we have (T, : T1,) =1~ for sufficiently large v, where N

is the absolute degree of 2.

Proof. Denote by N; the degree of the l;completion 2y of 2 over the [-
completion of the rational number field and denote by Uy the unit group of 2y,.
Moreover, let w,,; be the number of roots of unity in £, whose orders divida
¥ and let Uy,: be the group consisting of all # & Uy, with =1 {mod. {,). Ther
the number of characters of U whose orders divide [” is, by Lemma 8, equwi
to I"”w,,;. Therefore Lemma 2 shows that, if %, is the I*-class number of .
then we have

(Try : D =h, « T w, ) * (g, (BY) 0 D7
¢
Now, with notations in Lemma 9 and in Lemma 10, we have (:z (B™) 1)

=(B": B)”)=(B" : eBi")(e : e;.). From this and from the relation >N, = N

follows
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(Th,ve1: To0) = « (ey,y : el,»+1)_l.

By +1 ¥ w,+1,i (B™ : eBy)
Ry {I( W, i ) (BY™ 1 eBy*tY)

Numbers k., w,; are constant for sufficiently large » and, by Lemma 9, so is

also (B™ : eBy”’). Thus, by Lemma 10, we have lim (7%, : 7%,,) =1"*, which

]

completes the proof.

§ 3. Divisible characters

6. A character 7 of 2 whose order is a power of a prime number / is said
to be divisible if, for an arbitrary power [” of J, there is a character ¢ of 2 such
that we have 7 =¢". On the other hand, if b is a place of £ and if @y is the
p-completion of 2, then 7 is said to be divisible at p whenever, for every 7,
there is a character ¢op of 2; such that we have 7= ¢gp, where 7y is the p-
component of Z. If 7 is divisible at every place of 2, then we say that 7 is
everywhere locally divisible. A character X is of course everywhere locally di-
visible if it is divisible.

Taking a character 7/ of £ whose order is a power of /, suppose that, for
any place p of 2 which either is a prime ideal prime to [ or is infinite, 7 is
unramified at p. Moreover, letting [ be any prime factor of / in 2 and 2 be
the [-completion of 2, suppose that the [-component 7y is trivial on the group
consisting of all roots of unity in ;. Then it follows from Lemma 8 that ¥ is
everywhere locally divisible. We see that the converse also is true.

Now, let I* be a power of a prime number [/, let S={l;, [, ...} be the
set of all prime factors of / in £ and let U be the unit group of the [;-com-
pletion 2y, of £. Denote by w; the group of roots of unity in 2 and set Vg,
=TT w; UY/UY. Furthermore, let N be the absolute degree of 2 and Uz, , be
as ;n §1, 1. Then it follows from Lemma 8 that the factor group Uz, ./ Vs,
is isomorphic to the direct product of NV cyclic groups of order !*. On the other
hand, we see that, with notations in §1, 1, the index (g ,(B™) -« Vg, : Vg,)
is equal to the index (B’ : BY"), where BY’ is the group of all f& B"™ with
3ew ey for every . Furthermore, it follows from what is stated above
that a character 7 of 2 with order dividing /" and with trivial ¢-component for
every place q of 2 outside € is everywhere locally divisible if and only if its
restriction Zu to the unit idele group U of @ is, as a homomorphism of Usz,,,

trivial on Vg,,. Therefore, by Lemma 2, the number of all everywhere locally
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divisible characters of 2 whose orders divide " is equal to a,+ 1™« (B> : B

where A, is the {"-class number of Q.

7. We now prove two theorems which display characteristic properties of
divisible characters.

TrEOREM 2. Let 7 be an evervwhere locallv divisible character of Q whose
order is a power of a prime number I. Then, in general, the character J is
divisible. In the special case where 1=2 and Q is strongly radical with the
radical number J1, the character 7 is divisible if and only if the following con-
dition is fulfilled: let S ={l;, ls, . ..} be the set of all prime factors of 2 in @
and write, for everv i, Ay =2il; with an element A of the l-completion Qy of 2
and with a root of unity C; in 2y ; them we have Ii] AAi) =1, where Jy; is the

(i-component of 7.

Proof. Suppose that £ is not radical whenever /=2. Then, since 7 is
everywhere locally divisible, the ramification places of 7 are, by 6, in &, and
we can choose for any ;€ & and for any power [” of / a character ¢q, of 24
such that we have 7y, :g!zlg;r[_, Therefore, by Theorem 1, there is a character ¢
of £ with 7 =¢".

Suppose next that /=2, and that £ is radical with the radical number /,
but not strongly radical. Then since we have ‘li]‘ﬁﬂr,“?fm”g = Ii]Z[,(ZT) = 7iAy)
=1, the product II gbgrl(}%r_!) is = 1. We may, however, assume that the product
is 1, provided that‘ we have » > T. For, since 2 is not strongly radical, we cau
choose a character » say, of £f such that 7' =1, (i) = —1 and that % is
trivial on the group of roots of unity in [, whence, choosing a character 7
of 2f with 7" =79 and using ¢;2Il:(/132[l'ﬂ7’ instead of ¢gp, the above product
becomes 1. Therefore, again by Theorem 1, we find a character ¢ of £ with
7 =97

Lastly considering the very special case in the theorem, suppose that /1.
divisible. Then, for any power 2" of 2, there is a character ¢ of Q with 7= &%

P =1,

Therefore, if ¢y is the I-component of ¢, then we have 11y (4 ) =1, because
t

1)

Ar is prime to every prime ideal of 2 outside =. Provided that, for every i,

2

there is no root of unity whose order is higher than ', we have ¢p(A7

et

w ¢, AF 27T = ¢4 = /it A), whence I 720 = 1. Conversely, assume this
i

0 See foot-note 6
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relation and take a character ¢qy, of @f; for every 7 such that we have %, =¢;29rh_.
Then we have H(ﬁgri('i?_l) = Hq/;gxi(,l?rc,?r_l) = I17,(4:) = 1 whenever 7 is so large
that ¢¥ "=1. Hence, by Theorem 1, 7 is divisible. The theorem is thus com-

pletely proved.

TueoreM 3. Let 2 be a strongly radical field with the radical numer ir
and let S={l, o, ...}, A and & be as in Theorem 2. Let 1 be the idéle of 2
whose li-component is A; for every i and whose q-component is 1 for every place
0&:3, and let 2° be a power of 2. Denote by Uy the unit group of the I;-
completion 2y of 2, by w; the group of roots of unity in 2y and by Vg, the
group of unit ideles w of 2 such that the [i-component of u is in w; U'fr for
every i. Furthermore, let 1, 27 be the idéle group and the principal iddle group
of 2, respectively. Then the group of the everywhere locally divisible characters
of 2 whose orders divide 2° coincides with the group of the divisible characters
of 2 whose orders divide 2° whenever we have 1€ 2*¥ Vg .. Otherwise, the
latter group is a subgroup of index 2 of the former one.

Proof. 1In order that a character 7 of 2 is everywhere locally divisible and
that the order of 7 divides 2% it is, by 6, necessary and sufficient that we have
7(2°1'Ve,,) =1. On the other hand, Theorem 2 shows that such a 7 is divisible
if and only if we have 7(1)=1. This, together with the fact that ¥’ is in
2*1'Vg,,, proves the theorem.

§ 4. Main results

8. We arrange preliminary results about infinite abelian groups which are
for the most part obtained in Kaplansky [3].

An abelian group A is said to be a torsion abelian group if every element
of A is of finite order, and A is said to be a torsion abelian I-group if the orders
of all the elements of A are powers of a prime number /. Every torsion abelian
group A has the unique largest torsion abelian Il-group A; for every prime

number / and A is the direct product™ of all the A;. We call A; the l-component
of A.

Let A be a torsion abelian l-group. Then an element ¢ of A is .said to be
divisible if, for any power I” of /, there is an element & of A with a=5". If

1) This means so called “weak” direct produc't arising most commonly in abstract
algebra, ' '
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every element of A is divisible, then we say that A is divisible. Every torsion
abelian /-group A has the unique largest divisible subgroup A. and, if Z(I, )
is the gfoup of roots of unity whose orders are powers of [, then A- is iso-
morphic to the direct product of finite or infinite number of groups all iso-
morphic to Z(I, -=). Moreover A, is contained in the group A’ consisting of
all divisible elements of A.

Let again A be a torsion abelian /-group and L be the subgroup of A con-
sisting of e € A with @' =1. We call the number of finite or infinite independent
elements of L the rank of A. Furthermore, setting L, =L A", we call the
rank v, of L.-,/L, the v-th Ulm invariant of A, where p=1, 2, . . ..

9. Let now A be a countable torsion abelian /-group such that the group
A, of all divisible elements of A is of finite rank; denote by n.,, the p-th Ulm
invariant of A’.. Then, except a finite number of », v.., is equal to (. In this
case, we call vx ., the v-th infinite Uln invariant of A and, accordingly, call the
v-th Ulm invariant of A itself the p-th finite Ubn invariant of A. Moreover, if
A. is the largest divisible subgroup of A, then we call the rank of A. the
dimension of A. Under this terminology, the theorem of Ulm™ shows that the
structure of A is determined whenever the finite and the infinite Ulm invariants
of A as well as the dimension of A are known. The theorem also implies that
AL /A, is a finite group because A./A. contains no non-trivial divisible sub-
group and its system of Ulm invariants coincides with that of a finite group.

Let I be the number of elements of A, whose orders divide I°. Then
since A is isomorphic to the direct product A. by the finite group AL/A., it
follows from elementary properties of finite abelian groups that we have n.,.
=2¢,—Cy-1— Cyr1.  On the other hand, if T is a subgroup of finite rank of A
containing A., then we see, as in the case of T=A' above, that T is iso-
morphic to the direct product of A. by the finite group T/A.. Therefore,
denoting by 7' the group of elements of 7 whose orders divide [, we can

determine the dimension dim A of A by " =UHm (T\,:, : T\).

10. We are now able to expose the structure of the group X; which is the
l-component of the countable torsion abelian group X consisting of all the

characters of 2, where / is a prime number. Denote by X, . the group of all

2) See Kaplansky [37, §11,
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divisible elements of X;. Then, by 6, X/ . is contained in the group T of
characters 7 € X; such that 7 is unramified at any place g of 2 coinciding with
none of the prime factors of 7 in 2. Since T is of finite rank, so is also X/, .
Therefore, the results of 9 show that the structure of X; is determined whenever
the finite and the infinite Ulm invariants and the dimension of X; are known.
By Lemma 6 and Lemma 7, we have

Tueorem 4. Let 1 be a prime number and & be a primitive I-th root of
unity. Denote by v, a natural number such that the field 2(¢;) contains a primi-
tive I"-th root of unity but no primitive I'"*'-th root of unity. Then the v-th

finite Ulm invariant of X1 is 0 for v < v, and is ® for v > v,.

The largest divisible subgroup X;. of X; is contained in the group T
defined above. Therefore, by 9 and by Lemma 11, we have

Tueorem 5. Let 1 be a prime number, S={l;, , ...} be the set of all
prime factors of 1 in 2 and 2y, be the li-completion of 2. Denote by e the unit
group of £ and by ei,, the group of ¢ E e such that ¢ is an I'-th power in every
2y, Then there is a constant p; such that we have "= (ei,, : e1,v+1) for every

sufficiently large v and the dimension of X is equal to N — 1y, where N is the
absolute degree of 2.

11. There is thus remained only the determination of infinite Ulm in-
variants of X;. But this is substantially done in §3. For we obtained there a
method of finding the number I°v of elements in X; whose orders divide a power
1" of I. We add here a few remarks.

Let I’ be a power of an add prime number / and B be the group of
B E 2° such that the principal ideal (3) is the I'-th power of an ideal of £.
Let S and &£y, be as in Theorem 5, let w; be the group of roots of unity in &2y,
and let BY be the group of 8 & B such that 8 is in w; 2, for every . Then,
by 6 and by Theorem 2, we have I°=h, - I** « (B™ : BY’)"'. Therefore, by 9,
the »-th infinite Ulm invariant v.,, of X; is given by

P2y = B hi iB("‘l) : BE':"X))(B(\H-I) . B(;‘—H'l_)_)_

ho-1 Byt (BY: BY)?

where h., is the I’-class number of 2. Let the first factor of the right side of

this formula be equal to 1>, Then b, is the number of direct factors of order
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I” in the direct decomposition of the ideal class group of 2 into indecomposable

cyclic groups.
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