
ON SOME PROPERTIES OF BINARY RELATIONS

KATUZI ONO

Some important notions in the theory of binary relations such as the

relative product of two relations and the converse of a relation are defined in

Whitehead and Russell's "Principia mathematica" ([1]). McKinsey ([2]) and

Tarski ([3]) gave their systems of postulates for the calculus of relations. Ore

studied on equivalence relations ([4]) and Riguet on closures (fermeture) of

relations ([5] and [6]), and they obtained remarkable results on the structure

of these relations. The purpose of this paper is to examine the relative proper-

ties of some relations to each other, whose notions are closely related to the

notions given by Riguet.

We denote simply by RS the relative product of the relations R and S, by

R"1 the converse of the relation R} and by RίXl the set obtained by operating

R on the set Xt i.e. R"X of "Principia mathematica." The notions of the equiva-

lence relation and of the function slightly deviate from the ordinary ones, because

a relation is called here an equivalence relation or a function if it is an equiva-

lence relation or a function on their natural domain. In § 1, definitions of these

notations and notions and some elementary properties are shortly described as

prelimaries.

1. Elementary properties

Let V be the universal class. A class R is said to be a relation when and

only when R^VxV. I will write down definitions of fundamental notions and

elementary properties without proof in the following:

( 1 ) Del R[Xl = {y\(Ex)(yRx and *eX)} .

(2) {x){Rί{xn = SL{xΏ) =>#=S,

i.e. a relation is perfectly determined by its operator character.

( 3 ) R g S =» RIX1 s SIX1, X ^ Y =9 RίXl ^ RίYl

(4)
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(5) RinXkl ^ ΠRlXkl, UMt*)lXl£Γ\RkZXl
k&K k&K k&K k&K

( 6 ) (R

(7) (ΠA)[{*}3=nft[Wl (R-S)Ux)l=Rί{x}l-Sί{x}l.
k&K k&K

( 8 ) If there is a correspondence X-+ <f (X) between subclasses of V such that

<f (U Xk) = U <f(Xk) always holds, then there exists a relation R for which

RίXl = <f(X) always holds.
( 9 ) (x)(Rί{x}l £ SΓ{Λ:}]) =* /? ϋ &
(10) Def. / r ^ K

(11) (UftΓ^Uίϊ1, {ΠRkΓ^nRk1,
h&K k&K k&K fcGK

(12) Def. RS= {<z, x>\(Ey)lzRy and ySxl).

(13)

(14) ( i?- 1 )- 1 ^^, (RS)T=R(ST), (RS)-1 = S"1/?'1.

(15) Def. fl1^, i?2 = /?ff, R* = RRR,

(16) RmR" = Rm'n, (RT1 = {R-1)". («ι, » = 1, 2, . . . )

(17) /? g S =^ i?"1 g S~\ Λ g S =*/?" = S" ( » = 1 , 2, . . . ) ,

/? g S =» (i?Γ g SΓ and TR S ΓS).

(18) i?(USA) = U/?SA, (\JRk)S=ΌRkS.
k&κ fcenc Λe/c fce^

(i9) R{ns^ifiΛSA, (nί t)sinR ks.
fcex kεJί λεx kεK

(20) (R-S)T^RT-ST, R{S-T) ^_RS-RT.
(21) Definition of the identical relation 7: /={<#, # > l * e

(22) IX=XI=X.

(23)

(24) / £

(25)

(x)Z{<x, x>} R={<x,

(26) RR-'R^R, RiR-'RΠ

(27) R{Vx V)R = S(Vx V)S

<==» [/?''/? Π 7 = S"'S Π 7 and RR'1 Π / = SS^Π/].

(28) Def. S is called symmetric if and only if S'1 = S.

(29) If Sk is symmetric for every k e K, then U S/? as well as Π Ŝ  are
k&K k&K

symmetric.

(30) RUR~\ RΓ\R~\ Z?"1/?, tf/T1 are symmetric.

(31) Def. T is called transitive if and only if* T2 E T.
(32) If T is transitive, so is also T'\
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(33) If T is transitive and / ϋ /, then TU J is also transitive.

(34) If Tk is transitive for every &e if, so is also Π Tk.

(35) Def. F is called a function if and only if FF"1 E /.

(36) Def. E is called an equivalence relation if and only if E~ιE-E.

(37) E is an equivalence relation if and only if E is symmetric as well as

transitive.

Remark. By the definitions (35) and (36), "F is a function" means "F is

a function on its natural domain," and "E is an equivalence relation" means

"E is an equivalence relation of its natural domain, which is equal to its converse

domain." For an equivalence relation, reflexivity holds only in the sense

(38) If / ϋ /, then / is an equivalence relation.

(39) If Ek is an equivalence relation for every kE:K, then Γ\Ek is also an

equivalence relation.

(40) If F is a function and F ϋ G, then G is also a function. In this case holds

FG'^GF'^GG'1.

(41) If F and G are functions, then FG is also a function.

(42) If Fk W Fι is a function for any pair &, / G ί or if FkFJ^ ϋ / for any pair

k, I e if, then U ft is a function.

(43) For any function F hold (R(Ί S) F= RFΓ\ SF, F'HRΠS) =F'1RΠF'1St

(R-S)F=RF-SF, and F~\R-S) = F~ιR-F~ιS.

(44) For any equivalence relation E and for any function F hold EE'^^E^ E

and FF~ιF=F.

(45) If F is a function, then F - 1 F is an equivalence relation. Conversely, any

equivalence relation E can be expressed in the form E- F~ιF, where F is

a function.

(46) Def. F is called an one-to-one correspondence if and only if F and F~ι are

both functions.

Re?nark. Evidently hold theorems corresponding to (40)-(44) for one-to-one

correspondences.

(47) Def. P is called a partial order if and only if P is transitive and

PΠP~ι s/.

(48) If P is a partial order and / ϋ /, then (P - I) U J is also a partial order.
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Remark. By (47), any relation which lies between " < " and "*=" is called

here a partial order. P-I corresponds to " < " . The linear order L (corre-

sponding to " ^ " ) of the class C can be defined by "L is a linear order of C if

and only if L is a partial order and L U ZΓ3 = C x C."

(49) Def. /? is called closed if and only if RR~*R = R.

(50) Any function F and any equivalence relation E are closed.

(51) If R is closed, so is also R'1. If R and S are closed, so is also RΓ\S.

(52) For any pair of functions F and G, F~XG is closed. Conversely, any closed

relation R can be expressed in the form R-F~XG, where F and G are

functions.

(53) Def. R=\JR{R'ιR)n.

(54) RBR, Έ = R.

(55) R is closed, i.e. RR^R^ R. R is closed if and only if R = R.

(57) Uΐ?fc E U Rky Γ\Rk=Γ\ Rk-

(58) U Rk = U #£.

(59) If R is symmetric, then R=\JRn and i? is an equivalence relation.
71 = 1

(60) R is the minimum closed relation including R.

(61) R~XR and RR~ι are both equivalence relations.

(62) R-'R^R-'R^R-'R^R-'R, RR'1 = tfiT1 = RR'1 = i?/?"1.

(63) Def. If if is a relation such that H[Z?] is a relation for every relation R,
CO

then AU U HnZA} for any relation A is called the relation recursively
n = l

generated from A by H.

(64) The recursively generated relation from A by H is the minimum relation

F satisfying A U J?[F] g F.

Remark. If we take A = {<β(α), <0, α » } and

H={«b{z, x, a), <ΛΓ + 1, α » , <z, <AΓ, «:>»U, 2GiV}, then the condition for

F becomes

) = a(a)t

where we take JV as the set of natural numbers, F = {</(Λ;, α), <#, α:»

and a as a finite sequence of parameters.
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2. Associable system of relations

The domain and the converse domain of R are classified by the equivalence

relations R"1R and RR'1 respectively. The relation R is essentially a blockwise

one-to-one correspondence between the classified domain of R and the classified

converse domain of R. I will now define the notion of the associable system of

relations, which enables us to study mutual properties between relations of

different classified domains and converse domains.

Definition

(1) A relation S is called an extension of Rt if and only if R ϋ S and

SR-χSER.

(2) A system of relations is called associable, if and only if they have their

common extension.

THEOREM 1. A necessary and sufficient condition for two relations R and S

to be associable is that the conditions

(RUS)R~1(R\JS) i i ? (

(R\TS)S'1(R\JS) i S

are both satisfied.

Proof. If T is a common extension of R and S, then (R\J S)R~1{RO S)
<^kTR~1T ϋ R. Similarly for the other formula. If the two conditions are

satisfied, then R U S is a common extension of R and S.

THEOREM 2.

(1) Any relation is associable with itself.

(2) Any relation R is associable with R.

(3) Any relation is associable with its extension.

(4) // i?~1S = RS'1 = 0, i.e. if the domains of R and S as ivell as their

converse domains are disjoint, then R and S are associable.

Proof. (1), (2), (3) Evident.

(4) (#ΌΊs)7?~H#US) = U KoFΓ'F,. . . Vim-iVomR^WoWT^ . . . Wϊw-iWi = #,

where F's and Wys stand for i? or S. Similarly, (ΪRUS)S~\RU S) = S. q.e.d.

THEOREM 3. #* /? αwd S αr^ associable, so are also R~ι and S~ι,

Proof. Evident,
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THEOREM 4. If a system of RkS (kE: K) is associable, so is also the system

of all SkS satisfying Rk ϋ Sk ϋ Rk for every k in K.

Proof. Let T be a common extension of Rk's, i.e. Rk^T and ΎRf1 T ϋ Rk.

By (55), (56), and (62),

E TRlιTT~ιT =*

Namely, T is also a common extension of all Sk's. q.e.d.

THEOREM 5. // R and S are associable, then

RS'1={RΓiS)(RΓiSy1 and R^S^ (RίλS)'\RnS).

Proof. Let <.x,y>eRS~\ i.e. there be such z that <#, 2 > e ^ and <j>, 2>eS,

then

{<x, z}} ϋ {<#, 2>}{<v, z>}~ι{(y, 2>} i ( i ? U S)~S~1(RU S) ϋ "S,

similarly <jy, £>£/?, therefore

We obtain namely RS^"1 E (Λ Π~S)(RΠS)"1. On the other hand, evidently

ΛS"1 P: (RΓ\'S)(RΓλ~sy\ Similarly for the other formula. q.e.d.

THEOREM 6. // P and Q resp. Q and R are associable, then

PQ-'REQ.

Proof By the preceding theorem,

R)Q'Ί{QU R) i & q.e.d.

THEOREM 7. If all pairs of Rk's are associable, then U Rk = U Rk.

Proof. Evidently U Rk i U Rk. On the other hand, by the preceding

theorem
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so we have U Rk ϋ U Rk. q.eΔ.

THEOREM 8. A necessary and sufficient condition for a system of relations

Rk (AG K) to be associable is that the relations are associable by pairs.

Proof. Necessity is evident. It is also sufficient, because by the preceding

theorem

(URj) Rk\U~Rι) E (U Rj) Rk\ U Rι) = U RjRΰ'Ri i U f t = Rk. q.e.d.
JSΞK l&K j&K 1<BK jf=K j<=K

THEOREM 9. A necessary and sufficient condition for tivo equivalence re-

lations C and D to be associable is that CD = C Γ\D.

Proof. Necessity is evident by (39), (50), and the theorem δ. Conversely: if

CD^CCλD, then (CUD)C~1(CUD) = UΛ . . . PmC'Qi . . . Qn =

= C, where P's and Q's stand for C or D. Similarly (CU D)D~\C\J D) = D.

Therefore the condition is also sufficient.

3. Decomposition of the closed relation

and of the transitive relation

Any closed relation can be decomposed into the product of the converse of

a function and a function as shown in (52) (Riguet [5], [6]). In this paragraph,

this theorem is given in a more refined form in some respect, and some appli-

cations of the theorem are given thereafter.

THEOREM 10.

(1) Any closed relation R can be expressed in the form R = F~XG, where F

and G are functions. (Proposition (52)).

(2) // R^F^G and F, G are both functions, then generally RR~ι e F~ιF

and R~XR ϋ G"1^. We can find out, however, functions Fo and Go out

of sub-relations of F and G respectively, for which i? = Fί"1G0, RR'1

= Fo"1Fo, and R'xR=G^lGQ.

(3) If R^F~XG and F, G are functions, then FF~ι = GG'1 if and only if

RR~ι = F~*F and R'ιR = G"1 G.

Proof (2) RR-1^(F-1G)(F'1Gr1 = F-1GG-1FEF'1IF=F'1F, similarly

R~*R S G~XG. If we put Fo = GG~ιF and Go = FF'XG, then Fo^IF^ F, Go <i IG

= G, Fo'Go^ F-'GG-'FF-'G = (F-1G)(F-1GΓ1(F-1G) = RR~'R = R, Fo"1 Fo

= F"1GG'1GG"1F= F-1(GG'ΛG)(F-1G)'1 = (F" 1 G)(F" 1 G)" 1 = i?/?"1, and Go""Go



168 KATUZI ONO

= G-'Ff'FF-'G = G'HFF^FHF^G) = (G^FMF^G) = /T1/?. By (40), Fo and

Go are both functions. (3) If R=F~ιG, RR'ι = F~ιF, R'ιR=G"ιG. and F and

G are functions,

FF'1 = /FF"1/ 2 GG^FF^GG'1 = GiF^GVHF^G)G"1

= GR-'RG = GG^GG'1 = GG"1.

Similarly GG'1 i? FF" 1, so FF" 1 = GG"1. Conversely, if R^F^G, FF"1 = GG"1

1 /, then

G) =G~ιG. q.e.d.

Now, let us take up an equivalence relation C^F^F, where F is a function

and J=FF"\ The class ϋΓ of all closed relations i?, satisfying fltf"1 = 1?"1JR= C,

corresponds one-to-one to the class of transformations T on /. The one-to-one

correspondence is given by T^FRF'1 and R^F^TF. If we denote the corre-

spondence by R<—>T, we have clearly

(1) C<—>/,

(2) If i?<—>T, then β"^—>T'\

(3) If /?<—>T and S<—>Vt then /?S<—

This means that the elements of the class K can be taken as transformations

on C. In our theory, transformations and one-to-one correspondences are most

naturally understood as those on class relations. The theorem 10 shows that any

closed relation can be taken as one-to-one correspondence of classes between

two systems of classes.

THEOREM 11. If R and S are closed relations and R^S, then

(1) RS~'R and SR"ιS are closed relations satisfying R £ RS~XR £ SR~ιS £ S,

(2) R, JRS~\ff, SR^S, S can be expressed by functions F, G, Fo, Go, Fu Gu

H in such a way that JK=Fo"1Go, RS~ιR^Fί'H^HGo, S/?"1S= FΓ'Gi,

and S=F"1G9 ivhere functions F, G, Fo, Go, Fu Gi, H satisfy the con-

ditions FoFo"1 = GoGo"\ FiF:1 = GiGTι = HFoFό1H'ι = HGQGo1H-\ FF"1

= GG"\ F 2 Fi 2 ^Fo, G i f t i jffGo, FFΪ1F= Fu GGϊιG = Gα.

Proo/. (1) R = RR"1R^RS"1R = RS'1RR~1R^SS~1SR~1S=SR'1S^SS"1S

= S. i?S~\R is closed, because (RS~1R){RS"1Ry1{RS"1R)=-R{S"1RR"1SR"1RS"i)R

§ Λ(S"1 SS"1 SS'1 SS"1 )R = RS-'R; and S/?"1 S is closed too, because
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(SR~1S)(SR'1SΓ1(SR~1S) =• {SR'1SS~1RS~1S)R~ιS<B {SS"1 SS'1SS"1S)R~ι S

= SR~ιS. (2) By the theorem 10, decompose S into two functions F, G satisfying

S = F"1G) FF'ι^GG'\ which imply SS'1 = F'Ψ, S^S^G^G. G = FS and

F= GS~\ because FS = FF"JG = GG~'G = G, GS"1 - GG^F^FF^F^ F. If we put

G = FR, F = GR'\ Gι = FS, Fi - GS~\ then Fi ̂  F and Gi e G, because Fi - GS"1

- FRS'1 = FF^FRS'1 = FSS^RS"1 ϋ FSiR^RR'1) = FSJ?"1 - Gi?"1 - F, and

similarly Gi ̂  G. Also F i F i a n d G i Gi, because F= FF'XF= FSS'1 E FRS'1

= Fi, and similarly G e Gi. Nextly, F " 1 ^ = RG~λFR = î S"1/?, and FΓ'Gi = SG~XFS

= S(F-1G)~1S = SR^SR-'S = SR-'S; because SR~rSR'ιS = SR~'S can be

proved as follows: SR^SR^S B SR^RR^S = S/Γ1^ and on the other hand

SR-'SR-'S S SS-'SR-'S = S.^"1^ F F " 1 - GG"1, because F F " 1 = GR^RG'1

^GG-'GR-'RG-'GG'^FiF-^R-'RiG-'F) F'1 = FSR^RS^F'1 B FRR^RR^F'1

= FΛ/?"1F"1 = OG~1, and similarly GG'1 B FF'1. By (40), we obtain FiFf1

^ G G " 1 and GiG^^FF'1 as follows: FiFΓ1 - GS^SG"1 = GG'ιFF'ιGG"1

= GG^GG^GG'1 = GG^GG'1 = GG"1 GG"1 = GG"1, and similarly for the other

formula. Accordingly, we have FiFΐ1 = GιGϊx =^ FF'1 = GG~\ which implies

F~'F = (RS~1R)(RS-1R)~1 and G^G = (RS^R^ίRS^R). Moreover, we can

prove Fi1F=Fϊ1F1 and G^G^G^Gi as follows: FΓxFi E F ί ^ SR~ιF'Ψ

= SR-'SS"1 = SR-'iRR-^RiR^SS-1) S. SR^SS^RS'1 = SR^F^FRS'1 = FΓ'F,,

and similarly for the other formula. Accordingly, by making use of (40), we

get FFΓ'F = FiFΐ'F- FiFΓ*Fi = Fi and similarly GG^G^Gi.

Now> by the theorem 10, i? can be decomposed into two functions Fo, Go

satisfying R=Fό1GQ, Fo"
1Fo = Go"IGo, which imply i?/?"1 = Fo^Fo, R~1R = Gϊ1G0.

Let us define the relation i7 by H=FFό\ H is a function, because

F'1 = fiRR^F'1 £ P(RS'ιR)(RS'ιR)"ιP'1 = FF'1G6'ΨF'1

-1 - F F " 1 E /; and fir= Gft"1, because GGo"1 - GG'1 OGΪ1 GoGϊ1

= FF"1 GGό'FoFo1 = FRS^RR'Ψό1 = FiRS'^ίRS^RΓ'Fό1 = FF~lFF^= FFo"1

= i7, as RS~ιRR~ι = (RS'ιR){RS~1R)~i is easily provable. Lastly, we can obtain

F = flFo, G - HGo as follows : # F 0 = FFo^Fo - Fi?/?"1 - (GR'^RR'1 = Gi?"1 - /\

and similarly for the other formula. q.e.d.

THEOREM 12. //* « transitive relation T satisfies the condition T Π T~ι

e (TΓ" 1 U T" : T) Π 7,υ ίAeΛ T raw ̂  expressed in the form T=F~ιSF, where

1] By (33), we can find out for any transitive relation 5, a transitive relation T=Suf,
which satisfies the condition.
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F is a function and S is a partial order, i.e. S2 E S and S Π S"1 ϋ I.

Proof. If we take H=TΠT~ί, H is an equivalence relation includ-

ing (TT"1 U T-'T) Π /, because evidently H'1 = H and H2 = (T Π T'Ύ

E T2Γ\{T~Ύ ETίΛ T~\ By (45), there is a function F such that H^F^F.

If we put S = FTF'\ then T^F^SF; because Γ 2 T2 2 Tiί ϋ T(T'ιTΠ I)

= Γ by (26), and similarly T = J H T , SO T=HTH=F'1FTF'1F-F~1SF.

Now I prove that S is a partial order. Firstly, S2 = FTF^FTF'1

= FTHTF'1 E FTTTF"1 E FTF'1 = S. Secondly, FF" 1 S = FF'ΨTF"1 = FΓF" 1

= S and similarly SFF'1 = S, FF^S"1 = S^FF"1 = S"1. As FF" 1 and F are

functions, we can compute by (43) as follows: S Π S"1 = FF~λS Π FF^S"1

= FiF^SFΠ F" 1 S""^)F"1 = K Γ Π T " 1 ) F " 1 = FtfF" 1 = FF'ΨF"1 = FF""1 E /.

q.e.d.

By this theorem, we can see that any transitive relation T is essentially a

partial order on the classes classified by a suitable equivalence relation.
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