GALOIS GROUP OF THE MAXIMAL ABELIAN EXTENSION OVER AN ALGEBRAIC NUMBER FIELD

TOMIO KUBOTA

The aim of the present work is to determine the Galois group of the maximal abelian extension Ω_{A} over an algebraic number field Ω of finite degree, which we fix once for all.

Let $\%$ be a continuous character of the Galois group of Ω_{A} / Ω. Then, by class field theory, the character $\%$ is also regarded as a character of the idele group of Ω. We call such a \% a character of Ω. For our purpose, it suffices to determine the group X_{l} of the characters of Ω whose orders are powers of a prime number l.

Let L be the group of the characters χ of Ω with $\chi^{l}=1$; set $L \nu=L \cap X_{l}^{\prime \prime}$, where $\nu=1,2, \ldots$ We denote by y, the largest number of independent elements of the factor group L_{i-1} / L_{i}. A character $\% \in X_{l}$ is said to be divisible if, for any power l^{r} of l, there is a character $\psi \in X_{l}$ such that we have $\%=\psi^{l^{\prime \prime}}$. We denote by $X_{l, \infty}^{\prime}$ the group of all divisible characters in X_{l}. Let now $Z(l, \infty)$ be the group of the roots of unity whose orders are powers of l. Then $X_{l, s}^{\prime}$, has the unique subgroup $X_{l, \infty}$ such that $X_{l, \infty}$ is the direct product of finite number of groups all isomorphic to $Z(l, \infty)$ and that $X_{l, \infty}^{\prime} / X_{l, \infty}$ is a finite group. Call the number $\operatorname{dim} X_{l}$ of direct factors of $X_{l, \infty}$ the dimension of X_{l} and let there be $v_{\infty, \nu}$ cyclic factors of order l^{ν} in the direct decomposition of $X_{l, \infty}^{\prime} / X_{l, \infty}$ into cyclic groups. Then, the structure of X_{l} is completely determined by ν_{ν}, $v_{x, \nu}$ and by $\operatorname{dim} X_{l}$. This conclusion, together with the above one concerning the structure of $X_{1, \ldots}^{\prime}$, is brought by the results of Kaplansky [3], in which u_{v}, $v_{\infty, v}$ are called the Ulm invariants of X_{l}. Thus the problem is reduced to the determination of $v_{v}, v_{x, v}$ and $\operatorname{dim} X_{l}$.

Let ζ_{l} be a primitive l-th root of unity and let ν_{l} be the natural number such that the field $\Omega\left(\zeta_{l}\right)$ contains a primitive $l^{\prime \prime}$-th root of unity but no primitive $l^{\nu l+1}$-th root of unity. On the other hand, let $\mathfrak{l}_{1}, l_{2}, \ldots$ be all the prime factors of l in Ω and let $\mathbf{e}_{l, \nu}$ be the group of the units of Ω which are l-th powers in every l_{i}-completion $\Omega_{\text {l }}$, of Ω. Then, we can prove that there is a natural number
μ_{l} such that we have $l^{\mu l}=\left(\mathbf{e}_{l, \nu}: \mathbf{e}_{l, \nu+1}\right)$ for every sufficiently large ν. Using these constants ν_{l}, μ_{l}, the determination of u_{ν} and $\operatorname{dim} X_{l}$ is done. Namely, we have $\nu_{\nu}=0$ for $\nu<\nu_{l}, \nu_{\nu}=\infty$ for $\nu \geqslant \nu_{l}$ and $\operatorname{dim} X_{l}=N-\mu_{l}$, where N is the absolute degree of Ω.

We determine also the number $l^{c_{\nu}}$ of the elements of $X_{l, \infty}^{\prime}$, whose orders divide l^{ν}. It is shown that we have $u_{\infty, \nu}=2 c_{\nu}-c_{\nu-1}-c_{\nu+1}$. The number $v_{\infty, \nu}$ has, however, no simple expression as u_{ν} or as $\operatorname{dim} X_{l}$. Assume, for example, that $l \neq 2$. Let h_{ν} be the number of the ideal classes of Ω whose orders divide l^{ν} and let \mathfrak{w}_{i} be the group of roots of unity in $\Omega_{l_{i}}$. Furthermore, let $B^{(\nu)}$ be the group of $\beta \in \Omega^{\times 1)}$ such that the principal ideal (β) is the l^{ν}-th power of an ideal of Ω, and let $B_{*}^{(\nu)}$ be the group of $\beta \in B^{(\nu)}$ such that β is in $\mathfrak{w}_{i} \Omega_{1_{i}^{\times \nu}}$ for every i. Then we have $l^{c_{\nu}}=h_{\nu} \cdot l^{\mathrm{N} \mathrm{\nu}} \cdot\left(B^{(\nu)}: B_{*}^{(\nu)}\right)$ and therefore

$$
l^{\nu, \infty \nu}=\frac{h_{\nu}^{2}}{h_{\nu-1} h_{\nu+1}} \cdot \frac{\left(B^{(\nu-1)}: B_{*}^{(\nu-1)}\right)\left(B^{(\nu+1)}: B_{*}^{(\nu+1)}\right)}{\left(B^{(\nu)}: B_{*}^{(\nu)}\right)^{2}}
$$

§ 1. Preliminaries

1. In order that a homomorphism f_{B}, into a finite abelian group \mathfrak{A}, of a subgroup B of a finite abelian group A is the restriction to B of a homomorphism f of A into \mathfrak{N}, it is necessary and sufficient that we have $f_{B}\left(B \cap A^{m}\right)$ $\subset \mathfrak{H}^{m}$ for every natural number m. In particular, if \mathfrak{A} is a cyclic group 3 whose order is a power l^{ν} of a prime number l, then the above condition becomes $f_{B}\left(B \cap A^{l^{\nu}}\right)=1$.

Let now \mathbf{I}, \mathbf{U} be the idèle group and the unit idèle group ${ }^{2)}$ of Ω, respectively, and denote by Ω^{\times}the principal idèle group of Ω. Then we see at once that a character ${ }^{3)} \% \mathrm{U}$ of \mathbf{U} is the restriction to \mathbf{U} of a character χ^{\prime} with $\chi^{\prime}\left(\Omega^{\times} \mathbf{I}^{\prime \nu}\right)$ $=1$ of $\Omega^{\vee} \mathbf{I}^{\mathbf{I}^{\nu}} \mathbf{U}$ if and only if we have $\chi_{\mathbf{U}}\left(\Omega \mathbf{I}^{l^{\nu}} \cap \mathbf{U}\right)=1$. Moreover, if the latter condition is satisfied, then γ_{U} determines $\%$ uniquely and, from what is described above, χ^{\prime} is the restriction to $\Omega^{\times} \mathbf{I}^{\mathbf{I}^{\nu}} \mathbf{U}$ of a character $\%$ with $\chi^{l \nu}=1$ of Ω.

Let Θ be a finite set of places of Ω and χ_{U} be a character of \mathbf{U} such that $\chi^{(\nu}=1$ and that the q-component ${ }^{4)}$ of ψ_{U} is trivial for every place $q \notin S$. Then

[^0]χ_{U} is，in a natural way，regarded as a character of the group $U_{\Xi, \nu}=\prod_{\mathcal{p} \in \mathbb{S}} U_{\mathbb{p}} / U_{p}^{\ell_{p}}$, where $U_{\mathfrak{p}}$ is the unit group of the \mathfrak{p}－completion $\Omega_{\mathfrak{p}}$ of Ω ．On the other hand， set $B^{(\nu)}=\Omega^{\times} \cap I^{\nu} \mathbf{U}$ ；then $B^{(\nu)}$ consists of the numbers β of Ω^{\times}such that the principal ideal (β) is the l^{ν}－th power of an ideal of Ω ，and，setting $\beta=\mathbf{a}^{\mu} \mathbf{u}$ （ $\mathbf{a} \in \mathbf{I}, \mathbf{u} \in \mathbf{U}$ ），the mapping $\beta \rightarrow \mathbf{u}$ followed by the natural mapping of \mathbf{u} into $U_{S, v}$ gives rise to a homomorphism \mathbb{S}, ν^{∞} of $B^{(v)}$ into $U_{S, v}$ ．Since the natural image of $\Omega^{\times} \mathbf{I}^{\mathbf{l}^{\prime \prime}} \cap \mathbf{U}$ into $U \widetilde{\Omega}, \nu$ coincides with $\varsigma, \nu\left(B^{(\nu)}\right)$ ，we have

Lemma 1．Let l^{ν} be a power of a prime number l and let \mathbb{S} be a finite set of places of Ω ．Then the restriction to U of a character $\%$ with $\%^{l^{*}}=1$ of Ω unramified ${ }^{5)}$ at every place of Ω outside \subseteq is characterized as a character $\%$ with $\chi_{\mathrm{U}}^{l v}$ of U which has trivial \mathfrak{q}－component for every place $\mathfrak{q} \ddagger \subseteq$ and which satisfies $\chi_{\mathrm{U}}\left(\right.$ 厄ভ，$\left.\left(B^{(\nu)}\right)\right)=1$ ．

Let $U_{ভ, \nu}$ be as above．Lemma 1 implies
Lemma 2．Let V be any subgroup of $U 心, \downarrow$ and let $h \vee$ be the l°－class number of Ω ，i．e．，the index（ $\mathbf{I}: \Omega^{\times} \mathbf{I}^{2} \mathbf{U}$ ）．Then the number of all characters，with $\%^{l^{\prime \prime}}=1$ and with $\%(V)=1$ ，of Ω unramified at every $q \nsubseteq \Xi$ is equal to $h_{v} \cdot(U \Xi, ~:$ ©，$\left.\left(B^{(\nu)}\right) \cdot V\right)$ ，where $\% \mathrm{U}$ is the restriction to U of $\%$ ．

We have also
Lemma 3．The kernel of 心，consists of the numbers $\beta \in B^{(\nu)}$ such that β is，for every $\mathfrak{p} \in \subseteq$ ，an $l^{\prime}-$ th power in the \mathfrak{p}－completion $\Omega_{\mathfrak{p}}$ of Ω ．

2．Let $P_{2, \infty}$ be the field obtained by adjunction to the rational number field P of all 2^{m}－th roots of unity，where $m=1,2, \ldots$ Assume that the intersection $\Omega \cap P_{2, \infty}$ is real．Then there is an integer $T \geqslant 2$ such that $\Omega \cap P_{2, \infty}$ is the largest real subfield of the field $P_{2} T$ obtained by adjunction to P of a primitive 2^{T}－th root of unity．In this case，we say that Ω is a radical field and，setting $\lambda_{T}=4 \cos ^{2} 2 \pi / 2^{T+1}$ ，we call λ_{T} the radical number of $\Omega .{ }^{6)}$ The rational number field P is a radical field with radical number $\lambda_{2}=2$ ．Numbers T and λ_{T} are uniquely determined whenever Ω is radical．

Denote now by l^{ν} a power of a prime number l and by $\Omega^{(\nu)}$ the group of

[^1]the numbers α of Ω^{\times}such that α is an l^{\prime}-th power in the field $\Omega P_{l^{\nu}}$ obtained by adjunction to Ω of a primitive l^{ν}-th root of unity. Then a result ${ }^{\text {² }}$ of Hasse yields

Lemma 4. We have in general $\Omega^{(\nu)}=\Omega^{\times l^{\nu}}$. Only in the special case where $l=2, \Omega$ is a radical field with radical number λ_{T} and $\nu \geqq 2$, the factor group $\Omega^{(\nu)} / \Omega^{\times 2^{\nu}}$ is of order 2 and its only one non-trivial coset is represented by $-\lambda_{\nu}^{2 \nu-1}$ or by $\lambda_{T}^{2 \nu-1}$ according as $2 \leqq \nu \leqq T$ or $\nu>T$.

Still assuming that Ω is a radical field with radical number λ_{T}, it follows from this lemma that, for every prime ideal p of Ω prime to $2, \lambda_{T}^{2 \nu-1}(\nu>\mathrm{T})$ is a $2^{\prime \prime}$-th power in the \mathfrak{p}-completion Ω_{p} of Ω. Now, letting $\mathfrak{l}_{1}, \mathfrak{l}_{2}, \ldots$ be all the prime factors of 2 in Ω and $\Omega_{\mathfrak{l}_{i}}$ be the \mathfrak{I}_{i}-completion of Ω, we say that Ω is a strongly radical field if we have $\lambda_{T}=\lambda_{i}^{2} \zeta_{i}$ for every i, where λ_{i} is an element of $\Omega_{\mathfrak{L}_{i}}$ and ζ_{i} is a root of unity in $\Omega_{\mathfrak{I}_{i}}$. The meaning of this definition is explained by the following

Lemma 5. Assume that Ω is radical with the radical number λ_{r}. Then Ω is strongly radical if and only if $\lambda_{T}^{2 \nu-1}$ is a 2^{2}-th power in every local completion of Ω for every $\nu>T$, or equivalently for $\nu=T+1$. .

Proof. Suppose that $\lambda_{T}=\lambda_{i}^{2} \zeta_{i}$ and $\nu>T$; then we have $\lambda_{T}^{2 \nu-1}=\lambda_{i}^{2 \nu} \zeta_{i}^{2 \nu-1}$. If $\Omega_{l_{i}}$ contains no primitive 2^{ν}-th root of unity, then $\zeta_{i}^{2 \nu-1}=1$ and $\lambda_{T}^{2 \nu-1}$ is a 2^{ν}-th power in $\Omega_{\mathrm{I}_{i}}$. If $\Omega_{\mathrm{I}_{i}}$ contains a primitive 2^{2}-th root of unity, then $\Omega_{\Omega_{i}}$ contains $\Omega P_{2^{\nu}}$, whence, by Lemma $4, \lambda_{T}^{2 \nu-1}$ is a 2^{ν}-th power in $\Omega P_{2^{\nu}}$ and a fortiori in $\Omega_{1_{i}}$. The converse is obvious.

§ 2. Structural constants

3. We begin by a reformulation of the main theorem of Wang [4].

Assuming that Ω is a radical field with the radical number λ_{T}, we say that a prime factor \mathfrak{l} of 2 in Ω is even if λ_{T} is of the form $\lambda^{2} \zeta$, where λ is an element of the 1 -completion Ω_{r} of Ω and ζ is a root of unity in Ω_{r}. Otherwise we say that 1 is odd. In Wang [4], Υ is said to be odd if Ω_{Y} does not contain any of three numbers $\sqrt{ }-1, \cos 2 \pi / 2^{T+1}, \sqrt{-1} \cos 2 \pi / 2^{T+1}$; otherwise, to be even. We now show that our definition is equivalent with Wang's one. Suppose that \mathfrak{l} is

[^2]even. Then since $\lambda_{r}=4 \cos ^{2} 2 \pi / 2^{T^{i}+1}, \Omega_{I}$ must contain at least one of the three numbers above. Conversely, suppose that Ω_{I} contains $\sqrt{ }-1$. Then since Ω_{I} contains a primitive 2^{T}-th root $\zeta_{2} r$ of unity and since $-\lambda_{T}^{2^{T-1}}$ is, by Lemma 4, a 2^{T}-th power in $\Omega\left(\zeta_{2} r\right)$, we see that l is even. Furthermore, if we have either $\cos 2 \pi / 2^{r+1} \in \Omega_{\Upsilon}$ or $\vee-1 \cos 2 \pi / 2^{T+1} \in \Omega_{\Upsilon}$, then \mathfrak{V} is obviously even.

After these preliminaries, it follows from the main theorem of Wang [4] that we have

Theorem 1. Let $\%$ be a character of Ω whose order $l^{\nu-r}(0 \leqq r \leqq \nu)$ is a power of a prime number l and let \subseteq be a finite set of places of Ω containing all ramification places of $\%$. Furthermore, denoting by $\%_{\downarrow}$ the \downarrow-component ${ }^{8)}$ of χ and by Ω_{p} the p-completion of Ω, let there be given for every $p \in \subseteq$ a character $\psi_{\Omega_{p}}$ of Ω_{p}^{\times}such that $\chi_{p}=\psi_{\Omega p}^{r,}$. In the case where $l=2, \Omega$ is radical with the radi:al number $\lambda_{r}, r>T$ and all odd prime factors of 2 in Ω are in Θ, suppose that Θ contains all prime factors of 2 in Ω and that we have $\prod_{p \in \mathcal{S}} \psi_{\Omega_{2}}\left(\lambda_{T}^{2 r-1}\right)=1$. Then there is a character ψ of order l^{\prime} of Ω such that we have $\%=\psi^{i r}$ and that the \mathfrak{p}-component ψ_{p} of ψ coincides with $\psi_{\Omega_{p}}$ for every $\mathcal{\cup} \in \mathbb{\Xi}$.
4. Let l be a prime number and ξ_{l} be a primitive l-th root of unity. Denote by ν_{l} a natural number such that the field $\Omega\left(\zeta_{l}\right)$ contains a primitive $l^{l}-$ th root of unity but no primitive $l^{\nu l+1}$.th root of unity. Then we have

Lemma 6. Let $\%$ be a character of order $l^{l^{-r}}$ of Ω with $0 \leqq r \leqq \nu_{l}$. Then there is a character ψ of order l^{ν} of Ω such that we have $\%=\psi^{\prime \prime}$.

Proof. If $l=2, \nu_{l}=1$, then the lemma is obvious. We may therefore assume that $\downarrow-1 \in \Omega$ whenever we have $l=2$. Let \mathbb{S} be the set of all ramification
 the \mathfrak{p}-completion Ω_{p} contains ζ_{l} and we have consequently $\Omega_{\mathfrak{p}} \supset \Omega\left(\zeta_{l}\right)=\Omega\left(\zeta_{l}{ }^{\circ}\right)$. From this follows $N \mathfrak{p}-1 \equiv 0\left(\bmod . l^{\nu l}\right)$, whence there is a character $\psi_{2 p}$ of Ω_{p}^{\times} such that $\%=\psi_{\Omega p}^{l r}$. Hence, Theorem 1 assures that there is a character ψ of order $l^{\nu l}$ of Ω such that we have $\%=\psi^{l n}$, which completes the proof.

Another meaning of ν_{l} as a structural constant of the maximal abelian extension over Ω is found in the following

Lemma 7. Let ν be a rational integer with $\nu_{l} \leqq \nu$. Then there is an infinite

[^3]set \mathfrak{M} of characters of Ω satisfying the following conditions: i) every character $\% \in \mathfrak{M}$ is of order l. ii) for every ramification prime ideal \mathfrak{p} of $\% \in \mathfrak{M}$, we have $N \mathfrak{p}-1 \equiv 0\left(\bmod . l^{\nu}\right), N \mathfrak{p}-1 \neq 0\left(\bmod . l^{\nu+1}\right)$. iii) none of characters of \mathfrak{M} is unramified and every two different characters of \mathfrak{M} have no common ramification prime ideal. iv) for every $\% \in \mathfrak{M}$ there is a character ψ of Ω such that we have $\%=\psi^{l=-1}$.

Proof. Using notations in $\S 1$, $\mathbf{1}$, set $B^{(\nu)}=\Omega^{\times} \cap \mathbf{I}^{l^{\nu}} \mathbf{U}$. Let $\Xi=\left\{p_{1}, \ldots\right.$, $\left.p_{m}\right\}$ be a set of prime ideals, prime to l, of Ω such that m is larger than the rank of $B^{(\nu)} / B^{(\nu) l}$ and that we have $N p_{i}-1 \equiv 0\left(\bmod . l^{\nu}\right), N p_{i}-1 \equiv 0\left(\bmod . l^{\nu+1}\right)$ for every i. Moreover, choose for every i a character ψ_{i} of order l^{i} of \mathbf{U} with trivial q-component for every place \mathfrak{q} of Ω different from p_{i}. Then since the group $U_{\Xi, \nu}$ defined in $\S 1,1$ is of type $\left(l^{\nu}, \ldots, l^{\nu}\right)$ and since the rank of ($E_{, l}\left(B^{(n)}\right)$ is smaller than $m, U_{\Xi, \nu} / / s_{, l}\left(B^{(\nu)}\right)$ contains an element of order l^{ν}. Therefore a suitable multiplicative combination $\psi_{\mathbf{U}}=\psi_{1}^{a_{1}} \ldots \psi_{m}^{a_{m}}$ is trivial on cভ, $\left(B^{(\nu)}\right)$, while the order of ψ_{U} is l^{ν}. By Lemma 1 , ψ_{U} is the restriction to \mathbf{U} of a character ψ of order l^{ν} of Ω. Therefore, a required set $\exists l$ can be constructed as a set of characters of the form $\%=\psi^{l \nu-1}$, which completes the proof.
5. We insert here a lemma concerning the structure of local fields. ${ }^{9}$

Lemma 8. Let \mathfrak{l} be a prime factor in Ω of a prime number l and let $\Omega_{\mathfrak{l}}$ be the 1-completion of Ω. Denote by $U_{\mathfrak{l}, 1}$ the group of units u of $\Omega_{\mathfrak{I}}$ with $u \equiv 1$ (mod. 1) and by $N_{\mathfrak{l}}$ the degree of $\Omega_{\mathfrak{I}}$ over the l-completion P_{l} of the rational number field. Then $U_{\mathfrak{l}, 1}$ is, as a topological group, the direct product of $N_{\mathfrak{l}}$ groups all isomorphic to the additive group of integers of P_{l} by the finite cyclic group consisting of all roots of unity in Ω_{Υ} whose orders are powers of l.

Now, let l^{ν} be a power of a prime number l and $S=\left\{\mathfrak{l}_{1}, l_{2}, \ldots\right\}$ be the set of all prime factors of l in Ω. Denote by $\Omega_{\mathrm{I}_{i}}$ the \mathfrak{I}_{i}-completion of Ω and by $B_{0}^{(\nu)}$ the kernel of the homomorphism $c_{c, v}$ of $\S 1,1$. Then we have

Lemma 9. Let e be the unit group of Ω. Then the index $\left(B^{(\nu)}: \mathrm{e} B_{0}^{(\nu)}\right)$ becomes constant for sufficiently large ν.

Proof. It follows from the finiteness of the class number of Ω that, for sufficiently large $\nu, B^{(\nu) /} / \mathrm{e} \Omega^{i^{2}}$ is isomorphic, to $B^{(\nu+1)} / \mathrm{e} \Omega^{\times l^{2+1}}$ and that the iso-

[^4]morphism is given by $B^{(\nu)} \in \beta^{(\nu)} \rightarrow \beta^{(\dot{\nu})} \in B^{(\nu+1)}$. Furthermore, by Lemma 3, the image of $\mathrm{e} B_{0}^{(\nu)} / \mathrm{e}$ by the isomorphism is in $\mathrm{e} B_{0}^{(\nu+1)} / \mathrm{e}$. This means that the index ($B^{(\nu)}$: $\mathrm{e} B_{0}^{(2)}$) is monotonously decreasing for such a ν, from which at once follows our assertion.

Still using same notations, we now prove
Lemma 10. Set $\mathbf{e}_{l, \nu}=\mathbf{e} \cap B_{0}^{(\nu)}$. Then the index ($\mathbf{e}_{l, \nu}: \mathbf{e}_{l, v+1}$) becomes constant for sufficiently large ν.

Proof. It follows from Lemma 8 that, for sufficiently large ν, a unit ε of Ω is an l^{ν}-th power in $\Omega_{I_{i}}$ if and only if ε^{l} is an $l^{\nu+1}$-th power in $\Omega_{I_{i}}$. Therefore, for such a ν, the l-th power $\varepsilon^{(\nu) l} \in \mathrm{e}_{l, \nu+1}$ of an element $\varepsilon^{(\nu)} \in \mathrm{e}_{l, \nu}$ is not in $\mathrm{e}_{l, \nu+2}$ unless we have $\varepsilon^{(\nu)} \in \mathbf{e}_{l, \imath+1}$. This means that we have ($\left.\mathbf{e}_{l, \nu}: \mathbf{e}_{l, \imath+1}\right) \leqq\left(\mathbf{e}_{l, i+1}\right.$: $\left.\mathrm{e}_{l, v-2}\right)$. Since from the finiteness of the dimension of \mathbf{e} follows the boundedness of the index ($e_{l, \nu}: \mathrm{e}_{l, \nu+1}$), the lemma is proved.

By this lemma, we have a new constant μ_{l} with ($e_{l, \nu}: \mathrm{e}_{l, \nu+1}$) $=l^{\mu_{l}}$ for sufficiently large ν. The meaning of μ_{l} as a structural constant of the maximal abelian extension over Ω lies in the following

Lemma 11. Let l^{\prime} be a power of a prime number l and $\mathbb{S}=\left\{\mathfrak{l}_{1}, \mathfrak{l}_{2}, \ldots\right\}$ be the set of all prime factors of l in Ω. Denote by $T_{l, \nu}$ the group of the characters χ of Ω such that the order of χ divides l and that every ramification place of χ is in Ξ. Then we have $\left(T_{l, \nu+1}: T_{l, \nu}\right)=l^{\nu-\mu_{l}}$ for suificiently large ν, where N is the absolute degree of Ω.

Proof. Denote by N_{i} the degree of the I_{i} completion $\Omega_{\mathbb{I}_{i}}$ of Ω over the l. completion of the rational number field and denote by $U_{\Gamma_{i}}$ the unit group of $\Omega_{\mathfrak{l}_{i}}$. Moreover, let $w_{v, i}$ be the number of roots of unity in $\Omega_{\mathbb{I}_{i}}$ whose orders divide l^{ν} and let $U_{\mathbb{I}_{i}, 1}$ be the group consisting of all $u \in U_{\mathbb{I}_{i}}$ with $u \equiv 1$ (mod. !!). Thet. the number of characters of $U_{\mathfrak{l}_{l}}$ whose orders divide l^{l} is, by Lemma 8, equai to $l^{v_{i \nu}} w_{\nu, i}$. Therefore Lemma 2 shows that, if h_{ν} is the l^{ν} class number of Ω. then we have

$$
\left(T_{l, \nu}: 1\right)=h_{\nu} \cdot \prod_{i}\left(l^{v_{i} \nu} w_{\nu, i}\right) \cdot\left(\left(_{\mathbb{E}, \imath}\left(B^{(\nu)}\right): 1\right)^{-1}\right.
$$

Now, with notations in Lemma 9 and in Lemma 10, we have (:0, $\left.\left(B^{(0)}\right): 1\right)$ $=\left(B^{(\nu)}: B_{0}^{(\nu)}\right)=\left(B^{(\nu)}: \mathrm{e} B_{0}^{(\nu)}\right)\left(\mathrm{e}: \mathbf{e}_{t, \nu}\right)$. From this and from the relation $\sum_{i} N_{t}=N$ follows

$$
\left(T_{l, \nu+1}: T_{l, \nu}\right)=\frac{h_{\nu+1}}{h_{\nu}} \cdot l^{\nu} \cdot \Pi_{i}\left(\frac{w_{\nu+1, i}}{w_{\nu, i}}\right) \cdot \frac{\left(B^{(\nu)}: \mathbf{e} B_{0}^{(\nu)}\right)}{\left(B^{(\nu+1)}: \mathrm{e} B_{0}^{(\nu+1)}\right)} \cdot\left(\mathbf{e}_{l, \nu}: \mathbf{e}_{l, \nu+1}\right)^{-1}
$$

Numbers $h_{\nu}, w_{\imath, i}$ are constant for sufficiently large ν and, by Lemma 9 , so is also ($\left.B^{(\nu)}: \mathrm{e} B_{0}^{(\nu)}\right)$. Thus, by Lemma 10, we have $\lim _{\nu \rightarrow \infty}\left(T_{l, \nu+1}: T_{l, \nu}\right)=l^{N-\mu_{l}}$, which completes the proof.

§ 3. Divisible characters

6. A character $\%$ of Ω whose order is a power of a prime number l is said to be divisible if, for an arbitrary power l^{r} of l, there is a character ψ of Ω such that we have $\%=\psi^{l r}$. On the other hand, if p is a place of Ω and if Ω_{p} is the \mathfrak{p}-completion of Ω, then $\%$ is said to be divisible at \mathfrak{p} whenever, for every l^{r}, there is a character $\psi_{\Omega_{p}}$ of $\Omega_{\mathfrak{p}}^{\times}$such that we have $\%_{p}=\psi_{\Omega_{p}}^{l r}$, where $\%_{p}$ is the \mathfrak{p} component of χ. If χ is divisible at every place of Ω, then we say that χ is everywhere locally divisible. A character χ is of course everywhere locally divisible if it is divisible.

Taking a character $\%$ of Ω whose order is a power of l, suppose that, for any place p of Ω which either is a prime ideal prime to l or is infinite, χ is unramified at \mathfrak{p}. Moreover, letting l be any prime factor of l in Ω and $\Omega_{\mathfrak{l}}$ be the 1 -completion of Ω, suppose that the 1 -component χ_{I} is trivial on the group consisting of all roots of unity in Ω_{I}. Then it follows from Lemma 8 that χ is everywhere locally divisible. We see that the converse also is true.

Now, let l^{\prime} be a power of a prime number l, let $\subseteq=\left\{\mathfrak{l}_{1}, \mathfrak{l}_{2}, \ldots\right\}$ be the set of all prime factors of l in Ω and let $U_{\mathrm{I}_{l}}$ be the unit group of the \mathfrak{l}_{i}-completion $\Omega_{\Upsilon_{i}}$ of Ω. Denote by \mathfrak{m}_{i} the group of roots of unity in $\Omega_{\mathfrak{T}_{i}}$ and set $V_{\Im, v}$ $=\prod_{i} \mathfrak{w}_{i} U_{I_{i}}^{i l} / U_{\mathrm{I}_{i}}^{i v}$. Furthermore, let N be the absolute degree of Ω and $U \Xi$, be as in $\S 1,1$. Then it follows from Lemma 8 that the factor group $U_{\S}, \nu / V \widetilde{\varsigma}, \nu$ is isomorphic to the direct product of N cyclic groups of order l^{2}. On the other hand, we see that, with notations in $\S 1,1$, the index ($\left(\mathbb{心}, \downarrow\left(B^{(\nu)}\right) \cdot V \Xi, \downarrow: V \Xi, \nu\right)$ is equal to the index $\left(B^{(\nu)}: B_{*}^{(\nu)}\right)$, where $B_{*}^{(\nu)}$ is the group of all $\beta \in B^{(\nu)}$ with $\beta \in \mathfrak{w}_{i} \Omega_{I_{i}}^{\mathscr{L}}$ for every \mathfrak{l}_{i}. Furthermore, it follows from what is stated above that a character $\%$ of Ω with order dividing l^{ν} and with trivial q-component for every place q of Ω outside \cong is everywhere locally divisible if and only if its restriction $\% \mathrm{U}$ to the unit idèle group \mathbf{U} of Ω is, as a homomorphism of U_{S}, ν, trivial on $V \Xi, \downarrow$. Therefore, by Lemma 2, the number of all everywhere locally
divisible characters of Ω whose orders divide l^{\prime} is equal to $h_{\nu} \cdot l^{v i} \cdot\left(B^{(v)}: B_{*}^{(n)}\right)^{-1}$, where h, is the l^{ν}-class number of Ω.
7. We now prove two theorems which display characteristic properties of divisible characters.

Theorem 2. Let $\%$ be an everywhere locally divisible character of Ω whose order is a power of a prime number l. Then, in general, the character $\%$ is divisible. In the spesial case where $l=2$ and Ω is strongly radical with the radical number λ_{1}, the character $\%$ is divisible if and only if the following condition is fulfilled: let $\mathbb{\Xi}=\left\{1_{1}, \mathfrak{l}_{2}, \ldots\right\}$ be the set of all prime factors of 2 in Ω and u'rite, for every $i, \lambda_{I}=\lambda_{i}^{2} \zeta_{i}$ with an element λ_{i} of the \mathfrak{I}_{i}-completion $\Omega_{\mathfrak{l}_{i}}$ of Ω and with a root of unity ζ_{i} in $\Omega_{I_{i}}$; then we have $\prod_{i} \lambda_{r_{i}}\left(\lambda_{i}\right)=1$, where $\chi_{I_{i}}$ is the l_{i}-component of $\%$

Proof. Suppose that Ω is not radical whenever $l=2$. Then, since $\%$ is everywhere locally divisible, the ramification places of $\%$ are, by 6 , in \mathbb{E}, and we can choose for any ${r_{i}}^{E} \mathcal{E}$ and for any power l^{r} of l a character $\psi_{\Delta \Omega_{i}}$ of $\Omega_{\Upsilon_{i}}^{*}$ such that we have $\%_{I_{i}}=\psi_{\Omega_{i}}^{l r}$. Therefore, by Theorem 1 , there is a character ψ of Ω with $\%=\psi^{l r}$.

Suppose next that $l=2$, and that Ω is radical with the radical number λ_{T} but not strongly radical. Then since we have $\left.\left(\prod_{i} \psi_{\Omega \Omega_{i}}\left(\lambda_{T}^{n+-1}\right)\right)^{2}=\Pi_{i} \%_{l_{1}}\left(\lambda_{P}\right)=\psi_{\lambda_{T}}\right)$ $=1$, the product $\prod_{i} \psi_{\Omega \Omega_{i}}\left(\lambda_{r}^{\left.2^{r-1}\right)}\right.$ is $=1$. We may, however, assume that the product is 1 , provided that we have $r>T$. For, since Ω is not strongly radical, we call choose a character η, say, of $\Omega_{I_{1}}^{\times}$such that $\eta^{2}=1, \eta\left(\lambda_{r}\right)=-1$ and that η is trivial on the group of roots of unity in Ω_{1}, whence, choosing a character η^{\prime} of $\Omega_{1_{1}}^{\times}$with $\eta^{\prime 22^{r-1}}=\eta$ and using $\psi_{\Omega \Omega_{1}}^{\prime}=\psi_{\Omega \Omega_{1} \eta^{\prime}}$ instead of $\psi_{\Omega_{1_{1}}}$, the above product becomes 1. Therefore, again by Theorem 1 , we find a character ψ of Ω with $\%=\psi^{2 r}$.

Lastly considering the very special case in the theorem, suppose that $\%$ is divisible. Then, for any power 2^{r} of 2 , there is a character ψ of Ω with $\%=\psi^{2}$. Therefore, if ψ_{r}, is the t_{i}-component of ψ, then we have $\Pi \psi_{r_{1}}\left(\lambda_{t}^{2_{r}^{r-1}}\right)=1$, because λ_{r} is prime to every prime ideal of Ω outside $\Xi^{(0)}$ Provided that, for every i, there is no root of unity whose order is higher than 2^{r-1}, we have $\psi_{r}\left(\lambda_{1}^{2^{r--}}\right.$, $=\psi_{L_{l}}\left(\lambda_{i}^{2^{r}} \zeta_{i}^{2-1}\right)=\psi_{l_{i}}^{q^{r}}\left(\lambda_{l}\right)=\%_{I_{l}}\left(\lambda_{i}\right)$, whence $\Pi_{i} \psi_{I_{i}}\left(\lambda_{i}\right)=1$. Conversely, assume this

[^5]relation and take a character $\psi_{\Omega_{\Upsilon_{i}}}$ of $\Omega_{\mathbb{I}_{i}}^{\times}$for every i such that we have $\chi_{\mathrm{I}_{i}}=\psi_{\Omega_{\Upsilon_{i}}}^{2 r}$. Then we have $\prod_{i} \psi_{\Omega_{\Omega_{i}}}\left(\lambda_{T}^{2 r-1}\right)=\prod_{i} \psi_{\Omega_{\Omega_{i}}}\left(\lambda_{i}^{2 r} \zeta_{i}^{2 r-1}\right)=\prod_{i} \chi_{\Gamma_{i}}\left(\lambda_{i}\right)=1$ whenever r is so large that $\zeta_{i}^{2^{r-1}}=1$. Hence, by Theorem 1, $\%$ is divisible. The theorem is thus completely proved.

Theorem 3. Let Ω be a strongly radical field with the radical numer λ_{T} and let $\mathbb{S}=\left\{\mathfrak{l}_{1}, \mathfrak{r}_{2}, \ldots\right\}, \lambda_{i}$ and ζ_{i} be as in Theorem 2. Let $\mathbf{1}$ be the idele of Ω whose 1_{i}-component is λ_{i} for every i and whose q-component is 1 for every place $\mathfrak{q} \ddagger \mathbb{S}$, and let 2^{ν} be a power of 2 . Denote by $U_{\mathfrak{l}_{i}}$ the unit group of the $\mathfrak{1}_{i}$ completion $\Omega_{\mathrm{I}_{i}}$ of Ω, by \mathfrak{m}_{i} the group of roots of unity in $\Omega_{\mathrm{I}_{i}}$ and by $\mathrm{V} \mathbb{\Omega}, v$ the group of unit idèles \mathbf{u} of Ω such that the \mathbb{I}_{i} component of \mathbf{u} is in $\mathfrak{w}_{i} U_{1 i}^{2 \nu}$ for every i. Furthermore, let $\mathbf{I}, \Omega^{\times}$be the idele group and the principal idele group of Ω, respectively. Then the group of the everywhere locally divisible characters of Ω whose orders divide 2^{\prime} coincides with the group of the divisible characters of Ω whose orders divide 2^{2} whenever we have $1 \in \Omega^{\times} \mathbf{I}^{2 \nu} \mathbf{V} ๔, \sim$. Otherwise, the latter group is a subgroup of index 2 of the former one.

Proof. In order that a character $\%$ of Ω is everywhere locally divisible and that the order of $\%$ divides 2^{ν}, it is, by 6 , necessary and sufficient that we have $\%\left(\Omega^{\times} \mathbf{I}^{2 \nu} \mathbf{V} \widetilde{c}_{, \nu}\right)=1$. On the other hand, Theorem 2 shows that such a χ is divisible if and only if we have $\chi(1)=1$. This, together with the fact that l^{2} is in $\Omega^{\times} \mathbf{I}^{2 v} \mathbf{V} \mathbb{E}, v$, proves the theorem.

§ 4. Main results

8. We arrange preliminary results about infinite abelian groups which are for the most part obtained in Kaplansky [3].

An abelian group A is said to be a torsion abelian group if every element of A is of finite order, and A is said to be a torsion abelian l-group if the orders of all the elements of A are powers of a prime number l. Every torsion abelian group A has the unique largest torsion abelian l-group A_{l} for every prime number l and A is the direct product ${ }^{11)}$ of all the A_{l}. We call A_{l} the l-component of A.

Let A be a torsion abelian l-group. Then an element a of A is said to be divisible if, for any power l^{r} of l, there is an element b of A with $a=b^{l r}$. If

[^6]every element of A is divisible, then we say that A is divisible. Every torsion abelian l-group A has the unique largest divisible subgroup A_{ω} and, if $Z(l, \cdots)$ is the group of roots of unity whose orders are powers of l, then A_{0} is isomorphic to the direct product of finite or infinite number of groups all isomorphic to $Z(l, \infty)$. Moreover A_{∞} is contained in the group A_{∞}^{\prime} consisting of all divisible elements of A.

Let again A be a torsion abelian l-group and L be the subgroup of A consisting of $a \in A$ with $a^{l}=1$. We call the number of finite or infinite independent elements of L the rank of A. Furthermore, setting $L v=L \cap A^{\prime \prime}$, we call the rank ν_{ν} of $L_{\nu-1} / L_{\nu}$ the ν-th Ulm invariant of A, where $\nu=1,2, \ldots$
9. Let now A be a countable torsion abelian l-group such that the group A_{∞}^{\prime} of all divisible elements of A is of finite rank; denote by μ_{∞}, ν the ν-th Ulm invariant of A_{2}^{\prime}. Then, except a finite number of $\nu, v_{x, 2}$ is equal to 0 . In this case, we call $\nu_{x,}$, the ν-th infinite Ulm invariant of A and, accordingly, call the ν-th Ulm invariant of A itself the ν-th finite Ulmb invariant of A. Moreover, if A_{∞} is the largest divisible subgroup of A, then we call the rank of A 。 the dimension of A. Under this terminology, the theorem of Ulm ${ }^{[9]}$ shows that the structure of A is determined whenever the finite and the infinite Ulm invariants of A as well as the dimension of A are known. The theorem also implies that $A_{\infty}^{\prime} / A_{\infty}$ is a finite group because $A_{\infty}^{\prime} / A_{\infty}$ contains no non-trivial divisible subgroup and its system of Ulm invariants coincides with that of a finite group.

Let $l^{c_{2}}$ be the number of elements of A_{*}^{\prime} whose orders divide l^{\prime}. Then since A_{∞}^{\prime} is isomorphic to the direct product A_{\approx} by the finite group $A_{\infty}^{\prime} A_{\approx}$, it follows from elementary properties of finite abelian groups that we have ${ }_{n},:$ $=2 c_{\nu}-c_{\nu-1}-c_{\nu+1}$. On the other hand, if T is a subgroup of finite rank of A containing A_{∞}, then we see, as in the case of $T=A^{\prime}$ above, that T is isomorphic to the direct product of A_{∞} by the finite group T / A_{∞}. Therefore, denoting by T_{\imath} the group of elements of T whose orders divide l^{\prime}, we can determine the dimension $\operatorname{dim} A$ of A by $l^{d+1 / A}=\lim _{\nu \rightarrow \infty}\left(T_{\nu+1}: T_{\nu}\right)$.
10. We are now able to expose the structure of the group $X_{/}$which is the l-component of the countable torsion abelian group X consisting of all the characters of Ω, where l is a prime number. Denote by $X_{l, \infty}^{\prime}$ the group of all

[^7]divisible elements of X_{l}. Then, by 6, $X_{l, \infty}^{\prime}$ is contained in the group T of characters $\% \in X_{l}$ such that $\%$ is unramified at any place q of Ω coinciding with none of the prime factors of l in Ω. Since T is of finite rank, so is also $X_{l, \infty}^{\prime}$. Therefore, the results of 9 show that the structure of X_{l} is determined whenever the finite and the infinite Ulm invariants and the dimension of X_{l} are known. By Lemma 6 and Lemma 7, we have

Theorem 4. Let l be a prime number and ς_{l} be a primitive l-th root of unity. Denote by ν_{l} a natural number such that the field $\Omega\left(\zeta_{l}\right)$ contains a primitive $l^{\nu_{l}}$-th root of unity but no primitive $l^{l^{+1}}$-th root of unity. Then the ν-th finite Ulm invariant of X_{l} is 0 for $\nu<\nu_{l}$ and is ∞ for $\nu \geqslant \nu_{l}$.

The largest divisible subgroup $X_{l, \infty}$ of X_{l} is contained in the group T defined above. Therefore, by 9 and by Lemma 11, we have

Theorem 5. Let l be a prime number, $\mathbb{S}=\left\{\mathfrak{l}_{1}, \mathfrak{l}_{2}, \ldots\right\}$ be the set of all prime factors of l in Ω and $\Omega_{\Upsilon_{i}}$ be the \mathbb{I}_{i}-completion of Ω. Denote by \mathbf{e} the unit group of Ω and by $\mathbf{e}_{l, \nu}$ the group of $\varepsilon \in \mathbf{e}$ such that ε is an l^{ν}-th power in every $\Omega_{I_{i}}$. Then there is a constant μ_{l} such that we have $l^{\mu_{l}}=\left(\mathbf{e}_{l, v}: \mathbf{e}_{l, v+1}\right)$ for every sufficiently large ν and the dimension of X_{l} is equal to $N-\mu_{l}$, where N is the absolute degree of Ω.
11. There is thus remained only the determination of infinite Ulm invariants of X_{l}. But this is substantially done in §3. For we obtained there a method of finding the number $l^{c_{v}}$ of elements in X_{l} whose orders divide a power l^{ν} of l. We add here a few remarks.

Let l^{ν} be a power of an add prime number l and $B^{(\nu)}$ be the group of $\beta \in \Omega^{\times}$such that the principal ideal (β) is the l^{ν}-th power of an ideal of Ω. Let Θ and $\Omega_{\mathfrak{r}_{i}}$ be as in Theorem 5, let \mathfrak{w}_{i} be the group of roots of unity in $\Omega_{\mathrm{I}_{i}}$ and let $B_{*}^{(\nu)}$ be the group of $\beta \in B^{(\nu)}$ such that β is in $w_{i} \Omega_{{ }_{1}^{l}}^{(\nu)}$ for every i. Then, by 6 and by Theorem 2, we have $l^{c_{\nu}}=h_{\nu} \cdot l^{\nu_{\nu}} \cdot\left(B^{(\nu)}: B_{*}^{(\nu)}\right)^{-1}$. Therefore, by 9 , the ν-th infinite Ulm invariant $v_{\infty, \nu}$ of X_{l} is given by

$$
l^{v_{x, \nu}}=h_{v}^{h_{v}^{2}} h_{\nu-1} h_{\nu+1} \frac{\left(B^{(\nu-1)}: B_{*}^{(\nu-1)}\right)\left(B^{(\nu+1)}: B_{*}^{(\nu+1)}\right)}{\left(B^{(\nu)}: B_{*}^{(\nu)}\right)^{2}},
$$

where h, is the l^{2}-class number of Ω. Let the first factor of the right side of this formula be equal to $l^{b_{\nu}}$. Then b_{\imath} is the number of direct factors of order
l in the direct decomposition of the ideal class group of Ω into indecomposable cyclic groups.

References

[1] H. Hasse, Zahlentheorie, Berlin (1949).
[2] H. Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math., 188 (1950), pp. 40-64.
[3] I. Kaplansky, Infinite abelian groups, Univ. of Michigan Publ. in Math., No. 2 (1954).
[4] S. Wang, On Grunwald's theorem, Ann. of Math., 51 (1950), pp. 471-484.
[5] A. Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan, 3 (1951), pp. 1-35.

Mathematical Institute
Nagoya University

[^0]: ${ }^{1)}$ Throughout the paper, we use the mark \times to stand for the multiplicative group of non-zero elements of a field.
 ${ }^{2)}$ In this paper, we settle no sign condition for the real infinite components of unit idèles, somewhat differently from the definition of Weil [5].
 ${ }^{3)}$ This means an ordinary character of the topological abelian group.
 ${ }^{4)}$ This is naturally defined by means of local components of idèles.

[^1]: ${ }^{5)}$ We say that χ is ramified at p if the corresponding cyclic extension of χ over Ω is ramified at \mathfrak{p} ．
 ${ }^{6}$ See Hasse［2］，Einleitung．

[^2]: ${ }^{7}$) See Hasse [2], $\S 1$, Satz 1 and Satz 2.

[^3]: 8) See foot-note 4.
[^4]: 9) See Hasse [1], § 15, p. 177.
[^5]: 10, See foot-note 6

[^6]: ${ }^{11)}$ This means so called "weak" direct product arising most commonly in abstract algebra,

[^7]: 12) See Kaplansky [37, \$11,
