
REMARKS TO THE PAPER "ON MONTEL'S

THEOREM9' BY KAWAKAMI

MAKOTO OHTSUKA

1. We take a measurable set E on the positive 77-axis and denote by μ(r)

the linear measure of the part of E in the interval 0 < 77 < r. The lower density

of E at -η - 0 is defined by

Theorem by Kawakami [1] asserts that if λ is positive, if a function /(C)

=/(£ + ήO is bounded analytic in ξ > 0 and continuous at E, and if /(C) -* A

as C -* 0 along E, then /(C) -* A as C -» 0 in \ η\ £ kζ for any & > 0. He also

has shown that one obtains the same conclusion if the assumption λ > 0 is

replaced, in the above conditions, by the assumption that the following quantity

is positive:

, f α-i f dμit)
λa = lim r \ —iά— 9

r->0 Jr ΐ

where a is any number not smaller than 2.

We observe that, for any a > af > 1,

Jr i Jr r l Or

and hence that λΛ > 0 implies λα/ > 0 whenever a > a' > 1.

7w f/z/s section we shall prove that, for any a > 1, λ > 0 fs equivalent to

( i) Λ>0-»Λ t f>0: First we note that μ(r) is a continuous non-decreasing

function such that

(1)

for any n and r2, 0 ^ n ^ r2.
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We suppose that there exists a positive constant e < 1 such that μ(r) ^ εx

for all r ( 0 < r < l ) . By (1), in 0 < r #= t t= 1, μ[t) is not smaller than the

following continuous function:

pλt) =

/«(r) for r ^

for μ(r)/ε ^ t

for r o ^ ί ^ l ,

where n is determined by ero = r o - ( l - μ ( l ) ) . Except for the trivial case that

μ(l) =1, we see that μ(r)/ε<n for sufficiently small r.

Now, for any a > 1 and for sufficiently small r,

( α - l ) f ? " 1

The last quantity tends to —^r- as r -> 0. Thus

f
for any α > 1.

(ii) λ* > 0 -> λ > 0: Suppose that

Then we can choose 1 > rn I 0 such that

rn n2

Let us define in Zrn/n, 1] the following function:

~ « - l l \ M » / rί"1
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qn(t) =

μ(rn/n) -ht — rn/n for rn/n ^ t ?= pu

μ(rn) for βί <= t ^ rn,

μ(rn) Λ-t - rn for r w ^ ί ^ p2,

M D for p 2 ^ ί ^ l ,

where pi is determined by μ(rn/n)-{-pi —rn/n = μ(rn) and p2 is determined by

μ(rn) + P2 - rM = M D By (1), it follows that #„(*) ̂  μ{t) in r«/w ̂  f ^ 1. For

any or > 1,

1 r-
rn \a"\ qn(t) Ύ"

ί
rn r ^ f " qn(t) _ I rn V~ι (" dqn(t)

) irJn

Ή I )rnln t

f ,

i 1 \

where wτe use (2). The last quantity tends to 0 as n -> °o. We also see that

^ Γ"1 f1 dqn(t) ^ (rn Y'1 C dt * _ i _ -1—

These two evaluations give

(••r"TT
\ n I Jrnίn

dμ(t)
0 as n

= limrβ-M - " 4 ^ =

That is,

for any a > 1.

The equivalence has thus been proved. It is now seen that the theorem by

Kawakami is concluded if λa> 0 for a certain a > 1.

In a letter, Professor Kawakami raised the following question: Can we

draw the same conclusion from the assumption that

0
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for a between 0 and 1 ?

By a similar but simpler calculation, we can in fact prove that, for any a,

0 < a < 1, also λ'a > 0 is equivalent to λ > 0.

2. Theorem 4 in the preceding paper [2] by the present writer is concerned

with the same problem as the theorem by Kawakami, although the domains are

different.15 In [2], the domain is the strip B : 0 < x < + «>, 0 < y < 1 and the

closed set F on the positive real axis along which the function tends to a limit

is required to have the following property:

Denoting by Fa(x) the part of F in the interval ίx - a, x + al, there exist

Xo > 0, a > 0 and d>0 such that the linear measure m(Fa(x)) > d for all

x > Xo.

Then F is said in [2] to have positive average linear measure near # = + oo.

What does this mean of the image F' of F on the positive ̂ -axis if B is mapped

onto the half plane ζ>0 (C = ξ-hiy) in a one-to-one conformal manner in such

a way that C = 0 corresponds to x = -f oo ?

iw ί/tts section we shall show that it simply means the positiveness of the

lower density at y = 0 of Ff.

We map B onto the right half of the disc \Z\<1 in the Z-plane

(Z~ X \-iY) by Z-ie'^y so that Z = 0 corresponds to # = 4 - 0 0 and the image

Fi of F lies on the positive F-axis. It is easy to see that the lower density of

Fι at Y = 0 is positive if and only if that of Ff stated above is positive. So

we shall prove that the lower density of Fι at y = 0 is positive if and only if

F has positive average linear measure near ΛΓ= + 00.

First we suppose that F satisfies the required condition. Then

m(F1Γ\(0f Y)) = f e«*-t)dt v, π f e^'^dt > πe~2nad > 0,
I JFn[x, +00) J Fa(X + a)

where x = log Y is taken so that it is greater than x0. Thus the lower

density of Fi at Y = 0 is positive.

Next suppose that, for every a > 0, there is a sequence of points xn(a)

-» 4- <*> such that fli(Fe(#n(ii))) -»0 as w->oo. Then if we set Yn(a)

=sβ-«(*n(β)-β) t f o l l o w s t h a t

J) We both gave talks on the same subject at'the annual meeting of the Math. Soc.
of Japan held in Tokyo in May, 1955, without knowing one another's work.
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Ί (0, Yn(a)))
Yn(a) JF n [xn(a)-a, +<χ>)

dt -f π \ eπ{χn[a)-a- ) ^ _ πm(Fa(Xn(a))) _j- e~2™a.

Fa(xn(a)) Jχn{a)+a

This value is smaller than any assigned positive value, if we take first a and

then n sufficiently large. Thus the lower density of Fι at Y = 0 is zero.

On account of this equivalence, the theorem by Kawakami follows from

Theorem 4 in [2] and, by Theorem 5 in [2], it is seen that the metrical con-

dition λ > 0 in the theorem by Kawakami is in a sense the best possible.
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