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Let K be any field, and L a separable extension of K of finite degree. L

has a structure of vector space over K, and we shall denote this space by F.

The space of endomorphisms of V will be denoted by @(F). Let x be any

element of L, and Nix) the norm of x relative to the extension L/K. N is

then a function defined on V with values in K. We shall call N the norm

form on F. The multiplicative groups of non-zero elements of K and L will

be denoted by K* and L* respectively. Let H be any subgroup of K*. Then

the elements z of L* such that N(z)ζ~H form a subgroup of L*, which we

shall denote by GH. On the other hand the elements s of @(F) such that

Nisx) = Λis)Nix) with Λ(S)EΞH for all x ε= F, form obviously a subgroup of

GL(V), which we shall denote by G#. GH becomes an algebraic group if

H—K* or {1}. In case H~K*, GH— GK* will mean the group of linear

transformations of V leaving semi-invariant the norm form of L/K and in case

H={l}t GH- β(i} will mean the group of linear transformations of V leaving

invariant the norm form of L/K.

The object of this paper is to investigate the structure of these groups

GH, particularly in the cases H-K* and H- {1}. Our result in most general

form reads in Proposition 2, which is obtained under a sole hypothesis that K

contains infinitely many elements. Theorems 1 and 2 correspond respectively

to the cases H-K* and H~{\). Theorem 2 will show in particular that

G(i} is the algebraic component of Gφ, and if L/K is normal, Gφ may be

considered as a semi-direct productυ of G(i> and the Galois group of L/K.

Theorem 3 gives the center of Gπ.

The significance of the group Gα> as an algebraic group was indicated by

Chevalley.2) The groups Gα> and Gα> may be regarded as analogues of special

Received August 18, 1956.
2> For definition, see p. 127, footnote 3).
2> Thόorie des groupes de Lie: Vol. 2, Hermann, Paris, 1951, p. 170. We shall quote

this book as C. II. We shall also quote Vol. 3 (1955) of the series as C. III.
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orthogonal and orthogonal groups respectively. The groups GH and GH have

arithmetic meanings when K is the field of rational numbers, and we have in

mind to investigate further arithmetic applications on later occasion.

Now, we denote by (& the group of automorphisms of L leaving invariant

each element of K. For simplicity we shall call (S the automorphism group of

L/K. Obviously (S is a subgroup of GL(V). Each element zE:L defines an

endomorphism μ(z) of V by

(1) μ(z)(x)=zx, X&V.

The mapping μ is clearly an isomorphism of V into (£(V), and we have

μ(L*) = μ{ V) ̂ GL( V). It follows at once that μ(GH) C GH and ® C Gω. We

shall set G = Gα> and 6 = Gα }.

PROPOSITION 1. For any HCK*, we have ®Λ/i(G f f) = {ε} where e is f/ze

identity endomorphism in &(V).

Proof. Take an element μ( g) G (S^ μ(GH). Then, it follows that

1 = μ(z)(l) = z and μU) = e.

PROPOSITION 2. Assume that K is an infinite field. Then, for any H<Z K*,

we have GH = μ(GH)@>.

Proof. Let N be a Galois extension of K containing L. We denote by ©

and $ the Galois groups of N/K and N/L respectively. Let σ(ω), ω e JV, <τ e C>

be a normal base of N/K. By some representatives rz , l ^ i ^ w, of right cosets

of £> modulo ^, we put T?* = Σ t f r (ω), I ^ i ^ n, where we set n = 1, the

identity in ©. It follows at once that ^, form a base of L/K. Let F ^ be the

scalar extension of V with respect to N. We define elements λj, 1 ̂  j ^ n>

in the dual space (V2*)* by putting λj(-ηϊ) = τj (τy, ), 1 ̂  f, i ^ ^. Since

det(τj( ηi))*0, λj, l£j£n> form a base of (VN)*. For x = Σ ^ e V, we

have iV(Λτ) = Π(Σ*iry(w)) = Π^yU). We set (T?(SW)(ΛΓ) = ;(s*) for 5 e «(V"),

^G(F i V )*, Λ T G ^ . Then clearly we have φ)λe(VN)* and we get ^(s);/

with akj £Ξ N. Now let s be any element of GH. Then, we have

ΏCΣakjλk)(x) = Λ($)Tlλj(x) for all x & V. As K contains infinitely many
3 k o

elements, this implies that TlCΣjakjλk) = A(s)Tlλj in the symmetric algebra on

VN. Thus, by a well known theorem on the decomposition of polynomials,

there exists an integer k(j) for each j such that Hj)^k(j') if j ^ j\ and
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akj^O if and only if k = k(j).% Therefore we have η(s)λj = ajλkβ), tfy G iV*.

In particular for j = 1, we get s(w) - λiis ηd = (??(s)Λi)(^ ) = aiτkaλvi), 1 ^ i = n.

Since we have Σ r έ α ) W = Σ ω ° ε ^ * and s f ^ E L , this implies that « i G l

and we see that r ^ G β . As we have N(sx) = N(aλτk{i){x)) = N{aι)N(x), it

follows that M«i) = Λ (s)G H. Thus we have s = μ(ai)τka)& M(GH)®. q.e.d.

As an immediate cosequence of the two propositions, we get the following

COROLLARY. If K contains infinitely many elements, GH is a semi-direct

product of μ(GH) and ©3).

Suppose now K is infinite. We shall restrict our attention to the case

where H is algebraic, i.e. H~K* or i/={l}. The mapping μ, which is a

linear isomorphism of V onto μ(V), gives also a homeomorphism of V onto

μ(V) in the sense of Zariski-topology, and every closed set in μ(V) is also

closed in @(F) since μ(V), being a linear subspace of 8(V), is closed in @(V).

Also each irreducible set of F is mapped on an irreducible set of μ{V) and

vice versa, and every irreducible set in μ(V) is irreducible in @(F).4) Since

£*(£*) = μ(V) ^GL(V), μ{L*) is an algebraic group on V and is irreducible as

an open subset in μ(V). By Proposition 2, the group Qκ* has μ(Gκ*) = μ(L*)

as a subgroup of a finite index. Thus we get by the above corollary the

following

THEOREM 1. Let K be an infinite field and L/K a separable extension of

finite degree. Then, the group Gκ* of all linear transformations of L over K

which leave semi-invariant the norm form of L/K is algebraic on the vector

space L over K and μ(L*) is the algebraic component of Gκ*> μ being defined

by (1). Furthermore Gκ* is the semi-direct product of μ(L*) and ©, where ©

is the automorphism group of L/K.

Next, we shall consider the group 6, i.e. the group of all linear transfor-

mations of V leaving invariant the norm form of L/K. Of course G is an

algebraic group on V. G being closed in V, μ(G) is also algebraic. We

define a raitonal representation N of μ(L*) by N(μ(x)) =N(x), x&L*. Let

H be the smallest algebraic group containing N{μ(L*)). Then, H is irreducible

3) We say that a group G is a semi-direct product of a normal subgroup N and a
subgroup H if we have G = N H and NCιH={e), e being the identity in G. We see that

is normal in GH by the relation aμ(z)a^1 = μ(c(z))^ z^L}

Cf. C. III. Chap. VI §1,
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and H=.{1} or H=K*. But as K is infinite, N(μ(L*))m{l) and we have

H=K*. Since μ(G) is the kernel of the representation N, it follows that

diniκ μ(G)^n — lj where n = [Z : /Π 5) On the other hand, we shall define a

homomorphism p of L* into itself by p(x) = x~nN(x), xf-L*. Obviously we

have ρ(Π*)CG and p induces a rational representation p of #(!,*) in μ(G) by

p(μ(x)) = μ(p(χ))t xE:Lλ. We denote by # the smallest algebraic group

containing p(μ(L*)). If we take an algebraically closed field M containing K,

then we have # l z = (p)M(μ(L*)M).6) We denote by μM the unique extension of

μ to F* = ZΛ Let (Z,*)* be the group of all invertible elements of LM which is

considered as an algebra over M. It follows that μM{{LMf) = μM(LM) ,^GL( VM)

- μ(L)^GL( VM) - μ(L*)^GU VM) = M^*)"', where ^(L) and ^(L*) mean the

closures of μ(L) and ^(L*) in VM respectively. Let pM be the unique extension

of p to (LM)*. It follows that άimκH = dimMHM = dimM(p)M(μ{L*)M) =

άimM μM(pM(LM)*)) =dimM pM((LM)*). Since L/iΓ is separable and M is alge-

braically closed, we have VM - LM = M^i + . . . + Men with pimitive idempotents

^ , 1 ^i ^n. Let # = Σ Λ /^ be in the kernel of the homomorphism ρM. From
i

the relation NM{χ) =xn,7) it follows that (xι ΛΓΛ)1 = (Λ?I ΛΛ)(βi+ . . .

+ en) = Aτf̂ i+ . . . + Xnen and that # " = . . . . — Λ:«. Therefore the kernel of

pJί is of 1-dimension over M, as it has M* as a subgroup of finite index, and

so the kernel of (p)M is also of 1-dimension over M. M being algebraically

closed, it follows that άimκH— άimM(p)M(μ(L*)M) = n — 1.8) Since i/ is con-

tained in μ(G), we get at once dimκμ(G) ^n — 1. Hence, we have dim^^(G)

= n — l. Now, let μ(Gi) be the algebraic component of μ(G) and let G-Gi +

. . . -f Gr be the decomposition of G into the cosets modulo d . Thus each

Gi is irreducible and d\mκ Gi -n-\. Let %, l ^ i ^ r, be prime ideals of the

polynomial ring ϋΓ[Zi, . . . , X«] associated to Gi respectively. As is well

known each $/ is principal: φ, = (P/(Z)), X = (Xi, . . . , Xn). Obviously the

ideal % = %^ . . . ^ φ r = φ x φ r is associated to G. On the other band,

every element in G satisfies the equation F(X) = UCΣjXiτj(r/i)) —1 = 0, where

5> C. II. Chap. II. §6. Prop. 8. If the characteristic of K is zero, we get dimKβ(G) =
n-1 by C. II. Chap. II. §14. Theoreme 12.

6 ) C. II. Chap. II. §5. Prop. 4, §7. Prop. 2. Cor. 1.
7) jsfM m eans the extension of N to VM. It is also the norm of the algebra LM over

M with respect to the regular representation.
s> C. II. Chap. II. §6. Prop. 8. Cor.
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Γ/, ra have the same meaning ,as in Proposition 2. Since F(X) + 1 splits into

the product of different n linear factors in the algebraic closure of K, F(X) is

an irreducible polynomial. Since F(X)^%, we have r = l and it follows that

% = % = {F(X)) is the associated ideal to G. Thus G, or ;t(G), is irreducible

and we get the following

THEOREM 2. Let K be an infinite field, and L/K a separable extension of

finite degree n. Then, the group G of all linear transformations of L over K

which leave invariant the norm form of LlK is an algebraic group of dimension

n — 1 and μ(G) is the algebraic component of Gy μ being defined by (1).

Furthermore G is the semi-direct product of μ{G) and ®, where ® is the auto-

morphism group of LlK.

Lastly, we shall determine the center of the QH defined over an arbitrary

field K

PROPOSITION 3. Let K be an arbitrary field and LlK a separable extension

of degree n. Then, there exists a base ωι, 1 ^ i ^ n of LlK with N(ωi) = 1.

Proof. Suppose first that K is infinite. Let L(G) be the linear closure of

G in V. Clearly we have άimκL(G) ^άimκG -n - 1. (Theorem 2). Since G is

irreducible and closed and is not a linear space, L(G) must be the whole space

V.9) Next, suppose that K is a finite field with q elements. Thus, the number

of elements in G is = (qn - l)/(q - 1). Let r be the dimension of L(G). Then,

we have (qn - 1)/(q - 1) ^ q r . From this, it follows that <f(q-l) = <f+1~q£s

qn - 1 > qn - q and r + 1 > n, namely r = n. Therefore we have again L(G) = V.

This proves our proposition.

THEOREM 3. Let K be an arbitrary field and LlK a separable extension of

degree n. Then the center of Gπ is the image of the group WΉ — {a; a EL G//,

σ(a) -a, σ E: ($} by the isomorphism μ defined by (1).

Proof. Let C be any element of the center of &H. Let ωι be a base of

LlK with N(ωi) = 1, 1 ^ i ^ n (Proposition 3). As we have G C G f f , C must

commute with μ(ωi) and it must commute with all μ(z), zE:L. Thus it

follows t h a t (Cμ(z))(l) = C(z) =; μ(z)C(l) = zC{l). Hence, it follows that C(z)

= az and a = C(l) EΞ ZΛ On the other hand, C must commute with each a £• ($f

C. III. Chap. VI. §1 Prop.
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Thus, we have ζσ(l) =a = σζ(l) = σ(a). Since C G G ^ , we get N(a)&H.

Conversely, it is easy to see that any μ(a) with β £ WΉ is in the center of GH

either by Proposition 2 or by the fact that every a G WH is an element in K if

K is finite.

COROLLARY. Under the same assumption as in Theorem 3, suppose that

LIK is a Galois extension. Then the center of GH is the image of WH-

{ay « G r , an^H).

Remark 1. We can define the norm form for any algebraic extension LIK

of finite degree by means of the regular representation. E.g. if L/K is a

purely inseparable extension of degree p*9 where p is the characteristic of if,

we have Nix) =xί)J, xE:L and we see at once that μ(G) =G= {ε}. Thus, we

have a simple example showing that the dimension of the kernel of a rational

representation p of an algebraic group G is strictly smaller than the difference

of the dimension of G and that of p(G).m

Remark 2. The conclusion of Proposition 2 does not hold in general if K

is a finite field. E.g. let K=GF(2), ZL:Kl = 3. Since if* is of order 1, GH =

Q = GL(V). Thus, the order of Q is = (2 3 - 1)(2 3-2)(2 3-2 2) = 168.U) On the

other hand, μ(K*) = μ(G) is of order 2 3 - l = 7. By Proposition 1, the order

of μ(L*)® = 3.7 = 21<168. The center of G is of order 1 (Theorem 3, Co-

rollary). Furthermore this 6 is simple as is well known.Π) Thus, it would be

of some interest to study the structure of the finite group 6 for these cases.
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10> C.f. C. II. Chap. II. §6. p. 119.
11) C.f. Dickson, Linear Groups, pp. 77-83.




