ON THE DİMENSION OF MODULES AND ALGEBRAS, VII ALGEBRAS WITH FINITE-DIMENSIONAL RESIDUE-ALGEBRAS

J. P. JANS and TADASI NAKAYAMA

It was shown in Eilenberg-Nagao-Nakayama [3] (Theorem 8 and §4) that if Ω is an algebra (with unit element) over a field K with $(\Omega: K)<\infty$ and if the cohomolgical dimension of $\Omega, \operatorname{dim} \Omega$, is $\leqq 1$, then every residue-algebra of Ω has a finite cohomological dimension. In the present note we prove a theorem of converse type, which gives, when combined with the cited result, a rather complete general picture of algebras whose residue-algebras are all of finite cohomological dimension. Namely, if Λ is an algebra over a field K with $(A: K)<\infty$ and if

$$
\operatorname{dim}\left(\Lambda / N^{2}\right)<\infty,
$$

where N is the radical of Λ, then Λ is a homomorphic image of an algebra Ω over K with $(\Omega: K)<\infty$ such that

$$
\operatorname{dim} \Omega \leqq 1 .
$$

We may further impose the condition

$$
\Omega / M^{2} \approx \Lambda / N^{2}
$$

where M is the radical of Ω, and with this additional condition the algebra Ω and the homomorphism $\Omega \rightarrow \Lambda$ are determined uniquely up to an isomorphism.

Thus, algebras with cohomological dimension $\leqq 1$ are in a sense "prototypes" for algebras with finite-dimensional residue-algebras. The construction of Ω and the homomorphism $\Omega \rightarrow \Lambda$ is essentially what was employed by Hochschild $[5,6]$ in connection with his notion of "maximal algebra" and by Jans [3] as free algebras.

We shall start with semi-primary rings (in the sense in [3]). For them and for their global dimensions we shall prove a theorem which is quite similar as above but which assumes an additional condition on "splitting".

[^0]
§ 1. Rings with $N^{2}=0$

In this section Λ will denote a semi-primary ring with radical N such that $N^{2}=0$. The quotient ring $\Gamma=\Lambda / N$ is then semi-simple and N is a two-sided Γ-module.

Lemma 1. Let e, e^{\prime} be primitive idempotents in Γ such that

$$
N e \neq 0 \neq e N e^{\prime} .
$$

Then

$$
0 \leqq 1 \cdot \operatorname{dim}_{\Delta} N e<1 \cdot \operatorname{dim}_{\Delta} N e^{\prime} .
$$

Proof. Our lemma (as well as Proposition 2 below) follows readily from the consideration of "minimal resolution" (i.e. a projective resolution consisting of "minimal homomorphisms") (Eilenberg-Nakayama [4], Eilenberg [2]). But, since we are dealing here with a very simple situation, we shall give a direct proof. Since $N N e^{\prime}=0$, the left λ-module $N e^{\prime}$ is semi-simple and thus $N e^{\prime} \approx \Sigma \Gamma e_{\alpha}$ where the sum is direct and $\left\{e_{\alpha}\right\}$ is an indexed family of primitive idempotents in Γ. Since $e N e^{\prime} \neq 0$ we have $e \Gamma e_{\alpha} \neq 0$ for at least one index α. Thus $e_{\alpha} \approx e$ (meaning $\Gamma e_{\alpha} \approx \Gamma e$) and $N e^{\prime}$ has a direct factor isomorphic with Γe. Thus

$$
1 . \operatorname{dim}_{\Delta} T e \leqq 1 \cdot \operatorname{dim}_{\Delta} N e^{\prime}
$$

Next consider the exact sequence $0 \rightarrow N e \rightarrow \Lambda e \rightarrow \Gamma e \rightarrow 0$. If Γe is not Λ-projective, then

$$
\text { 1. } \operatorname{dim}_{\Delta} \Gamma e=1+1 \cdot \operatorname{dim}_{\Delta} N e \geqq 1
$$

which implies the desired result. If Γe is A-projective, then the exact sequence splits and we have a direct sum $\Lambda e=N e+1$ where \mathfrak{r} is a left ideal of A. Multiplying by N we find $N e=N^{2} e+N f=N l \subset$. Thus $N e=0$ contrary to hypothesis.

A sequence (e_{0}, \ldots, e_{n}) of primitive idempotents in Γ is called connected if $e_{i-1} N e_{i} \neq 0$ for $i=1, \ldots, n$. The number n is called the length of the connected sequence. It is clear that if in a connected sequence an idempotent is replaced by an isomorphic one, the sequence remains connected.

Proposition 2. A connected sequence of length n exists if and only if $\operatorname{gl} \cdot \operatorname{dim} \Lambda \geqslant n$.

Proof. We may assume $n \geqq 1$. The condition $\operatorname{gl} \cdot \operatorname{dim} \Lambda \geqq n$ is equivalent to

1. $\operatorname{dim}_{\Delta} n \geqslant n-1$. Let $\left(e_{0}, \ldots, e_{n}\right)$ be a connected sequence. Then, by Lemma 1 ,

$$
0 \leqslant 1 \cdot \operatorname{dim}_{\mathrm{A}} N e_{i}<1 \cdot \operatorname{dim}_{\Delta} N e_{i+1} \quad \text { for } i=1, \ldots, n-1
$$

Thus $1 . \operatorname{dim}_{\Delta} N e \geqslant n-1$, whence $1 \cdot \operatorname{dim}_{\Delta} N \geqslant n-1$.
Suppose conversely $1 \cdot \operatorname{dim}_{\Delta} N \geqslant n-1$. Since N is the direct sum of modules of form $N e$, where e is a primitive idempotent in Γ, there exists a primitive idempotent e_{n} in Γ such that $1 . \operatorname{dim}_{\Delta} N e_{n} \geqslant n-1$. Since $N N e_{n}=0$, the 1 -module $N e_{n}$ is semi-simple and is therefore the direct sum of modules Γe. Thus there exists a primitive idempotent e_{n-1} in Γ such that
(i) Γe_{n-1} is isomorphic with a direct suumand of $N e_{n}$,
(ii) $1 . \operatorname{dim}_{\Delta} \Gamma e_{n-1} \geq n-1$.

Since $e_{n-1} \Gamma \quad e_{n-1} \neq 0$ we have $e_{n-1} N e \neq 0$. Further, from the exact sequence $0 \rightarrow$ $N e_{n-1} \rightarrow \Lambda e_{n-1} \rightarrow \Gamma e_{n-1} \rightarrow 0$ we deduce that $1 \cdot \operatorname{dim}_{\Lambda} N e_{n-1} \geqslant n-2$. Continuing in this fashion we obtain a connected sequence (e_{1}, \ldots, e_{n}) such that $1 . \operatorname{dim}_{\Delta} N e_{i}$ शे $i-1$. In particular, $1 . \operatorname{dim}_{\Delta} N e_{1} \geqslant 0$ i.e. $N e_{1} \neq 0$. There exists therefore a primitive idempotent e_{0} in Γ such that $e_{0} N e_{1} \neq 0$. Thus (e_{0}, \ldots, e_{n}) is a connected sequence of length n as desired.

Corollary 3. Let A be a semi-primary ring with radical N such that $N^{2}=$ 0 . Let l be the number of simple components of the semi-simple ring $\Gamma=\Lambda / N$. Then

$$
\operatorname{gl.} \operatorname{dim} A<l \quad \text { or }=\infty .
$$

Proof. Assume gl.dim $\Lambda \geqslant l$. Then there exists a connected sequence (e_{0}, \ldots, e_{l}) of primitive idempotents in Γ. At least two of these idempotents must be isomorphic and therefore there exists a connected sequence ($e_{0}^{\prime}, \ldots, e_{n}^{\prime}$) with $e_{0}^{\prime}=e_{n}^{\prime}$. This implies the existence of connected sequences of any length. Thus gl. $\operatorname{dim} A=\infty$.

§ 2. The "maximal" ring Ω

Let Γ be a semi-simple ring and A a two-sided Γ-module. Define $A^{(0)}=\Gamma$, $A^{(n+1)}=A^{(n)} \otimes_{\Gamma} A$. Then define the (graded) ring

$$
\Omega=\sum_{i=0}^{\infty} A^{(i)} \quad \text { (restriced direct sum) }
$$

with multiplication defined by the obvious mapping $A^{(p)} \times A^{(q)} \rightarrow A^{(p+q)}$. Set
$M=\sum_{i=1}^{\infty} A^{(i)} . \quad$ Then

$$
\begin{aligned}
& \Omega=\Gamma+M=\Gamma+A+M^{2} \\
& M^{k}=\sum_{i=0}^{\infty} A^{(k+i)}
\end{aligned}
$$

The ring $\Sigma^{\prime}=\Omega / M^{2}$ may be identified with the split extension $\Gamma+A$ (in which $A^{2}=0$). Clearly

$$
M=\Omega \otimes_{\Gamma} A
$$

Since A is projective as a left Γ-module, it follows that M is projective as a left Ω-module.

Proposition 4. The following conditions are equivalent:

$$
\begin{equation*}
\operatorname{gl} \cdot \operatorname{dim} \Sigma=n, \tag{a}
\end{equation*}
$$

(b)

$$
A^{(n+1)}=0, A^{(n)} \neq 0 .
$$

If these conditions hold then Ω is a hereditary (i.e. gl.dim $\Omega \leqq 1$) semiprimary ring with radical M such that $M^{n+1}=0, M^{n} \neq 0$.

Proof. Assume $A^{(n)} \neq 0$. Then there exist elements $a_{1}, \ldots, a_{n} \in A$ and primitive idempotents $e_{1}, f_{1}, \ldots, e_{n}, f_{n} \in \Gamma$ such that

$$
e_{1} a_{1} f_{1} \otimes \ldots \otimes e_{n} a_{n} f_{n} \neq 0
$$

in $A^{(n)}$. Since $e_{i} a_{i} f_{i} \otimes e_{i+1} a_{i+1} f_{i+1}=e_{i} a_{i} \otimes f_{i} e_{i+1} a_{i+1} f_{i+1}$ it follows that $f_{i} e_{i+1} \neq 0$ for $i=1, \ldots, n-1$. Thus $f_{i} \approx e_{i+1}$ for $i=1, \ldots, n-1$ and therefore (e_{1}, f_{1}, f_{2}, \ldots, f_{n}) is a connected sequence of idempotents in Γ, in the sense of the preceding section (with Λ replaced by Σ). Thus, by Proposition 2, $\operatorname{gl} \operatorname{dim} \Sigma \geqq n$.

Now assume $A^{(n+1)}=0$. Then Ω is semi-primary with radical M and $M^{n+1}=0$. Since M is projective as a left Ω-module it follows that $\operatorname{gl} \operatorname{dim} \Omega \leqq 1$, i.e. Ω is hereditary. By Corollary 11 of [3] we have $\operatorname{gl} \cdot \operatorname{dim} \Sigma=\operatorname{gl} \cdot \operatorname{dim}\left(\Omega / M^{2}\right)$ $\leqq n$. This concludes the proof.

§3. Ring in split form

Let A be a semi-primary ring with radical N. A splitting for Λ is a direct sum decomposition

$$
A=\Gamma+A+N^{2}
$$

such that

$$
\Gamma \Gamma \subset \Gamma, \Gamma A \subset A, A \Gamma \subset A, A+N^{2}=N
$$

We have $1 \in \Gamma$. Indeed let $1=\gamma+(1-\gamma)$ with $\gamma \in \Gamma, 1-\gamma \in N$. Then $\gamma=1 \gamma=$ $\gamma^{2}+(1-\gamma) \gamma$ with $\gamma^{2} \in \Gamma$ and $(1-\gamma) \gamma \in N$. Thus $(1-\gamma) \gamma=0$. Consequently $(1-\gamma)^{2}=1-\gamma$. Since $1-\gamma \in N$ it follows that $1-\gamma=0$ i.e. $1=\gamma \in \Gamma$. Thus Γ is a subring of Λ which may be identified with the semi-simple ring Λ / N, and A is a two-sided Γ-module which may be identified with N / N^{2}. The ring Λ / N^{2} may be identified with the split extension $\Sigma=\Gamma+A$.

Theorem 5. Let a be a semi-primary ring with radical N such that A admits a splitting and

$$
\operatorname{gl.} \operatorname{dim}\left(A / N^{2}\right)=n<\infty .
$$

Then there exist a hereditary semi-primary ring Ω with radical M and a ring epimorphism $\varphi: \Omega \rightarrow \Lambda$ such that $\varphi^{-1}\left(N^{2}\right)=M^{2}$ i.e. φ induces an isomorphism

$$
\Omega / M^{2} \approx \Lambda / N^{2}
$$

The pair (Ω, φ) is determined uniquely up to an isomorphism. Moreover, the ring Ω admits a splitting, $M^{n+1}=0$, and $N^{n+1}=0$.

Corollary 6. With 4 as in Theorem 5

$$
\operatorname{gl.dim}(A / a)<\infty
$$

for every two-sided ideal a in A. If $a \subset N^{2}$ then

$$
\operatorname{gl} \cdot \operatorname{dim}(\Lambda / a) \leqq n .
$$

Inparticular,

$$
\text { gl. } \operatorname{dim} A \leqq n .
$$

If l is the number of simple components of $\Gamma=\Lambda / N$ then $n<l$.
Proof. Let $\dot{A}=\Gamma+A+N^{2}$ be a splitting for Λ. Let Ω be the ring constructed in $\S 2$ using the ring Γ and the two-sided Γ-module A. Since $\Sigma=\Lambda / N^{2}$ we have gl. $\operatorname{dim} \Sigma=n<\infty$. Thus, by Proposition $4, \Omega$ is a semi-primary ring with radical M and $M^{n+1}=0$. Define the ring homomorphism $\varphi: \Omega \rightarrow A$ by setting $\varphi(\gamma)=\gamma$ for $\gamma \in \Gamma$ and $\varphi\left(a_{1} \otimes \ldots \otimes a_{k}\right)=a_{1} \ldots a_{k}$ for $a_{1} \otimes \ldots \otimes a_{k}$ $\in A^{(k)}, k>0$. We have $A \subset \varphi(M) \subset N$. It follows that $N=\varphi(M)+N^{2}$. There-
fore $N=\varphi(M)$ and φ is an epimorphism. Clearly Ω admits a splitting $\Omega=\Gamma+$ $A+M^{2}$, and $\varphi^{-1}\left(N^{2}\right)=M^{2}$.

Let Ω^{\prime} be another hereditary semi-primary ring with radical M^{\prime} and let $\varphi^{\prime}: \Omega^{\prime} \rightarrow \Lambda$ be a ring epimorphism such that $\varphi^{\prime-1}\left(N^{2}\right)=M^{\prime 2}$. There results for Ω^{\prime} a splitting $\Omega^{\prime}=\varphi^{\prime-1}(\Gamma)+\varphi^{\prime-1}(A)+M^{\prime 2}$. If we identify $\varphi^{\prime-1}(\Gamma)$ with Γ and $\varphi^{\prime-1}(A)$ with A using the mapping φ^{\prime} we obtain a splitting $\Omega^{\prime}=\Gamma+A+M^{\prime}$ and φ^{\prime} is the identity on $\Gamma+A$. If we replace Λ by Ω^{\prime} in the construction above we obtain an epimorphism $\psi: \Omega \rightarrow \Omega^{\prime}$ such that $\psi^{-1}\left(M^{\prime 2}\right)=M^{2}$. Since the ring homomorphisms $\varphi, \varphi^{\prime} \psi: \Omega \rightarrow \Lambda$ coincide on $\Gamma+A$, it follows that $\varphi=\varphi^{\prime} \psi$. There remains to be shown that ψ is an isomorphism. Let a be the kernel of ψ. Then $\Omega / a \approx \Omega^{\prime}$ and $a \subset M^{2}$. It follows then from Theorem I of [4] (or [3], Proposition 10 and Remark there) that $a=0$. Since $M^{n+1}=0$ and $N=\varphi(M)$ we have $N^{n+1}=0$. This concludes the proof of the theorem.

The last statement of the corollary follows from Corollary 3 applied to the ring $\Sigma=\Gamma+A=\Lambda / N^{2}$.

Let a be any two-sided ideal in Λ and let $b=\varphi^{-1}(a)$. Then $\Lambda / a \approx \Omega / b$ so that by [3], Theorem 8, gl. $\operatorname{dim}(\Lambda / a)<\infty$.

If $a \subset N^{2}$ then $b \subset M^{2}$ and the conclusion that $\operatorname{gldim}(\Lambda / a) \leqq n$ is then a consequence of

Proposition 7. Let Ω be a hereditary semi-primary ring with radical M such that $M^{n+1}=0$. For any two-sided ideal $b \subset M^{2}$

$$
\operatorname{gl.dim}(\Omega / b) \leqq n
$$

Proof. Assume n even, $n=2 i$. We may assume $i>0$ since if $i=0$ then $M=0, b=0$ and $\Omega=\Omega / b$ is semi-simple. Since $b \subset M^{2}$ and $M^{2 i+1}=0$ it follows that $b^{i} M=b^{i+1}=0$. Thus [3] Proposition 9, condition (iii') implies $\operatorname{gl} \operatorname{dim}(\Omega / b)$ $\leqq n$.

Let n be odd, $n=2 i+1$. We may assume $i>0$ since if $i=0$ then $n=1$, $M^{2}=0, b=0$ and $\operatorname{gl} \cdot \operatorname{dim}(\Omega / b)=\operatorname{gl} \cdot \operatorname{dim} \Omega \leqq 1$ by hypothesis. Since $b \subset M^{2}$ and $M^{2 i+2}=0$ it follows that $b^{i+1}=0$. Thus [3] Proposition 9, condition (iii) implies $\operatorname{gl.dim}(\Omega / b) \leqq n$.

Next we consider a semi-primary ring Λ, with radical N and admitting a splitting $\Lambda=\Gamma+A+N^{2}$, which satisfies

$$
\operatorname{gl.} \operatorname{dim}\left(A / N^{2}\right)=\infty
$$

contrary to Theorem 5 . Again construct Ω as in $\S 2$ using the ring A and the two-sided Λ-module A, and let M have the same significance as before. Let $N^{h}=0$, Then Λ is a homomorphic image of Ω / M^{m} for every $m \geqslant h$. We want to show

Proposition 8. (Under our assumption gl. $\operatorname{dim}\left(\Lambda / N^{2}\right)=\infty$) the semi-primary ring Ω / M^{m} has gl.dimension ∞ for infinitely many m.

Proof. By our assumption gl.dim $\left(\Lambda / N^{2}\right)=\infty$, there exists a connected sequence $\left(e_{0}, e_{1}, \ldots, e_{k-1}, e_{0}\right)(k \neq 0)$ of primitive idempotents in Γ, with respect to Λ / N^{2}, whose first and last terms coincide. We contend that gl.dim $\left(\Omega / M^{2 k}\right)=\infty$. To see this, consider the left $\left(\Omega / M^{2 k}\right)$-module $\left(\Omega / M^{k}\right) e_{0}$. We have the exact sequence

$$
0 \longrightarrow\left(M^{k} / M^{2 k}\right) e_{0} \longrightarrow\left(\Omega / M^{2 k}\right) e_{0} \longrightarrow\left(\Omega / M^{k}\right) e_{0} \longrightarrow 0
$$

Let $1=e_{0}+\Sigma f_{\nu}$ be a decomposition of 1 into mutually orthogonal primitive idempotents in Γ. We have $M^{k}=\Omega \otimes_{\Gamma} A^{(k)}=\Omega \otimes_{\Gamma} e_{0} A^{(k)}+\Sigma \Omega \otimes_{\Gamma} f_{\nu} A^{(k)}$ (direct). Hence $M^{k} e_{0}=\Omega \otimes_{\Gamma} e_{0} A^{(k)} e_{0}+\Sigma \Omega \otimes_{\Gamma} f_{\nu} A^{(k)} e_{0}$ (direct). As $M^{2 k}=M^{k} \otimes_{\Gamma} A^{(k)}$, we have similarly $M^{2 k} e_{0}=M^{k} \otimes_{\Gamma} e_{0} A^{(k)} e_{0}+\Sigma M^{k} \bigotimes_{\Gamma} f_{\nu} A^{(k)} e_{0}$ (direct). Then we obtain readily

Since ($e_{0}, e_{1}, \ldots, e_{k-1}, e_{0}$) is connected, we have here $e_{0} A^{(k)} e_{0} \neq 0$. On taking a left $e_{0} \Gamma e_{0}$-basis of $e_{0} A^{(k)} e_{0}$ we then obtain an isomorphism

$$
\left(M^{k} / M^{2 k}\right) e_{0} \approx\left(\Omega / M^{k}\right) e_{0}+W \quad(\text { direct })
$$

where W is a left $\left(\Omega / M^{2 k}\right)$-module whose structure does not concern us. Thus we have the exact sequence

$$
0 \longrightarrow\left(\Omega / M^{k}\right) e_{0}+W \longrightarrow\left(\Omega / M^{2 k}\right) e_{0} \longrightarrow\left(\Omega / M^{k}\right) e_{0} \longrightarrow 0
$$

Now, suppose $r=1 \cdot \operatorname{dim}_{\Omega / M^{2 k}}\left(\Omega / M^{k}\right) e_{0}<\infty$ and let

$$
0 \longrightarrow X_{r} \longrightarrow \ldots \longrightarrow X_{1} \longrightarrow X_{0} \longrightarrow\left(\Omega / M^{k}\right) e_{0} \longrightarrow 0
$$

be a shortest $\left(\Omega / M^{2 k}\right)$-projective resolution of $\left(\Omega / M^{k}\right) e_{0}$; we have $r>0$ since ($\left.\Omega / M^{k}\right) e_{0}$ is not $\left(\Omega / M^{2 k}\right)$-projective. We have then an exact sequence

$$
0 \longrightarrow X_{r}+Y_{r} \longrightarrow \ldots \longrightarrow X_{0}+Y_{0} \longrightarrow\left(\Omega / M^{2 k}\right) e_{0} \longrightarrow\left(\Omega / M^{k}\right) e_{0} \longrightarrow 0
$$

where sums are all dirrect and where $0 \longrightarrow Y_{r} \longrightarrow \ldots \longrightarrow Y_{0} \longrightarrow W \longrightarrow 0$ is an
exact sequence such that all Y_{μ} except Y_{r}, perhaps, are $\left(\Omega / M^{2 k}\right)$-projective. Since $1 \cdot \operatorname{dim}_{\Omega / M^{2 k}}\left(\Omega / M^{k}\right) e_{0}=r$, then necessarily the image of $X_{r}+Y_{r}$ in $X_{r-1}+Y_{r-1}$ is a direct summand. Hence the image of X_{r} in X_{r-1} is a direct summand. This in turn implies that $\left(\Omega / M^{k}\right) e_{0}$ has a projective resolution, with respect to $\Omega / M^{2 k}$, of length $r-1$, contradicting the above assumption. Hence $1 . \operatorname{dim}_{\Omega / M^{2 k}}\left(\Omega / M^{k}\right) e_{0}$ $=\infty$ and $\operatorname{gl} \cdot \operatorname{dim}\left(\Omega / M^{2 k}\right)=\infty$.

Here we may assume that k is arbitrarily large, since otherwise we have simply to repeat the given connected sequence of idempotents sufficiently many times. So this proves our proposition.

§4. Algebras

Let Λ be a semi-primary algebra over a field K, let N be the radical of Λ and let $\Gamma=\Lambda / N$. Assume $\operatorname{dim} \Gamma=0$, or equivalently that $\Gamma \otimes_{K} \Gamma^{*}$ is semi-simple. Then (Rosenberg-Zelinsky [8]) necessarily $(\Gamma: K)<\infty$ and Γ is separable. It follows readily that Λ admits a splitting $\Lambda=\Gamma+A+N^{2}, A \approx N / N^{2}$. It is further known (Eilenberg [1]) that $\operatorname{dim} \Lambda=\operatorname{gl} \cdot \operatorname{dim} \Lambda$. Similarly if a is any twosided ideal in Λ then $\operatorname{dim}(\Lambda / a)=$ gl. $\operatorname{dim}(\Lambda / a)$.

The same comments apply to the algebra Ω constructed in $\S 2$, provided M is nilpotent. The results of $\S 3$ may now be restated with "dim" replacing "gl.dim".

If we assume that $(\Lambda: K)<\infty$ then clearly Λ is semi-primary and the assumption $\operatorname{dim} \Gamma=0$ (i.e. the separability of Γ) follows automatically from $\operatorname{dim}\left(\Lambda / N^{2}\right)<\infty$ (Ikeda-Nagao-Nakayama [7], Eilenberg [1]). It is further clear that in the splitting $\Lambda=\Gamma+A+N^{2}$ of Λ we have $(A: K)<\infty$. Since $\Omega=\Gamma+M$ we deduce that $(\Omega: K)<\infty$. Thus we have

Theorem 9. Let A be an algebra over a field K with $(\Lambda: K)<\infty$. Let N be the radical of Λ. Suppose

$$
\operatorname{dim}\left(\Lambda / N^{2}\right)=n<\infty .
$$

Then there exist an algebra Ω over K with radical M and an algebra epimorphism $\varphi: \Omega \longrightarrow \Lambda$ such that $(\Omega: K)<\infty, \varphi^{-1}\left(N^{2}\right)=M^{2}$ and

$$
\operatorname{dim} \Omega \leqq 1
$$

The pair (Ω, φ) is determined uniquely up to an isomorphism. $M^{n+1}=0$ and $N^{n+1}=0$. If a is a two-sided ideal of A then $\operatorname{dim}(A / a)<\infty$, and indeed $\leqq n$ if
$a \subset N^{2}$. If l is the number of simple components in $\Gamma=1 / N$ then $n<l$.
We close our note with a remark on Cartan matrices. Starting again with a semi-primary ring Λ, with radical N, let e_{1}, \ldots, e_{l} be a maximal set of nonisomorphic primitive idempotents in A. For each pair (i, j) of indices $1,2, \ldots$, l we choose a non-negative real number $\beta(i, j)$ so that

$$
\beta(i, j)=0 \text { or }>0 \text { according as } e_{i} N e_{j}=0 \text { or } \neq 0
$$

and otherwise arbitrarily. Let us call the matrix $C(\Lambda)=I+(\beta(i, j))$ a generalized Cartan matrix of Λ, where I is the identity matrix of degree l.

Proposition 10. The matrix $(C(A)-I)^{n+1}=(\beta(i, j))^{n+1}$ vanishes if and only if $\operatorname{gl} . \operatorname{dim}\left(\Lambda / N^{2}\right) \leqq n$.

Proof. Since the entries $\beta(i, j)$ of $C(\Lambda)-I$ are all non-negative, that $(C(\Lambda)-I)^{n+1} \neq 0$ is equivalent to the existence of $n+1$ pairs $\left(i_{0}, j_{0}\right), \ldots$, $\left(i_{n}, j_{n}\right)$ such that

$$
\begin{equation*}
j_{\nu}=i_{\nu+1}(\nu=0, \ldots, n-1), \beta\left(i_{\nu}, j_{\nu}\right) \neq 0 \quad(\nu=0, \ldots, n) \tag{i}
\end{equation*}
$$

By the definition of $\beta(i, j)$, this is equivalent to

$$
\begin{equation*}
j_{\nu}=i_{\nu+1}(\nu=0, \ldots, n-1), e_{i_{\nu}} N e_{j_{\nu}} \neq 0 \quad(\nu=0, \ldots, n) \tag{ii}
\end{equation*}
$$

Now, if $e N^{t} f \neq 0$ but $e N^{t+1} f=0$, with a pair of primitive idempotents e, f in Λ, take $t-1$ primitive idempotents g_{1}, \ldots, g_{t-1} such that $N g_{1} N g_{2} \ldots N g_{t-1} N f$ $\neq 0$. Since $e N^{t+1} f=0$, it follows that $g_{\mu} N g_{\mu+1} \not \ddagger N^{2}$ for $\mu=0, \ldots, t-1$, where we put $g_{0}=e, g_{t}=f$. This observation shows that the existence of $n+1$ pairs (i_{ν}, j_{ν}) satisfying (ii) is equivalent to the existence of a connected sequence of length at least $n+1$ of primitive idempotents in $\Gamma=\Lambda / N$, with respect to Λ / N^{2}, in the sense of $\S 1$. This is in turn equivalent to $\operatorname{gl} \operatorname{dim}\left(\Lambda / N^{2}\right) \geqslant n+1$ by Proposition 2.

In case of an algebra Λ over a field K with $(\Lambda: K)<\infty$, the ordinary Cartan matrix of Λ is clearly a generalized Cartan matrix in the above sense.

References

[1] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319.
[2] S. Eilenberg, Homological dimension and syzygies, to appear in Ann. Math.
[3] S, Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras,

IV, Nagoya Math. J. 10 (1956), 87-95.
[4] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras, V, Nagoya Math. J. 11 (1957), 9-12.
[5] G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. 53 (1947), 369-377.
[6] G. Hochschild, Note on maximal algebras, Proc. Amer. Math. Soc. 1(1950), 11-14.
[7] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing n-cohomology grops, Nagoya Math. J. 7 (1954), 115-131.
[8] J. P. Jans, On segregated rings and algebras, Nagoya Math. J. 11 (1957).
[9] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc. 82 (1956), 85-98.

Yale University,
Nagoya University and
The Institute for Advanced Study

[^0]: Received April 14, 1956.

