
ON PSEUDO-ANALYTIC FUNCTIONS

D. A. STORVICK

1. Introduction. Many of the properties of analytic functions can be proved

in a purely topological manner, so that such properties are then valid for the

larger class of functions which are topologically equivalent to analytic functions.

The importance of such functions has been recognized fairly recently, particu-

larly in the theory of partial differential equations, where certain solutions have

been shown to possess the topological properties of analytic functions, i.e.,

interior]ty and continuity, but not necessarily the analytic properties of complex

differentiability and integrabίlity.

We shall assume in what follows that w=f{z) =u{χ,y) + iv(x,y) is an

interior transformation in the sense of Stoϊlow1} in an arbitrary domain, D, i.e.,

u)=f(z) is continuous and single-valued in D, takes open sets in D into open

sets in the w-plane, and does not take any continuum in D into a single point

of the w -plane.

If, in addition,

i) the first partial derivatives, tιXi uyt υx, vy exist and are continuous \n D,

ii) the Jacobian J(f) = \ Uχ Uy 1 is positive at every point of D, except
Vx Vy \

for at most a countable set, the function w = /(2) will be called pseudo-

analytic in D. If f(z) is pseudo-analytic in some neighborhood of a

point zo, we shall say that f(z) is pseudo-analytic at z0.

An infinitesimal circle with center at ZQ is mapped by w~f(z) into an

infinitesimal ellipse with center at WQ=/(ZO). Corresponding to an element \άz\

of arc in the 2-plane, there will be an element of arc 1 dw! in the w -plane.

We have that 1 dw |2 = Edx2 + 2 Fdxdy + Gdf where

E = u2χ + v2

Xf

F = UχUy-Y VxVyy

G = Uy+ Vy.
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11 See Stoϊlow [11].
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At ZQ = #0+ iyo, if idzI = constant, the maximum and minimum values of \dwf

will give us the major and minor axes, a and b respectively, of the infinitesimal

ellipse mentioned above. The dilatation-quotient QZfiz*)! of f(z) at z = z0 is

defined as the ratio of the major and minor axes ~j-> and

Π - £ + G + [(E+ GΫ - 4(EG - F 2)] 1 / 2

Because w=f(z) is an interior transformation, it possesses the maximum-

modulus principle and, if non-zero, the minimum-modulus principle. The compo-

sition of two pseudo-analytic functions is pseudo-analytic and its dilatation-

quotient is bounded by the product of their respective dilatation-quotients.

If / iz) is analytic, then Qίf(z)l is identically 1, so that the dilatation-

quotient is a conformal invariant we also observe that for the inverse function

z=Γ\vΰ) of II;=/U), QίfizΏ^QίΓ'du)!.

In the remainder of this paper we shall assume that D is the unit circle

\z\ < 1, and that Qίf(z)l is uniformly bounded in \z\ < 1, Q t= M. The latter

assumption implies the existence of a finite constant K ̂  1 such that E+ G

ί= 2KZEG- F2lm. We state first a well-known theorem on the correspondence

of boundaries under univaient pseudo-analytic functions which we shall refer to

as quasi-conformal mappings.

THEOREM 1. Let w-f(z) be a univaient pseudo-analytic function mapping

\z\ < 1 onto \w\ < 1, and let QE/U)] ύ. M. Then w^f(z) can be extended to

give a one-to-one bicontinuous transformation of \z\ ̂  1 onto \w\ ί=l.

Several authors including Hδssjer, Frostman, Lohwater, Nevanlinna and

Seidel have discussed the class of functions iv-fiz), meromorphic in \z\ < 1

such that the modulus \f{ret9)\ has radial limit 1 for all etθ on Ul = 1 except

for a possible set of values on \zI = 1 of linear measure zero. This class of

functions is often called class (Z7). The subclass of functions of bounded

characteristic is called class (B) and the subclass of bounded analytic functions

class (A). The purpose of this note is to extend the notion of class {A) (and

class (£/)) to pseudo-analytic functions. The need for this has been pointed

out by Noshiro in his paper: On the theory of cluster sets of analytic functions,

Sugaku 5 no. 2 (1953) 65-72, (Japanese), which will appear shortly in English

in a translation by the American Mathematical Society.
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We remark first that Pfluger [9, p. 130] has shown that, under the quasi-

conformal mapping of ! z \ < 1 onto I iv I < 1 of Theorem 1, a set Ez on ! z I = 1

of capacity zero2 ) is transformed into a set Ew on \w\ = 1 of capacity zero.

DEFINITION. A function /(z), pseudo-analytic and of bounded dilatation-

quotient in \z\ < 1 , will be called of class (Z7*) in \z\ < 1, if l i m | / W 0 ) | = l
r->l

for all eίθ on I z I = 1, except for a possible set of logarithmic capacity zero. A

function f(z) of class (*/*) will be called of class (A*) in | z | < l if \f(z)\<l.

We remark that, even for functions of class (A*), no analogues of the

Fatou or Riesz Theorem are valid which involve exceptional sets of measure

zero. Indeed, a recent example of Beurling and Ahlfors [Acta Math. 96 (195β\

125-142] shows that such theorems will not hold, in general, so that, in a sense,

the class (A*) considered in this paper is the most general extension of the

class (A) to the class of pseudo-analytic functions.

However, there is the following generalized maximum pinciple first proved

by Noshiro C7], involving an exceptional set of capacity zero, for which we shall

give an alternate proof which we feel is more elementary in the sense that it

is independent of the deeper Star Theorem of Gross. The example cited in the

last paragraph shows, too, that Theorem 2 is the most general form of an

extended maximum principle which can be expected for pseudo-analytic functions.

T H E O R E M 2. Let ιv=f(z) be pseudo-analytic and bounded, \/(z)\ < M , in

! zI < 1. If the l i m s u p 1/(2)1 *= m < M for all points C of \ z! = 1 except for a

possible set E of capacity zero on \z\ = 1, then \f{z)\ <m in \z\ <\.

Proof. Because the Riemann surface W of the inverse function f~x(ιo) -z

is of hyperbolic type, let t=F"1(tv) be the function which maps W one-to-one

conformally onto \t\ < 1. T h e inverse function iv-Fίt) is analytic in |f| < 1.

Setting t = F~Hw) = F~1(f{z)) s <p{z), we see that t = <ρ(z) is a univalent pseudo-

analytic function giving a quasi-conformal mapping of \z\<l onto U I < 1 .

Let Et be the image of E under t^ψ(z). By Pf lugers Theorem [9, p. 130],

we know that the capacity of Et is zero.

Since to = Fit) ^fiφ'Ht)), we see t h a t | / U ) | < M in ! ί | < l , and for

r ί f i , l i m s u p l F U ) ! = lim sup \f(φ~Ht))\ = lim sup \f(z)\ ^ m<M and

2) See Nevanlinna [ 6 ; pp. 112 f.].
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By the Poisson integral representation of a bounded analytic function in \t I < 1,

we can conclude that \F(t)\<m in | ί | < l . Since Fit) =/(0~ 1 ( ί ) ) l we see

that | / ( 2 ) | <m in \z\ < 1.

We now prove the main result of this note, which is a modification of

Theorem 5 of [3].

THEOREM 3. Let w=f(z) be pseudo-analytic of class (Ϊ7*) in \z\ < 1

&£ ##/&£ 2m?. 77z£w, unless fiz) is identically constant, f{z) must admit

either 0 or oo as #;j asymptotic value.

We shall suppose that /(z) is not identically constant in \z\ < 1 and that

/ ( * ) takes on values of modulus less than 1. If \f(z) | > 1, we shall consider

l//(z) which is of class (A*) and omits the value zero and proceed with the

proof. It follows from Theorem 2 that the open sets

(l) ft.

are non-empty for all positive integers n. Let us fix n and consider an arbitrary

connected component Glkn) of θn. It is an immediate consequence of the maxi-

mum and minimum modulus principles for f(z) that G(k] is simply-connected

and that the intersection E{k] of the frontier of G(kl) with U! = 1 is not empty.

We show next that the frontier Fr{GΪ]) of Gkn) is locally connected. Now

that part of Fr(Gkι)) lying inside \z\ < 1 consists of a piecewise smooth curve,

being the locus of points where 1/(2)1 = — If P is a point of E{k\ and if

Fr(Gkn)) is not locally connected at P, then, by a well-known theorem [13;

p. 19], there exists a non-degenerate subcontinuum H of Fr{G'kn)) containing P

and such that Fr(Gkn)) is not locally connected at any point of H. Since H

must lie on \z\- 1, it follows that H is an arc of | z | = 1. Moreover, there

exist [13 p. 18] a circular neighborhood V(P) of P and a sequence of mutually

disjoint components N2, N?., . . . of Fr(G(k]) Π V(P) converging to a non-

degenerate limiting arc NQH containing P. If R is a circular neighborhood

about the midpoint of N, of radius less than one-fourth the length of N, it

follows that a radius of \z I < 1 drawn to any point Q of that sub-arc No cut

out of iV by R must cross the components Nj of Fr(G(

k

n)) ΠV(P) arbitrarily

close to Q. Along such a radius of \z\ < 1, if \f(retQ)\ tends to a limit, this

limit must be 1/n, since | / ( z ) | = — at the points where such a radius inter-
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sects the Nj. Since this happens at every point of No, we have contradicted

the hypothesis that \f(retB)\ -* 1 on all radii except possibly those radii termi-

nating in a set of capacity zero on |* | = 1. Hence FAG{k]) is locally connected.

We now prove that the set Eikt) on Iz| = 1 has logarithmic capacity zero.

We denote by E the set of points of 1*1 = 1 for which lim \/(ret0)\ = 1 by
r->l

definition the capacity of E is zero, where E denotes the complement of E on

1*1=1. Because of the decomposition E{

k

n) = (E{

k

n) Π E) U (E{

k

n) Π E), it will

suffice to remark that E(k] Π E has logarithmic capacity zero, Indeed, by a

recent result of Bagemihl (see Theorem 2 and Corollary I of [1 p. 380]),

which extends an idea in the proof of Theorem δ of [3], it follows that ET Γ\E

is at most enumerable, and consequently has logarithmic capacity zero.

To complete the proof of Theorem 3, we construct a nesting sequence of

components as follows: In G(k] there exists at least one component say GkTv

of θn+u in G{kl+1) there exists at least one component Gj£+2), etc., so that

Otherwise, for some fixed integer p(p = 0, 1, 2, . . . ), the sequence (2) must

terminate G{

k

n) D G£+ 1 ) D . . . ^G(

kl
+P\ with Gun;p) * φ and with no component

of θn+ρ+i inside Gkl+ .

Hence in Gk!,+P) we must have that — — / - > l / ( * ) | > -ΐ -, Now
' n + p n + p + 1

at all points of the frontier of the region G%*p), with the possible exception of

the closed set Ekl+P) of capacity zero, we have lim inf !/(*) I = — ~ χ with
-I

Γ everywhere in G(kn

p

+P).

A simple modification of Theorem 3 shows that we must have

> — T ^ in Gkl+P\ which contradicts the structure of that region. Hence the

sequence (2) cannot terminate.

We may now choose a sequence of points {zp)t zp&G)ίl+p) and form a

simple arc (or polygonal path) connecting Zi with zp which lies in the nested

sequence of components. The intersection Π G(kv

+P) must consist of a single
P

point of I z \ = 1 for, otherwise, this intersection must contain a continuum

joining any two points of the intersection. If this continuum lies on I z I = 1,

we would then contradict the hypothesis that \f(reι*)\ -> 1 on all radii except

possibly those terminating in a set of capacity zero on 1*1=1, while if part of
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this continuum lies in \z\ < 1, we contradict the assumption that/U) 3F 0 in

\z\ < 1. Thus we have constructed an arc terminating at a point et0° of \z| = 1

such that, as z -» ei0* along L, f(z) -> 0. Theorem 3 is then proved.

Since a function of class (A*) is of class (£/*), it follows that we have as

a corollary that if a non-constant function f(z) of class (A*) omits the value

zero, then f(z) must admit zero as an asymptotic value. However, since the

composition of two pseudo-analytic functions is pseudo-analytic, we can prove

a more precise theorem for the class (A*).

THEOREM 4. Let f(z) be of class (A*) in |z | < 1 and omit the value a,

\a\ < 1. Then unless f(z) is identically constant, f(z) must admit a as an

asymptotic value.

Indeed, the function g(z) = -ί--?J~-a-~ is pseudo-analytic of class (A*) is

\z\ < 1 and omits the value 0. Hence g(z) must admit the value 0 as an

asymptotic value, by Theorem 3. Thus a is an asymptotic value of f(z). From

Theorem 5 below we can also conclude that a is a radial limit value.

We next extend to pseudo-analytic functions a well-known theorem of

Lindelof (see, Sur un principe gέnέral de VAnalyse et ses applications a la

thέorie de la representation conforme, Acta Soc. Scient. Fennicae 46, No. 4

(1915), p. 10) for general analytic functions, rather than for functions of class

(A) or class 07).

THEOREM 5. Let w=f(z) be a bounded pseudo-analytic function in \z\ < 1

and let L be a Jordan arc lying in \ z \ < 1 except for one of its end points et0\

If l im/U) =a as z-+ eι0° along L, l im/U) = α exists uniformly in every Stoltz

angle with vertex at j \ arg i 1 - ze~i%\ έ -£- - δ, * > δ > °

Proof. Let t = F~1(w) be the function which maps the Riemann surface of

the inverse function of tv=f(z), one-to-one conformally onto U ! < 1 . The

function t = F~1(f{z))==φ{z) gives a quasi-conformal mapping of \z\ < 1 onto

| ί | < l and by Theorem 1 above, ψ{z) can be extended to give a homeo-

morphism of \z\ -ύl onto \t\ ?== 1. By a recent result of Jenkins (see Lemma 1,

[2], p. 344), it follows that if M is arc in \z\ ^ 1 having one endpoint at et%

on \z I = 1, otherwise lying in \z I < 1 and tending to e p° non-tangentially, i.e., so

as to lie in the angle between two chords of \z \ -1 each with one endpoint at

e*\ (a Stoltz angle) then its image U=φ(M) tinder t = φ(z) tends to eir = ψ(ei(i°)
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non-tangentially. Since t = φ(z) is a homeomorphism, λ = φ(L) also terminates

at / ' on-|fI = 1.

Now Fit)-* a as f -> /'* along λ since Fit) =• Fi<p(z)) ̂  FiF'\fiz)))

= /(z) and /(z) -» a as 2 -» ez0° along L. Since w = Fit) is a bounded analytic

function in If | < 1, it follows from Lindelofs theorem [6; p. 70] that lim Fit)

= a uniformly in any Stoltz angle with vertex at t = etr. Hence Fit) -> a as

f -» £ίT along U and thus l im/U) = a as z -* e%% along M

It is well known3) that an analytic function of class (A) assumes all values

of I z! < 1 except for a possible set of capacity zero. We shall show that an

analogous theorem is valid for class (A*).

THEOREM 6.4) Let ιv=f(z) be α non-constαnt pseudo-analytic function of

class iA*) in \z\ < 1. Then the set of values 10 in \w\ < 1 such that the

equation f(z) — w = 0 has no solution in \z\ < 1 is of capacity zero.

Let S denote the set of values w for which the equation fiz) —w-Q has

no solution in I z \ < 1. By Theorem 4 each point of S is an asymptotic value

of fiz) in ' z I < 1, so that each point of S is arcwise accessible from the interior

of the domain G onto which fiz) maps \z\ < 1. If we map the (necessarily

hyperbolic) Riemann surface R<j of /(z) conformally onto \t\ < 1 by means of

an analytic function t = F~1itv)y the composed function ί = F" ] ί / (2)) is a

univalent pseudo-analytic function in ΐ z j < 1 which gives a quasi-conformal

mapping of | z | < l onto | f | < l . By Theorem 1, the function t-F~ιifiz))

= φ(z) can be extended so as to give a homeomorphism of Ul = 1 onto \t\ = 1.

Denote by Ez the set of points of I2I = 1 for which lim \f(reι0)\ = 1 and by Ez

the complement of Ez. By definition, the capacity of Ez is zero. Denote by Et

and Et the sets of points on \t\ = 1 which, under the homeomorphism t = ψ{z),

correspond to Ez and Ez respectively. By Pfluger's theorem [9], the capacity

of Et is zero and by Fatou's theorem [6 p. 206], the bounded analytic function

tv = Fit) has radial limit values F{ev)) = lim Firet0) for all eχ(> except at most

a set of measure zero. Denote by Φ the set of etύ such that \F(et0)\ < 1. We

remark first that 6 Γ\ Et is empty. Indeed, suppose that 6 Π β is not empty

and let ^ l ^ ^ ' e S Π β . If we denote by L the image under t = ψ{z) of

3 ' See [3] or [10].
41 The author is grateful to Professor Kiyoshi Noshiro who suggested a simplification

for the proof of this theorem.
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the radius with end point eι\ then by Jenkins' theorem [2 p. 344], L is a

Stoltz path terminating at e1%, along which the cluster set of w = Fit) must

lie on the circumference \ιv\-l. On the other hand, we have that limF(ί)

= α, \oc\ < 1, exists uniformly in any Stoltz angle with vertex at t = ew\ This

is a contradiction. Thus we have 6 C St. Accordingly, (£ is of capacity zero

and so of linear measure zero. Hence iv = Fit) is a function of class (A).

Applying a well known theorem of Nevanlinna-Frostman, the theorem is proved.
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