A REMARK ON (π, n) -TYPE CW-COMPLEXES

KENICHI SHIRAIWA

§ 1. Let X be a space whose i-th homotopy group $\pi_i(X)$ vanishes for every $i \ge 0$ except $i = n \ge 1$, and whose n-th homotopy group is isomorphic to a group π . Then it is well known that the polyhedral homotopy type of X is completely determined by π and n. We call such a space a (π, n) -type space. Also it is well known that the minimal complex of the singular complex of a (π, n) -type space is isomorphic to the complex $K(\pi, n)$ defined by S. Eilenberg and S. MacLane [1]. We know also that for any $n \ge 1$ and any group π (abelian if n > 1) there exists a (π, n) -type space (See [6]).

The purpose of this paper is to shown that if π is a finitely generated abelian group and $n \ge 2$, then there exists a (π, n) -type CW-complex whose number of cells is algebraically minimal to realize the integral homology group $H_*(\pi, n; Z)$ of $K(\pi, n)$. Since $H_*(\pi, n; Z)$ is finitely generated in each dimension under our assumption (Cf. [3]), the number of cells of such a complex is finite in each dimension.

The author wishes to express his sincere gratitude to Mr. Nobuo Yoneda for his valuable suggestions in preparing this paper.

§ 2. Throughout this paper we assume π is a finitely generated abelian group, n > 1, and the coefficient group is always the group of integers Z.

We know that $H_*(\pi, n)$ is finitely generated in each dimension, so we can decompose $H_q(\pi, n)$ as a finite sum of cyclic groups.

Let

(1)
$$H_q(\pi, n) = F_1^q + \ldots + F_{\tau_q}^q + T_1^q + \ldots + T_{l_q}^q$$

be such a decomposition, where F_i^q is an infinite cyclic group and T_i^q is a cyclic group of order t_i^q .

To each F_i^q $(i=1,\ldots,r_q)$ we associate a q-cell e_i^q and also to each T_i^q $(i=1,\ldots,l_q)$ we associate a q-cell e_i^q and a (q+1)-cell e_i^q .

Received January 25, 1957.

THEOREM. There exists a (π, n) -type CW-complex X such that

i)
$$X = \bigcup_{q=0}^{\infty} \left(\bigcup_{i=1}^{r_q} e_i^q \bigcup_{i=1}^{l_q} e_i^q \bigcup_{i=1}^{l_q} {}^{\prime\prime} e_i^{q+1} \right),$$

ii)
$$\partial e_i^q = \partial' e_i^q = 0, \qquad \partial'' e_i^{q+1} = t_i^q {}^i e_i^q,$$

where ∂ is the boundary operator of the chain complex C(X) of X.

We prove this theorem in the following manner. Namely we shall construct CW-complexes X_k (k = 0, 1, 2, ...) which satisfy the following conditions 1)—5).

- (1) $X_{k-1} \subset X_k$
- $2) X_k X_{k-1} = \bigcup_{i=1}^{r_k} e_i^k \bigcup_{i=1}^{l_k} 'e_i^k \bigcup_{i=1}^{l_{k-1}} ''e_i^k (X_{-1} = \phi),$
- 3) $\partial e_i^q = \partial' e_i^q = 0, \qquad \partial'' e_i^q = t_i^{q-1} e_i^{q-1} \qquad (q \le k),$
- 4) $\pi_i(X_k) = 0, \quad i \neq n \text{ and } i < k,$ $\pi_n(X_k) \approx \pi, \quad \text{if } k > n.$

By 1) and 2) X_k^q (q-skeleton of X_k) = X_q ($q \le k$), and then by 3) $H_k(X_k)$ is a free abelian group generated by $\{e_i^k, 'e_i^k\}$.

5) If k > n, there exists a homomorphism

$$\varphi_k: H_k(X_k) \longrightarrow H_k(\pi, n)$$

such that $\varphi_k e_i^k$, $\varphi_k' e_i^k$ generates F_i^k , T_i^k respectively and the following sequence

$$\pi_k(X_{k-1}) \xrightarrow{i_*} \pi_k(X_k) \xrightarrow{\eta} H_k(X_k) \xrightarrow{\varphi_k} H_k(\pi, n) \longrightarrow 0$$

is exact, where i is the injection map $X_{k-1} \to X_k$ and η is the Hurewicz homomorphism.

Obviously $X = \bigcup_{k} X_k$ will have the required property of our theorem.

§ 3. We first construct X_k $(k \le n+1)$ as follows:

Let $X_{n+1} = e^0 \smile e_1^n \smile \ldots \smile e_{r_n}^n \smile e_1^n \smile \ldots \smile e_{l_n}^n \smile u e_{l_n}^{n+1} \smile \ldots \smile u e_{l_n}^{n+1} \smile u e_{l_n}^{n+1}$ where e_i^n and e_i^n are n-cells attached to $e_i^n \smile e_i^n$ by a map $\partial_i e_i^{n+1} \to e_i^n \smile e_i^n \to e_i^n$ of degree e_i^n . Let $e_i^n \smile u = u = u$ be the $e_i^n \smile u = u$ by a map $e_i^n \smile u = u$ of degree $e_i^n \smile u = u$ be the $e_i^n \smile u = u$ by a map $e_i^n \smile u = u$ be the $e_i^n \smile u = u$ by a map e_i

Now assume we already have X_0, \ldots, X_k (k > n) with conditions 1)—5). The construction of X_{k+1} requires the following lemma.

Lemma. Denoting by i the injection map $X_{k-1} \to X_k$ we have $H_{k+1}(\pi, n) \approx i_* \pi_k(X_{k-1})$ for $k \ge n$.

(Essentially the same lemma is proved in [4].)

Proof. Let Y be a (π, n) -type CW-complex obtained by killing the homotopy groups of X_k except for $\pi_n(X_k)$ in the usual way, and consider the commutative diagram

$$\pi_{k}(X_{k}, X_{k-1})$$

$$\uparrow_{\partial_{1}}$$

$$\uparrow_{\partial_{1}}$$

$$\uparrow_{\partial_{1}}$$

$$\pi_{k+2}(Y^{k+2}, Y^{k+1}) \xrightarrow{\partial_{2}} \pi_{k+1}(Y^{k+1}, X_{k}) \xrightarrow{i_{2}} \pi_{k+1}(Y^{k+2}, X_{k}) \xrightarrow{j_{2}} \pi_{k+1}(Y^{k+2}, Y^{k+1}) = 0$$

$$\uparrow_{j_{1}}$$

$$\uparrow_{j_{3}}$$

$$0 = \pi_{k+1}(Y^{k+2}) \xrightarrow{} \pi_{k+1}(Y^{k+2}, X_{k-1}) \xrightarrow{\partial_{0}} \pi_{k}(X_{k-1}) \xrightarrow{} \pi_{k}(Y^{k+2}) = 0$$

$$\uparrow_{i_{1}}$$

$$\pi_{k+1}(X_{k}, X_{k-1})$$

in which rows and columns are exact sequences of triples and a pair. Then, since $Y^k = X_k$ and $Y^{k-1} = X_{k-1}$, we have

$$H_{k+1}(\pi, n) \approx \operatorname{Ker} \partial_3 / \operatorname{Im} \partial_2 \approx \operatorname{Ker} \partial_1 \approx \operatorname{Coker} i_1 \approx \operatorname{Coker} \partial \approx i_{\sharp} \pi_k (X_{k-1}).$$

Now by the condition 5) for X_k there exists $\alpha_i \in \pi_k(X_k)$ for each generator $t_i^k{}'e_i^k$ of $\operatorname{Ker} \varphi_k$, such that $\eta(\alpha_i) = t_i^k{}'e_i^k$. We attach new (k+1)-cells ${}''e_i^{k+1}$ $(i=1,\ldots,l_k)$ to X_k each by a representative map $g_i'': \partial {}''e_i^{k+1} \to X_k$ of α_i . Let β_i $(i=1,\ldots,r_{k+1}), \ \beta_i'$ $(i=1,\ldots,l_{k+1})$ be elements of $i_*\pi_k(X_{k-1})$ whose images under the isomorphism $H_{k+1}(\pi,n) \approx i_*\pi_k(X_{k-1})$ generate $F_i^{k+1}, \ T_i^{k+1}$ respectively. We now attach e_i^{k+1} $(i=1,\ldots,r_{k+1})$ and e_i^{k+1} $(i=1,\ldots,l_{k+1})$ by representative mappings $h_i: \partial e_i^{k+1} \to X_{k-1}$ and $h': \partial e_i^{k+1} \to X_{k-1}$ of β_i and β_i' respectively. Then the attached space

$$X_{k+1} = X_k \bigcup_{i=1}^{r_{k+1}} e_i^{k+1} \bigcup_{i=1}^{l_{k+1}} e_i^{k+1} \bigcup_{i=1}^{l_k} e_i^{k+1}$$

obviously satisfies conditions 1) and 2).

To see 3) is satisfied by X_{k+1} , we consider the following commutative diagram

$$\pi_{k+1}(X_{k+1}, X_k) \xrightarrow{\partial_1} \pi_k(X_k)$$

$$\downarrow j$$

$$\pi_k(X_k, X_{k-1})$$

where ∂_1 , ∂_2 are boundary homomorphisms. Since ∂_2 is equivalent to the homology boundary operator of the chain groups of X_{k+1} , and since ∂_1 makes each of the attached (k+1)-cells correspond to the attaching map, 3) follows directly by the construction of X_{k+1} .

To see 4) is satisfied, we only have to prove $\pi_k(\overline{X_{k+1}}) = 0$. In virtue of the exact sequence

$$0 \longrightarrow i_* \pi_k(X_{k-1}) \longrightarrow \pi_k(X_k) \stackrel{\eta}{\longrightarrow} \operatorname{Im} \eta \longrightarrow 0$$

derived from condition 5) for X_k , α_i , β_i and β_i' generate $\pi_k(X_k)$, since β_i , β_i' generate $i_*\pi_k(X_{k-1})$ and $\eta(\alpha_i)$ generate Im η . It follows then that in the exact sequence

$$\pi_{k+1}(\overline{X_{k+1}}, X_k) \stackrel{\partial_1}{\longrightarrow} \pi_k(X_k) \longrightarrow \pi_k(\overline{X_{k+1}}) \longrightarrow 0$$

 ∂_1 is onto. Therefore we obtain $\pi_k(X_{k+1}) = 0$.

Now to get X_{k+1} satisfying 1)—5) we make some improvement on the cells $\overline{e_i^{k+1}}$, $\overline{e_i^{k+1}}$. Namely we first imbed $\overline{X_{k+1}}$ in a (π, n) -type CW-complex Y in such a way that $\overline{X_{k+1}} = Y^{k+1}$. Then exactness holds in the following sequence

(2)
$$\pi_{k+1}(X_k) \xrightarrow{\widetilde{i}_*} \pi_{k+1}(X_{k+1}) \xrightarrow{\eta} H_{k+1}(X_{k+1}) \xrightarrow{\overline{\varphi}_*} H_{k+1}(Y) \longrightarrow 0$$

where i, $\overline{\varphi}$ are injections. (This is essentially the same result as [1].) In fact, consider the following commutative diagram

$$\pi_{k+2}(\overline{Y}^{k+2}, \overline{X_{k+1}})$$

$$\pi_{k+1}(X_k) \xrightarrow{i_*} \pi_{k+1}(X_{k+1}) \xrightarrow{j} \pi_{k+1}(\overline{X_{k+1}}, X_k) \longrightarrow \pi_k(X_k)$$

$$\uparrow \qquad \downarrow \qquad \qquad$$

where ∂_1 is onto and the row sequence is exact, and ∂_2 , ∂_3 are equivalent to the boundary operators of the chain complex of Y. Thus (2) can be identified with the sequence

(2')
$$\pi_{k+1}(X_k) \xrightarrow{\tilde{i}_*} \pi_{k+1}(\overline{X_{k+1}}) \xrightarrow{j} \operatorname{Ker} \partial_3 \longrightarrow \operatorname{Ker} \partial_3 / \operatorname{Im} \partial_2 \longrightarrow 0$$

which is obviously exact in virtue of the above diagram.

Now we identify $H_{k+1}(\pi, n)$ to $H_{k+1}(Y)$, then $\overline{\varphi}_*$ gives an onto homomorphism $\overline{\varphi}_{k+1}: H_{k+1}(\overline{X_{k+1}}) \to H_{k+1}(\pi, n)$. Since $H_{k+1}(\overline{X_{k+1}})$ is a free abelian

group generated by e_i^{k+1} $(i=1, \dots, r_{k-1})$ and e_i^{k+1} $(i=1, \dots, l_{k-1})$, we can select another base $x_1, \dots, x_{r_{k+1}}, x_1', \dots, x_{l_{k+1}}'$ of $H_{k+1}(X_{k+1})$ such that $\overline{\varphi}_{k+1}(x_i)$ and $\overline{\varphi}_{k+1}(x_i')$ generate F_i^{k+1} and T_i^{k+1} respectively. The existence of such a base is readily verified by a quite elementary argument, and so the proof is omitted.

Let

$$x_{i} = \sum_{j} a_{ij} e_{j}^{k+1} + \sum_{j} b_{ij}' e_{j}^{k+1}$$
$$x'_{i} = \sum_{j} c_{ij} e_{j}^{k+1} + \sum_{j} d_{ij}' e_{j}^{k+1}$$

be the transformation of the bases. Then we attach new (k+1)-cells e_i^{k+1} $(i=1,\ldots,r_{k+1})$ to X_{k-1} each by a map representing $\sum_j a_{ij} \beta_j + \sum_j b_{ij} \beta_j'$ and e_i^{k+1} $(i=1,\ldots,l_{k+1})$ to e_i^{k+1} each by a map representing e_i^{k+1} e_i^{k

$$X_{k+1} = X_k \bigcup_{i=1}^{r_{k+1}} e_i^{k+1} \bigcup_{i=1}^{t_{k+1}} e_i^{k+1} \bigcup_{i=1}^{t_k} e_i^{k+1}$$

satisfies the required condition 1)—5). Infact, 1) and 2) are trivial and 3) is verified easily as in the case of X_{k+1} .

Let $g: C(X_{k+1}) \to C(\overline{X_{k+1}})$ be a chain map defined in the following way:

$$\bar{g}: C_i(X_{k+1}) \to C_i(X_{k+1}), \qquad i \leq k$$

is the identity map,

$$\bar{g}: C_{k+1}(X_{k+1}) \to C_{k+1}(X_{k+1})$$

is defined by

(3)
$$g(e_{i}^{k-1}) = \sum_{j} a_{ij} e_{j}^{k-1} + \sum_{j} b_{ij}' e_{j}^{k-1} = x_{i},$$

$$g('e_{i}^{k+1}) = \sum_{j} c_{ij} e_{j}^{k-1} + \sum_{j} d_{ij}' e_{j}^{k-1} = x'_{i},$$

$$\bar{g}(''e_{i}^{k+1}) = \frac{2}{i''e_{i}^{k-1}}.$$

Let g' be the identity map of $X_{k+1}^k = X_k$ to $X_{k+1}^k = X_k$, then the following diagram is commutative.

$$\pi_{k+1}(X_{k+1}, X_k) = C_{k+1}(X_{k+1}) \xrightarrow{g} C_{k+1}(X_{k+1}) = \pi_{k+1}(X_{k+1}, X_k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

Therefore by a lemma of J. H. C. Whitehead [5], g' extends to a map $g: X_{k+1}$

 $\to X_{k+1}$ which realizes $g: C(X_{k+1}) \to C(X_{k+1})$. Therefore g induces an isomorphism of $H_*(X_{k+1}) \to H_*(X_{k+1})$ and g is a homotopy equivalence (See [7]). This proves 4) for X_{k+1} .

Finally let us consider the following commutative diagram

Set $\varphi_{k+1} = \overline{\varphi}_{k+1} \circ g_*$. Then the condition 5) for X_{k+1} is now assured by (2) and (3), and this concludes the proof.

BIBLIOGRAPHY

- [1] S. Eilenberg and S. MacLane: Relations between homotopy and homology groups of spaces I, II, Ann. of Math., 46 (1945), pp. 480-509; 51 (1950), pp. 514-533.
- [2] H. Cartan: Séminaire de topologie algébrique, 1954/55.
- [3] J. P. Serre: Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), pp. 258-294.
- [4] H. Toda: Generalized Whitehead products and homotopy groups of spheres, J. Inst. Polyt. Osaka City Univ., 3 (1952), pp. 43-82.
- [5] J. H. C. Whitehead: On simply connected 4-dimensional polyhedra, Comm. Math. Helv., 22 (1949), pp. 48-92.
- [6] J. H. C. Whitehead: On the realizability of homotopy groups, Ann. of Math., 50 (1949), pp. 261-263.
- [7] J. H. C. Whitehead: On the homotopy type of ANR's, Bull. Amer. Math. Soc., 54 (1948), pp. 1133-1145.

Mathematical Institute Nagoya University