ON MODULES OF TRIVIAL COHOMOLOGY OVER A FINITE GROUP, II (FINITELY GENERATED MODULES)

TADASI NAKAYAMA

Let G be a finite group. A (left) G-module A of G is said to be of trivial cohomology when $H^{\prime \prime}(H, A)=0$ for all rational integers n and for all subgroups H of G. The main purpose of the present note is to determine the structure of finitely generated G-modules of trivial cohomology, which turns out to be remarkably simple (See Theorem 1 and Corollary 3 below). We prove also an (easy) localization theorem for cohomological triviality.

However, first we recall a structural study of modules of trivial cohomology made in Part I (Illinois Math. Journ. 1 (1957), p. 36). It begins with considering a free G-module A_{0} of which a given G-module A is a G-homomorphic image. Let A_{1} be the kernel of the homomorphism. Then the G-module A is of trivial cohomology if and only if the G-module A_{i} is so. Haring thus reduced the problem to the case of a (Z-)torsion-free (even Z-frce) G-module, we have, as we have shown in I,

Proposition 0. A (Z-)torsion-free G-module A is of trivial cohomology, if and only if for each prime p (dividing the order $[G]$ of G) the residue-module $A_{/} p A$ is $Z(p)\left[H_{j}\right]$-free, where $Z(p)\left[H_{p}\right]$ denotes the group algebra of a p-Sylow subgroup H_{i} of G over the field $Z(p)$ of rational integers $\bmod p$.

Here " $Z(p)\left[H_{p}\right]$-free" may be replaced by " $Z(p)\left[H_{p}\right]$-projective" since $Z(p)\left[H_{p}\right]$ is primary. Moreover

Proposition 0^{\prime}. The condition in Proposition 0 may be replaced by that for every prime p (dividing [G]) $A^{\prime} p A$ is $Z(p)[G]$-projective.

Indeed, a $Z(p)[G]$ module is $Z(p)[G]$-projective if and only if it is $Z(p)\left[H_{p}\right]$. projective. For, since the index $\left[G: H_{p}\right]$ is inversible in $Z(p)$, any $Z(p)[G]$. module B is relatively projective with respect to the subring $Z(p)\left[H_{p}\right]$, (or, what
amounts to the same, B is a $Z(p)[G]$-direct summand of the $Z(p)[G]$-module $\left.B^{*}=Z(p)[G]^{\otimes}\right)_{z(p)\left[H_{1}\right]} B \approx Z\left[\left(G / H_{p}\right)_{L}\right]_{Z_{(p ;} ;} B$ induced by B considered as $Z(p)\left[H_{p}\right]$-module, where on the left hand side of the isomorphism sign the operation of G is explained by the multiplication on $Z(p)[G]$ from left while in the right hand side the operation of G is explained by the operation on both factors $Z\left[\left(G / H_{p}\right)_{L}\right], B$ and the first factor $Z\left[\left(G / H_{p}\right)_{L}\right]$ denotes the vector space over $Z(p)$ spanned by the left cosets of H_{p} in G; the isomorphism is given by associating $\sigma_{i} \otimes_{z(p)\left[H_{r}\right],} b$ in the left hand side to $\sigma_{i} H_{p} \otimes_{z(p)} \sigma_{i} b$ in the right hand side, where $\left\{\sigma_{i}\right\}$ is a representative system of the left cosets of H_{p} in G). Indeed, if C is a $Z(p)[G]$-module having $Z(p)[G]$-submodule D such that there is a $Z(p)\left[H_{p}\right]$-submodule M with $C=D+M$ (direct), then, on denoting by π the projection of C onto M with respect to this direct decomposition, we have a direct decomposition $C=D+\rho C$ into $Z(p)[G]$-modules (indeed $D=(1-\rho) C$) by putting $\rho=\left[G: H_{p}\right]^{-1} \sum \sigma_{i}^{-1} \pi \sigma_{i}$, where $\left\{\sigma_{i}\right\}$ is as above (cf. [3], [4]).

1. Finitely generated modules of trivial cohomology

Theorem 1. A finitely generated (Z-)torsion-free G-module A is of trivial cohomology if and only if A is a direct summand of a free G-module, or, what is the same, if and only if A is $Z[G]-p r o j e c t i v e$, where $Z[G]$ is the group algebra of G over the ring Z of rational integers.

As the "if" part is evident, we prove the "only if" part. Let, to do so, A be a finitely generated torsion-free G-module of trivial cohomology. Let p be any rational prime and H_{p} be a p-Sylow subgroup of G. By Proposition 0 the residue-module $A / p A$ has an independent basis over $Z(p)\left[H_{p}\right]$. Let a_{1}, \ldots, a_{n} be representatives in A of the basic elements. Denote, further, the quotient ring of Z with respect to p by Z_{p}. As A is Z-free, the tensor product $A_{p}=A \otimes_{Z} Z_{p}$ is Z_{p}-free and A may be looked upon as a G-submodule of A_{p}. We contend that a_{1}, \ldots, a_{n} form an independent $Z_{p}\left[H_{p}\right]$-basis of A_{p}. Indeed, since $A_{p} / p A_{p}$ is naturally isomorphic with $A / p A$, the residue-classes of a_{1}, \ldots, a_{n} modulo $p A_{p}$ form an independent $Z(p)\left[H_{p}\right]$-basis of $A_{p} / p A_{p}$, or, what amounts to the same, the $\left[H_{p}\right] n$ elements $\alpha a_{i} \bmod p A_{p}, \alpha$ running over H_{p}, form an independent. $Z(p)$-basis of $A_{p} / p A_{p}$. It follows then readily that the matrix of transformation from an independent Z-basis of A to our $\left[H_{p}\right]^{i} n$ elements αa_{i} has a determinant prime to p, whence inversible in Z_{p}. This shows that αa_{i} form an independent
Z_{p}-basis of A_{p}, or equivalently, a_{i} form an independent $Z_{p}\left[H_{p}\right]$-basis of A_{p}.
Now, since $\left[G: H_{p}\right]$ is inversible in Z_{p}, every $Z_{p}[G]$-module is relatively projective with respect to $Z_{p}\left[H_{p}\right]$; the proof is the same as was made above in context of Proposition 0^{\prime}. As our A_{p} has been seen to be $Z_{p}\left[H_{p}\right]$-free, this implies that A_{p} is $Z_{p}[G]$-projective. Since this is the case for every rational prime p, Theorem 1 now follows from the following lemma which is of interest and significance by itself.

Lemma 2. A finitely generated G-module A is $Z[G]$-projective if, and only if, for every rational prime p the tensor product $A_{\rho}=A \otimes_{Z} Z_{p}$ is $Z_{p}[G]$-projective, where Z_{p} is the ring of quotients of Z with respect to p. (More precisely, we have $\left.\operatorname{dim}_{Z[G]} A=\sup _{p} \operatorname{dim}_{Z_{p}[G]} A_{p}\right)$.

This lemma may be proved as follows by an argument of Serre [6]; cf. also [1], VII, Exer. 11 (Observe, however, that the lemma itself is not contained in [6], nor in [1]). Let, thus,

$$
0 \leftarrow A \leftarrow F_{0} \leftarrow F_{1} \leftarrow \ldots \text { (exact) }
$$

be a resolution of A consisting of finitely generated free G-modules F_{i}. Setting $\left(F_{i}\right)_{p}=F_{i} \otimes_{Z} Z_{p}$ we obtain a resolution

$$
0 \leftarrow A_{p} \leftarrow\left(F_{0}\right)_{p} \leftarrow\left(F_{1}\right)_{p} \leftarrow \ldots \quad \text { (exact) }
$$

of A_{p} by $Z_{p}[G]$ free modules $\left(F_{i}\right)_{p}$. As each F_{i} has an independent finite basis over $Z[G]$, we see, for any G-module C, that the $Z[G]$-module $\operatorname{Hom}_{\langle/[i]}\left(F_{i}, C\right)$ is simply a direct sum of a finite number of copies of C and hence the $Z_{p}[G]$-module $\left(\operatorname{Hom}_{Z[G]}\left(F_{i}, C\right)\right)_{p}=\operatorname{Hom}_{Z[G j}\left(F_{i}, C\right) \bar{x}_{Z} Z_{p} \quad$ is isomorphic to $\operatorname{Hom}_{\left.Z_{i}[\beta]\right]}\left(\left(F_{i}\right)_{p}, C_{p}\right)$ (which is the direct sum of the same finite number of copies of $\left.C_{p}\right), \quad C_{p}$ being $C \otimes_{z} Z_{p}$. We have then readily $\operatorname{Ext}_{\langle[r i]}^{t}(A, C){ }_{z} Z_{p}$ $\approx \operatorname{Ext}_{z_{2},[G]}^{i}\left(A_{p}, C_{p}\right)$. Now, if A_{p} is $Z_{p}[G]$-projective, for every p, then the right hand side vanishes for $i>0$, and the same must be the case case for the left hand side. $\operatorname{Ext}_{z_{[G]}}^{i}(A, C)$ being finitely generated in case C is so, this implies $\operatorname{Ext}_{Z[G]}^{i}(A, C)=0$ for $i>0$ whenever C is finitely generated. It follows that A must be $Z[G]$-projective. The converse is rather evident.

Theorem 1 being thus proved, we may apply it to the kernel of an epimorphism of a free G-module to a given module, to obtain:

Corollary 3. A finitely generated G-module is of trivial cohomology if and
only if it is a residue-module of a finitely generated free G-module modulo a $Z[G]$-projective submodule.

Each of the following two propositions, in which Z_{p} denotes as above the ring of quotients of Z with respect to p, can readily be seen from a portion of our proof to Theorem 1:

Proposition 4. Let A be a $Z_{p^{-}}$- or $Z_{p}[G]$-) finitely generated (Z. or $Z_{p^{-}}$) torsion-free $Z_{\phi}[G]$-module (the operation of the elements of Z_{p} being commutative with the operation of the elements of G). Each of the following conditions i), ii), iii) is necessary and sufficient for A to be of trivial cohomology: i) A is $Z_{p}[G]$-projective ; ii) A is $Z_{p}\left[H_{p}\right]$-projective (where $H_{\dot{\nu}}$ is a p-Sylow subgroup of G) ; iii) A is $Z_{p}\left[H_{p}\right]$ ffree.
(Assume that ii) is the case. Then A is of trivial cohomology and hence satisfies iii), as well as i), by our proof to Theorem 1.)

Proposition 5. Let A be a (Z-, or $Z[G]$-) finitely generated (Z-) torsion free G-module. A is of trivial cohomology if and only if $A_{p}=A \bigotimes_{z} Z_{p}$ is $Z_{p}[G]$. projective for every prime p (dividing [G]). Alternative ways of stating the condition can be seen from Proposition 4.

The following proposition may be of interest in view of the (probably) open question whether every finitely generated $Z[G]$-projective module is $Z[G]$. free (cf. [1], p. 241):

Proposition 6. Let A be a finitely generated $Z[G]$-projective module. Then the Z-rank of A is a multiple of the order [G].

For, with any prime $p, A / p A$ is $Z(p)\left[H_{p}\right]$-free. Hence the $Z(p)$-rank of $A / p A$ is a multiple of $\left[H_{p}\right]$. But the Z-rank of A is clearly equal to the $Z(p)$. rank of $A / p A$. Thus the Z-rank of A is a multiple of $\left[H_{p}\right]$. Since this is the case for every p, we have the assertion.

2. A localization theorem

Propositions $0,0^{\prime}$ and 5 have evidently the effect of localization with respect to the property of cohomological triviality, while Lemma 2 is naturally a localization lemma for projectivity (or projective dimension in general). In stating local properties also in terms of cohomological triviality, in connection of Propositions $0,0^{\prime}$, we have

Proposition $0^{\prime \prime}$. A torsion free G-module A is of trivial cohomology if and only if the G-module $A / p A$ is of trivial cohomology for every prime p (dividing [G]).
(This is, however, merely an easy and rather trivial portion of the content of Proposition 0 and the main feature of the latter lies in that its structural local condition is implied by the present local condition.)

Contrary to that these Propositions $0,0^{\prime}, 0^{\prime \prime}$ and 5 are for torsion-free modules only (though they have, except Proposition $0^{\prime \prime}$, merits to be structural), the following localization theorem is for general modules:

Theorem 7. A G-module A is of trivial cohomology if and only if $A_{p}=A \otimes_{Z} Z_{p}$ is of trivial cohomology for every prime p (dividing [G]), where Z_{p} is the ring of quotients of Z with respect to p.

To prove this, we construct a free G-module A_{0} of which the given G module A is a G-homomorphic image and denote the kernel of the homomorphism by A_{1}. As Z_{p} is $(Z$ - $)$ torsion-free, we have $\operatorname{Tor}_{1}^{Z}\left(A, Z_{p}\right)=0$ and, therefore $0 \rightarrow A_{1} \otimes{ }_{z} Z_{p} \rightarrow A_{0} \otimes_{Z} Z_{p} \rightarrow A \otimes_{z} Z_{p} \rightarrow 0$ (exact), for any prime p. So, for every p, the cohomological triviality of $A \otimes_{z} Z_{p}$ is equivalent to that of $A_{1} \otimes_{z} Z_{p}$. Since $\left(A_{1} \otimes_{z} Z_{p}\right) / p\left(A_{1} \otimes_{z} Z_{p}\right) \approx A_{1} / p A_{1}$ and $\left(A_{1} \otimes_{z} Z_{p}\right) / q\left(A_{1} \widehat{\otimes}_{z} Z_{p}\right)=0$ for (q, p) $=1$, the G-module $A_{1} \otimes_{z} Z_{p}$ is of trivial cohomology if and only if $A_{1} / p A_{1}$ is so, by Proposition $0^{\prime \prime}$. But, that this is the case for every p (dividing [G]) is equivalent, again by Proposition $0^{\prime \prime}$, to that A_{1} is of trivial cohomology, which is in turn equivalent to that A is so. (Of course we could use either of Proposition $0,0^{\prime}$ instead of Proposition $0^{\prime \prime}$.)

Remark. In Propositions 4, 5 and Theorem 7 (as well as in Lemma 2) we could replace Z_{p} by the ring of rational p-adic integers.

Remark. In the present note we have used only a small portion of Part I. Indeed, since we do not need to make dimension shifting in proving Proposition 0 (as well as Propositions $0^{\prime}, 0^{\prime \prime}$) the dimension shifting portion of our proof in Part I could be eliminated for our present purpose. Thus, what we have made use of, beyond the reduction (to torsion free modules and) to modules B with $p B=0$, is Lemma 8 in Part I in which the $Z(p)[G]$-free structure is derived from $H^{-1}(G, B)=0(p B=0)$ for a p-group G. As an alternative, we shall here derive the same structure from $H^{-2}(G, G)=0(p B=0), G$ being a p-group.

Indeed, since $p B=0$ we have $H^{-2}(G, B)$ (not only $=\operatorname{Tor}_{1}^{2}(Z, B)$ but) $=\operatorname{Tor}_{1}^{Z(p)}(Z(p), B)$; this can readily be seen either directly by reducing the standard complex, say, modulo p or by a change of rings formula ([1], VI, 4.1.1). As $Z(p)[G]$ is primary, G being a p-group, $\operatorname{Tor}_{1}^{Z(p)}(Z(p), B)=0$ implies, by a syzygy theorem ([2]), that B is $Z(p)[G]$-projective and, therefore, has the desired $Z(p)[G]$-free structure ([5]).

Added in proofs: Another way of formulating Corollary 3 is, as S. Eilenberg points out, to say that a finitely generated G-module A is of trivial cohomology if and only if $1 \cdot \operatorname{dim}_{z[G]} A \leqq 1$, and the same holds with the last condition replaced by $1 \cdot \operatorname{dim}_{z[G]} A \leqq \infty$. He also points out that in proving Lemma 2 we had better to make explicit the natural isomorphism $\operatorname{Ext}_{\Lambda}^{i}(A, C)$ $\otimes \Gamma \approx \operatorname{Ext}_{\Delta \otimes \Gamma}^{i}(A \otimes \Gamma, C \otimes \Gamma)\left(\otimes\right.$ standing for $\left.\otimes_{K}\right)$ for a left Noetherian K. algebra Λ, a K-flat K-algebra Γ, a finitely generated (left) A-module A and a (left) A-module C.

References

[1] H. Cartan-S. Eilenberg, Homological Algebra, Princeton 1956.
[2] S. Eilenberg, Homological dimension and syzygies, Ann. Math., 64 (1956), 328-336.
[3] Higman, Modules with a group of operators, Duke Math. Jour., 21 (1954), 369-376.
[4] F. Kasch, Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann., 127 (1954), 453-474.
[5] H. Nagao-T. Nakayama, On the structure of (M_{0})- and (M_{u})-modules, Math. Zeits, 59 (1953), 164-170.
[6] J.-P. Serre, Sur la dimension homologique des anneaux et des modules Noethériens, Proc. Intern. Symposium, Tokyo 1955.

Nagoya University

