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Introduction. No manifold had been known which can carry two distinct

differentiable structures until the recent important contribution due to J. Milnor

[7] concerning the 7-sphere appeared.

In connection with his work, there are several problems, for example, about

the existence of any other manifold with such property, about the topological

invariance of the Pontrjagin classes of manifolds, etc. some of them will be

discussed in the present note.

First in § 1 and § 2, it will be shown that his method is applicable also for the

case of lδ-sphere to prove existence of many distinct differentiable structures.

Secondly in § 3 we shall give some examples of differentiable manifolds which

are all of the same homotopy type while any homotopy equivalence between

them does not preserve their Pontrjagin classes.* * In addition we shall obtain

the following result. Consider 2w-manifolds X2n whose homology groups

Hi(X2n) = Z for i = 0, n, 2n and Hi(X2n) - 0 for i * 0, n, 2n. Known examples

are the following: complex projective plane (w = 2), quaternion projective plane

(n = 4) and Cay ley projective plane (n - 8). We shall show in § 4 that for n = 4

and 8 there exist several examples of such topological (triangulable) 2w-manifolds

with different homotopy types.

All manifolds considered in this note, with or without boundary, are to be

differentiable of class CΛ (unless otherwise stated) and orientable.

§1. Invariant λ(MVύ)

For every closed, oriented 15-manifold Λflδ satisfying the hypothesis

Received March 28, 1957
*> After completing this note, I had an opportunity to notice Thorn's remark in [16]

and to read Dold's paper [15]. I understand that Dold has given already such examples.
But I should like to preserve the original style of the present note, since it stands on a
different view point. Cf. James and Whitehead [17], also Tamura [18].
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a) there exists a Iβ-manifold BIδ with MιΓi as its boundary,υ

(*) and

b) Hί(M1Ί=02) for * = 3, 4, 7, 8, 11, 12,

we will define a residue class /(iWlδ) of integers modulo 381. This is to be an

invariant of differentiable structure for such a 15-manifold, and will be defined

as a function of the index τ and the Pontrjagin classes pi of the open sub-

manifold B16 = B1G-Mlύ of B16 with the induced differentiable structure. An

orientation of J516 and that of B16 are chosen in such a way that they are

consistent and the homological boundary of thereby oriented S 1 6 is equal to

the standard fundamental cycle of MVo. Then the index means that of the

quadratic form defined by the cup-product over the group H%(B1&> R) with

real coefficients (H* means cohomology group with compact supports).

The hypothesis (#) implies that the inclusion homomorphism

7} : # 4 / (£ 1 6 , M15) -» # 4 ί '(5 1 6)

is an isomorphism for i = 1, 2, 3. This permits us to consider the f-th Pontrjagin

class pi of the manifold B16 as an element of Ht(Bie) for i = l, 2, 3 (cf. [2]).

Let v be the standard generator of i7*(J916) which is dual to the orien-

tation of B16. Then λ(M15) is defined by the following equation3)

λ(M15) v = 3* 52 7 τv + Ίlpzpi + 19$ - 22̂ 2/>\ + 3 $ (mod 381).

THEOREM 1. The residue class λ(M15) modulo 381 does not depend on the

choice of the manifold B1G.

Let B\\ B26 be two manifolds with boundary Λf15. Then C16 = Bί 6 UBϊ 6

is a closed Iβ-manifold which possesses a differentiable structure compatible

with that of B\6 and Έf. Choose that orientation of C16 to be consistent with

the orientation of B}6 (and therefore consistent with the negative orientation

of Bf). Then the proof of Theorem 1 will be proceeded similarly as in the

case of the invariant λ(M7) (See Milnor [7]) by making use of the Hirzebruch's

index formula [5]:

3 ι δ2 7 r(C16) v = 381̂ 4 - 71 A£i - l$Pl + 22p2pl - 3pi,

^ A 15-manifold is not always the boundary of a 16-manifold. See Dold [3].
2) Integer coefficients are to be understood.
3 > As Milnor remarked, for every n — 4k— 1 a residue class λ,(Mrt) modulo Sk u{Lk)

could be defined similarly. (See [5], p. 14.)
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where v is the standard generator of //16(Clfi) and >̂/s are the Pontrjagin

classes of C16. Therefore the proof will be omitted here.

The following property of the invariant λ is clear.

LEMMA 1. If the orientation of M15 is reversed, then x(Mlδ) is multiplied

by - 1.

As a consequence we have

COROLLARY 1. // λ(Mhl) *? 0, then Mu possesses no orientation-reversing

diffeomorphism^ onto itself.

§ 2. Examples of 15-manif olds

Consider 7-sphere bundles over the 8-sphere with the rotation group SO(8)

as structural group. The equivalence classes of such bundles are in one-one

correspondence55 with elements of the 7th homotopy group πΊ(S0(8)) of the

stractural group. This homotopy group is known to be isomorphic to Z+Z,

and a specific isomorphism between these groups is obtained as follows.6) For

each (ft, j) ZΞZ + Z, let fhj : S7 -* SO(8) be denned by fhj(u) v = uhvuf for

v G R3. Cayley number multiplication is understood on the right.7'

Let c be the standard generator for H*{SS) and denote by ξh,j the sphere

bundle corresponding to {fhj) G τr;(SO(8)).

LEMMA 2. The Pontrjagin class p?Xςh,i) equals ± β(ft — j) c.

(The proof will be given at the last of this section.)

For each odd integer k, let M\s be the total space of the bundle ξhj, where

ft and j are determined by the equation ft + j = 1, ft — j — k. This manifold Ml3

has a natural differentiate structure and orientation, which will be described

as follows.

Let the base space S8 be imbedded in R9 by the equation

12 ( 1 Ϋ - 1 • 2 -
1 V7 2 I ~~ 4 ~ ° ' -^ σ =s ,

4 ) A diffeomorphism / is a homeomorphism such that both / and f~ι are differentiate.
5 ' See [10] §18.
6 ) S e e [ 9 ] . B y m a k i n g u s e of t h e fibration of S p i n ( 7 ) b y Gi o v e r S 7 , i t c a n b e p r o v e d

that {/i,-i} generates τz7(SO(7)). See Toda, Saito and Yokota [19].
7 ) The division algebra of Cayley numbers is not associative, but it is known that any

subalgebra generated by two elements is associative. Cf. Dikson, Linear Algebras, Cam-
bridge Tract, 1914.
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where 5, \s\ and a denotes a Cayley number, its norm and a real number

respectively, and is, a) forms a coordinate system of R\ In S8 let Vu VQ be

the complements of (0, 0) and (0, 1) respectively. Consider two spaces VΊxS'

and VoxS7, and identify the two copies of subset (ViΠ Vo) x S7 under the

diffeomorphism

(s, σ th-+ (5, a f')o, f = shts'/\s\

(using Cayley multiplication). The constructed space can be considered as Mιk

and has the natural differentiate structure.

Now define a function / : Ml5 -* R by

(5, a ί)i-> V

(s, a ϊ)o-+$l(Jt')Ni-a,

where OiU) denotes the real part of £ and s denotes the conjugate of s. It is

easily verified that / has only two critical points (namely (0, 1 ± l ) i ) and

that these are non-degenerate. Thus the manifold Mi 5 satisfies the condition

(H) stated in §2 of the paper [7], and therefore by Theorem 2 in [7] (cf. also

[8]) we obtain

LEMMA 3. The manifold Mι£ is homeomorphic to the 15-sphere S15.

Associated with each 7-sphere bundle Ml5 -» S8, there is an 8-cell bundle

Pk ϊH6 -* S8. The total space Wk of this bundle is a differentiate manifold

with boundary Ml5. The cohomology group H\(Bk) is generated by the

element a = pk(c), where 1 denotes the standard generator of HS(SS). Choose

orientation for M* and J31*6 so that the index τ(Bk) will be + 1 .

The tangent bundle of Bk is the Whitney sum of (1) the bundle of vectors

tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The

first bundle (1) is induced (under pk) from £/,,/, and therefore has the Pontrjagin

class p2 = pt( ±6(h-j)ι) = ±6ka. The second is induced from the tangent

bundle of S8, and therefore has second Pontrjagin class zero. Thus we have

%)= ±6ka.

This and Lemma 3 give

LEMMA 4. The invariant λ(Ml5) is the residue class mod 381 of 78(1 -~k2).

Combining the above lemmas we have:

THEOREM 2. For k2 * I2 mod 127 the manifolds M* and MY are homeo-
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morphic but not diffeomorphic.

(For k = ± 1 the manifold M'k is diffeomorphic to S15 but it is not known

whether this is true for any other k.)

COROLLARY 2. There exist such differentiable structures on S15 that cannot

be extended throughout Rm.

Proof of Lemma 2. It is clear that the Pontrjagin class piiζhj) is a

linear function of h and j . Furthermore it is known that it is independent of

the orientation of the fibre. But if the orientation of S7 is reversed (for example

replace t by F), then ς/,,y is replaced by ς-Jt-h. This shows that p2(ςh,j) is

given by an expression of the form c(h — j)c. Here c is a constant determined

by c c =p-Λςι,o) (and therefore c a ^p-ΛBl6)). In order to evaluate the constant

cy we will note that the maniford B{6 is diffeomorphic to the Cayley projective

plane IT with a 16-cell removed.*j The Pontrjagin class p2(7I) is known to be

six times of a generator of H8{Π) (See Hirzebruch's announcement in [63, also

Borel and Hirzebruch [1]). Therefore the constant c must be ±6. This proves

Lemma 2.

§ 3. Certain types of 16-manif olds

Some examples of 16-(respectively 8-)manifolds of the same homotopy

type will be constructed and it will be shown that any homotopy equivalence

between them does not preserve their second (respectively first) Pontrjagin

classes. These can be done by parallel methods for the respective cases, and

therefore we shall treat here mainly the case of the 16-manifolds.

Associated with each of the 7-sphere bundles Ml5, there is an 8-sphere

bundle whose total space Blk is a closed 16-manifold. These 16-manifolds Blk

will serve as the examples mentioned above.

Consider, in general, 8-sphere bundles over the 8-sphere with rotation group

SO(9) as structural group. The equivalence classes of such bundles are in one-

one correspondence with elements of τrτ(SO(9)). This group is known to be

isomorphic6) to Z. Let i : SO(8) -» SO(9) be a natural injection map, then the

induced homomorphism z* : 7Γ7(SO(8)) -• πΛSO{9)) is onto and the kernel of i*

is generated by (fltl) (in the notation of §2, cf. [10] §23).

8) This fact is proved by using the expression by matrices of points of TI. See [4].
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Let fhj ' S7 -* SO(9) be defined by fhj = i ° fhj, then {/i,o} is a generator

of τr7(SO(9)) and we have {7A,/} = (A -jHfi.o). Denote by ?*./ the 8-sphere

bundle corresponding to {fhj). Since the structural group of yjhj is reduced

to SO(8), we have pMhj) = pz(ξhj).

For each odd integer & let B™ be the total space of the bundle ηhj> where

h and j are determined by the equation h+j- 1, h-j- k. This manifold has

a natural differentiate structure and orientation, which will be described as

follows. Let (s, σ), U, r) with | s | 2 = tf(l-*), lf|2 = r ( l - r ) be the coordinates

of the base S3 and the fibre S8 respectively (See §2). Consider two spaces

Vi x S8 and Fo x S\ and identify the two copies of subset ( Fi Π Fo) x S s under

the diffeomorphism

(s, <J ί, r) 3 -> (s, <; ί;, r')o, t' = shtsJ'/\s\, τ' = τ.

The constructed space is considered as B}? and has the natural differentiable

structure. There are two natrual cross sections (s, a 0, 0), (s, <; 0, 1). The

part (r ^ ^ J and the part (r ^ ^ ) °̂  ^ e manifold 2?" are just regarded as

two copies of Bl* previously constructed.

LEMMA 5. The manifold B™ is considered as the sum B™ U Blk of two

copies of Elk with identification of the corresponding points on their boundaries

Mlk. The differentiate structure is compatible tυith that of each Si 6. An ori-

entation of BΊk is consistent ivith that of the one of Έlk and consistent with

the negative orientation of the other Έlk.

Let ??o> tii Bk* -* Bιi be the above inclusion maps, then there are natrual

injection homomorphisms -ηf : H%(Blk) -• H\Bk), i = 0, 1. It is easy to see that

pziBl6) = 7}ΐ(p2(Bk6)) +yΐ(p-ΛBk6)). It follows from Lemma 2:

LEMMA 6. p-AB™) = 6ka0 + βkau ivhere at ~ ηf(a) are generators of H^iB™).

We shall prove the following theorem in the next section:

THEOREM 3. The manifolds Blk and BY have the same homotopy type if

and only if k= ±1 mod 240.*i0

From this theorem and Lemma 6 we have

**> Cf. [15], [17].
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THEOREM 4. The second Pontrjagin class of a (16-)manifold is not, in

general, a homotopical invariant***]

As for the first Pontrjagin class, we can construct 8-manifolds B\ similarly

as Bf which are 4-sphere bundles over the 4-sphere associated with the 3-sphere

bundles Ml which was treated in Milnor's paper [7], We can obtain similarly

(see the next section).

THEOREM 3'. The manifolds B\ and B) have the same homotopy type if

and only if k= ±1 mod 24.**°

THEOREM 4'. The first Pontrjagin class of an (8-)manifold is not, in general,

a homotopical invariant ****

COROLLARY 3. Either {a) the Hureivicz s conjecture^ is negative for the

above cases, or (b) the first Pontrjagin class of a closed S-manifold and the

second Pontrjagin class of a closed 16-manifold are not topological invariants.

§ 4. Homotopy types of the manifolds B1/?.

In this section we shall prove Theorem 3 (and Theorem 3'), and give also

an interesting side-result.

We need some preparation. Let (x, y) denote the coordinate system of R1

and let (5, a) denote that of R9, where x, y, s are Cayley numbers and a a real

number. The 15-sphere S15 in R16 is denned by the equation Ui 2 + \y\2 = 1, and

S s in Rd by the equation \s\2 = σ(l - a) as above.

Consider the map gπj : Slύ -> Sb for any pair of integers h, j which is

defined by ghjix, y) - (\x\i"h'ixhyx\ \y\2). Let the m a p ghj : SΊ x S' -> SΊ be

defined by ghjiu, v) =fhyJ(u)v (as for fhj see §2), then ghj is no other than

the so-called Hopf construction of ghj. The /-homomorphism: πΊiSO{8))

-* 7riδ(Ss) in the sense of G. W. Whitehead [12J is known to be onto in this

case and maps {fh,j) to -{gh,j)- It follows easily

LEMMA 7. ghj represents the element (h + j)σ$ -j E(τ-t) of κ\ΆSi)i ivhere

as is represented by the Hopf fibre map gljQ, and E(τ-) is the image of a gener-

ator τi of πu(S') by the suspension homomorphism and is represented by gι,-ι.

LEMMA 8. a) ( — ί6) ° {ghj} = {gjji), ivhere rs is the standard generator of

π$(Ss). b) Ds, c$] -2ίTs — E(ττ), the left side denotes the Whitehead product.

9) By the Hurewicz's conjecture we mean that two manifolds of the same homotopy
type would be homeomorphic.

***> Cf. [18].
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This is a known result (cf. Toda [11]), but we shall give here a simple

proof. Let K : S l δ -> S15 be denned by κ(x,y) = ix,y) and K' : S8 -> S8 by

Λ'(S, </) = (S, </). Then we have κf ° g/i.y ° K = g , Λ. Since Λ' reverses the orien-

tation of Ss, we obtain a), b) follows immediately from a) and Theorem 5.

15 of G. W. Whitehead [14].

Now we return to our purpose. Let ψ : Sι° -» Mf be an orientation pre-

serving homeomorphism, of which existence is assured by Lemma 3, and denote

by pk the projection Mϊ° -» S8 as in the preceding section. We shall determine

the element of πu>(Ss) represented by the composition map pk ° ψ.

For this purpose, define the following map <ff : S15 -> Ml5 by

φ'(χ, y) =<

- 1 ) * , 2\y?-l ;yl\y\\ for \y\2>\>

(0, 0 2*Vy)o for

for \y\2 ±9

where h and j are the integers determined by the equation h + j-1, h-j = k.

Thus defined map φ' is obviously continuous and, we may consider, of degree 1.

Since ψ1 is homotopic to φ, we have only to consider the map pk ° ψ' : S15

-̂  S8, which is defined by

Pk

for

for

1
2 '

Denote by Es the closed spherical 8-cell defined in R8 by \x\£l. The

boundary (E8 x Es)' of Es x Es is homeomorphic to S15. A specific homeo-

morphism / is defined by

f(Q> r ) =

(<7/V2, on Es x E\

on E8xE\

Further define two maps ψu Ψo (Es x J£8)* -̂  S15 by

Φλq.r) = { Q'
, 0)

. on Es X 5 s ,

on £"8 x E\
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(0, r) on E* x E\

The maps /, 0j, ψ0 are all considered as of degree 1 with respective to the

natural orientation of (Es x E8Y and S15.

Let μ, γ : S15 -> S15 denote two maps of degree 1 and of degree - 1 which

are defined by μ(x, y) = (y, x) and γ(x, y) = (x, y) respectively. And let

I : S8 - S8 be defined by Z(s, a) = (s, 1 - <;).

Set

Fi = X o go,o ° r ° β° Ψi

and

then Fi, Fo are two maps of (E8 x E8)* into S8 and satisfy the following

conditions:

9k ° f' ° /(^, r) on ^ s x £ 8,

(0,0) on ^ ί ,

and
I (0, 0) on £ 8 x E\

"^ Pk° <f' ° Aq, r) on B8 x E 8 .

Denote the 8-cell E* x 1 in E* x £ 8 by E? and 1 x E8 in έ 8 x £ 8 by El

Let /i : {E\t El) -* (S8, ί + ) and /0 : (Ej, J&J) -> (S8, ̂ ) be the restriction of

Fι and Fo respectively, where p* denotes the south pole (0, 0). Since fι(qy 1)

= (VΓH^Γ2^ 1 - \q\2) and /0(l, r) = (VΓ="M2r, 1 - | r | 2 ) , both Λ and /0 repre-

sent the standard generator r8 of 7τ8(S
8).

Now from the theorem of G. W. Whitehead [13] we have

{pk° ψ' «>/} = {Ft} +{F0} + [{/i>, {/«>].

Clearly Fi represents the zero element and Fo represents the element

- ( - cs) ° {ghj}, therefore by using Lemmas 7 and 8 we have

{pk ° ψ) = {pk ° ?>'}= -{gjth} + lc*> <sl = σs - j E{τ7)

THEOREM 5. The projection pk : Mί? -> S δ represents the element

Ί ( ) 0/ 7Γ15(S
S).

THEOREM 5f. T/?̂  projection pu : M* -> S4 represents the element
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vί+ 9 (k-l)E(ωa) of τ:ASi), where v.\ is represented by the Hopf fibre map

and E(ωs) is the image of a generator ω3 of π^iS5) by the suspension homo-

morphism.

Proof of Theorem 3. It is easily seen that the homotopy type of the

manifold B\* is the same as' that of the reduced cell complex Lk constructed

as follows. Consider the union of two copies of 8-sphere with only one point

in common, which is denoted by S8y S\ Attach a 16-cell e16 to Ssy S* by

such a map βk of the boundary eu into S8y Ss that represents the element

{pk σ ψ) + {pk ° ψ) of 7ri5(S
8) + 7ri5(Ss) C τri5(S8 VS8). The constructed cell

complex {S8y S8) U e15 is the above mentioned complex Lk.

Since the homotopy type of Lk is determined by the element {βk} of

τri5(S8V S8) and the order of the element £{π) is known to be 120 (See [9]),

Theorem 3 can be now proved easily. Theorem 3' can be proved similarly.

Now we shall state the side-result. Consider the following hypothesis for

a topological 2 w-manif old X2n:

^ Hi(X2n) = Z for * = 0, n, 2n,

Hi(X2n)=0 for *>0, ny 2n.

Manifolds with the properties ( *) are known for n = 2, 4, 8 (complex, qua-

ternion, Cayley projective planes respectively).

THEOREM76. There exist several topological 2n-manifolds satisfying the

hypothesis (*) and having different homotopy types for the cases n = 4, 8

respectively.

(The author does not know if these topological manifolds admit any differ-

entiable structures. Cf. Problem 5 in [6].)

Let XT be the closed manifold obtained from ΈΓ by collapsing its boundary

(a topological (2« — 1)-sphere) to a point xQ for n = 4, 8. Then the topological

manifolds X\n serve themselves as the examples of the manifolds stated in

Theorem 6.
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