CYCLES ON ALGEBRAIC VARIETIES

HISASI MORIKAWA

In the present note, applying the theory of harmonic integrals, we shall show some results on cycles on algebraic varieties and give a new birational invariant.

NOTATIONS :

V: a non-singular algebraic variety of (complex) dimension n in a projective space,

 $\mathbf{V}_1(\mathbf{V}_2)$: the first (second) component of $\mathbf{V} \times \mathbf{V}$,

 $\delta(\mathbf{V})$: the diagonal sub-manifold of $\mathbf{V} \times \mathbf{V}$,

 W_r : a generic hyper-plane section of (complex) dimension r of V,

Q, R, C: the fields of rational, real, complex numbers respectively,

 $H_r(\mathbf{V}, Q), H_r(\mathbf{V}, R), H_r(\mathbf{V}, C)$: the r-th homology groups of **V** over Q, Rand C respectively,

 $H^{r}(\mathbf{V}, Q), H^{r}(\mathbf{V}, R), H^{r}(\mathbf{V}, C)$: the *r*-th cohomology groups of **V** over Q, R, C respectively,

 $H_{p,q}(\mathbf{V}, *)$: the subgroup of $H_{p+q}(\mathbf{V}, *)$ consisting of all the classes of type (p, q),

 $H^{p,q}(\mathbf{V}, *)$: the subgroup of $H^{p+q}(\mathbf{V}, *)$ consisting all the classes of type (p, q),

 $\mathfrak{H}_{r}(\mathbf{V}, Q)$: the subgroup of $H_{2r}(\mathbf{V}, Q)$ consisting of all the classes containing algebraic cycles,

 B_r : the degree of $H_r(\mathbf{V}, Q)$,

 $\{\Gamma_r^1,\ldots,\Gamma_r^{B_r}\}$: a base of $H_r(\mathbf{V}_1, Q)$,

 $\{\mathcal{A}_{r}^{1},\ldots,\mathcal{A}_{r}^{R_{r}}\}: \text{ the base of } H_{r}(\mathbf{V}_{2}, Q) \text{ corresponding to } \{\Gamma_{r}^{1},\ldots,\Gamma_{r}^{R_{r}}\}, \\ \{\Gamma_{r}^{1+},\ldots,\Gamma_{r}^{R_{r}+}\}: \text{ the base of } H_{2n-r}(\mathbf{V}_{1}, Q) \text{ such that } I(\Gamma_{r}^{i}\Gamma_{r}^{j+}) = \delta_{ij} i, j$

 $=1, 2, \ldots, B_r,$

 $\{\mathcal{A}_{r}^{1+},\ldots,\mathcal{A}_{r}^{B_{r}+}\}$: the base of $H_{2n-r}(\mathbf{V}_{2},Q)$ corresponding to $\{\Gamma_{r}^{1+},\ldots,\Gamma_{r}^{B_{r}+}\},$

 $\alpha_X, \alpha_Y^{1\times 2}, \alpha_Z^1, \alpha_U^2$: the harmonic forms on **V**, **V** × **V**, **V**₁, **V**₂ corresponding Received June 15, 1955. to cycles X, Y, Z, U on V, $V \times V$, V_1 , V_2 by means of Hodge's theorem respectively,

 $\mathfrak{Q}^{(p,q)}$: the period matrix of harmonic forms of type (p, q) on \mathbf{V}_1 with period cycles $\Gamma_r^1, \ldots, \Gamma_r^{B_r}$ such that $p+q=r \leq n, p \leq q$,

 $\mathcal{Q}^{(n-q, n-p)}$: the period matrix of harmonic forms of type (n-q, n-p) with period cycles $\Gamma_r^{1+}, \ldots, \Gamma_r^{B_r+}$ such that $p+q=r, p \leq q$.

$$< \alpha, X > = \int_X \alpha,$$

 $< \alpha, \beta >_M = \int_M \alpha \wedge \beta,$

 $Z \approx 0$: Z is homologous zero over Q.

 $\delta(\Gamma)$: the cycle on $\delta(\mathbf{V})$ corresponding by the natural correspondence to a cycle Γ on \mathbf{V} ,

 $\delta_1^{-1}(X)$: a cycle on V_1 corresponding by the natural correspondence to a cycle X on $\delta(V)$,

 $(A)_{\alpha\beta}=(a_{ij})_{\alpha\beta}=a_{\alpha\beta},$

 $I(X \cdot Y; \delta(\mathbf{V}))$: Kronecker index of the intersection of cycles X, Y of $\delta(\mathbf{V})$ along to $\delta(\mathbf{V})$.

LEMMA 1. Let C be a cycle of dimension 2r. Then

$${}^{t}(I(C \times \mathcal{A}_{r}^{i+} \delta(\Gamma_{r}^{j+})) = (I(C\Gamma_{r}^{i+}\Gamma_{r}^{j+})).$$

Proof. By virtue of intersection theory,¹⁾

$$\delta(\Gamma_r^{j+}) \approx \sum_{q=0}^r \sum_{\mu,\nu} \lambda_{\mu\nu}^q(\Gamma_r^{j+}) \Gamma_{q-r}^{\mu} \times \mathcal{A}_{2n-q}^{\nu},$$

where

$${}^{t}\lambda^{q}(\Gamma_{r}^{j+}) = (-1)^{(2n-q)r} (I(\Gamma_{q}^{\mu}\Gamma_{q}^{\nu+}))^{-1} (I(\Gamma_{r}^{j+}\Gamma_{q}^{\mu}\Gamma_{2n+r-q}^{\nu})) (I(\Gamma_{q-r}^{\mu}\Gamma_{q-r}^{\nu+}))^{-1}.$$

Since

$${}^{t}\lambda^{2n-r}(\Gamma_{r}^{j+}) = (-1)^{r}(I(\Gamma_{r}^{\mu+}\Gamma_{r}^{\nu}))^{-1}(I(\Gamma_{r}^{j+}\Gamma_{2n-r}^{\mu}\Gamma_{2r}^{\nu})(I(\Gamma_{2n-2r}^{\mu}\Gamma_{2n-2r}^{\nu+}))^{-1}.$$

we have

$$I(C \times \mathcal{A}_{r}^{i+} \cdot \delta(\Gamma_{r}^{j+})) = I(C \times \mathcal{A}_{r}^{i+} \cdot \sum_{q=0}^{r} \sum_{\mu,\nu} \lambda_{\mu\nu}^{q} (\Gamma_{r}^{j+}) \Gamma_{q-r}^{\mu} \times \mathcal{A}_{2n-q}^{\nu})$$
$$= \sum_{\mu,\nu} \lambda_{\mu,\nu}^{2n-r} (\Gamma_{r}^{j+}) I(C\Gamma_{2n-2r}^{\mu}) I(\Gamma_{r}^{i+} \mathcal{A}_{r}^{\nu})$$

¹⁾ See S. Lefschetz, Topoloyg (New York), 1930.

CYCLES ON ALGEBRAIC VARIETIES

$$= (-1)^{r} \sum_{\alpha,\beta} I(C\Gamma_{2n-2r}^{\alpha}) {}^{t} (I(\Gamma_{2n-2r}^{\mu}\Gamma_{2n-2r}^{\nu+})^{-1} \\ {}^{t} (I(\Gamma_{r}^{j+}\Gamma_{2n-r}^{\mu}\Gamma_{2r}^{\nu}))^{t} (I(\Gamma_{r}^{\mu+}\Gamma_{r}^{\nu}))^{-1} {}_{\alpha,\beta} I(\Gamma_{r}^{i+}\Gamma_{r}^{\beta}) \\ = \sum_{\alpha,\beta} I(C\Gamma_{2n-2r}^{\alpha}) {}^{t} (I(\Gamma_{2n-2r}^{\mu+}\Gamma_{2n-2r}^{\nu}))^{-1} \\ (I(\Gamma_{r}^{j+}\Gamma_{2r}^{\mu}\Gamma_{2n-r}^{\nu})(I(\Gamma_{r}^{\mu}\Gamma_{r}^{\nu+}))^{-1} {}_{\alpha,\beta} I(\Gamma_{r}^{\beta}\Gamma_{r}^{i+}) \\ = I(\Gamma_{r}^{j+}C\Gamma_{r}^{i+}) \\ = I(C\Gamma_{r}^{j+}\Gamma_{r}^{i+}).$$

This proves our lemma.

LEMMA 2. If a cycle X of dimension r on $\delta(\mathbf{V})$ is not homologous to zero over Q on $\delta(\mathbf{V})$. Then it is not homologous to zero over Q on $\mathbf{V} \times \mathbf{V}$, too.

Proof. Let $\{\omega_1, \ldots, \omega_{B_r}\}$ be a base of harmonic forms of degree r on V_1 . Then they can be considered as harmonic forms on $V \times V$ and on $\delta(V)$ and they are linearly independent on $V \times V$ and on $\delta(V)$. Therefore, by d'Rham's theorem our assertion is ture.

LEMMA 3. Let C be a cycle of dimension 2r. Then

$$C \times \mathcal{A}_{r}^{j+} \cdot \delta(\mathbf{V}) \approx \sum_{k} I(C \times \mathcal{A}_{r}^{j+} \cdot \delta(\Gamma_{r}^{k+})) \cdot \delta(\Gamma_{r}^{k}).$$

Proof. By Lemma 2 $H(\delta(\mathbf{V}), C)$ is inbedded in $H(\mathbf{V}, C)$. Hence $I((C \times \Delta_r^{j_+} \cdot \delta(\mathbf{V})) \delta(\Gamma_r^{k_+}); \delta(\mathbf{V}) = I(C \times \Delta_r^{j_+} \cdot \delta(\Gamma_r^{k_+}))$. Therefore

$$C \times \mathcal{A}_{r}^{j+} \delta(\mathbf{V}) \approx \sum_{k} I(C \times \mathcal{A}_{r}^{j+} \delta(\Gamma_{r}^{k+})) \, \delta(\Gamma_{r}^{k}).$$

PROPOSITION 1. Let C be a cycle of type $(r \mp s, r \pm s)$ with complex coefficients. Then

$$\Lambda(C) \, \mathcal{Q}^{(n-q\pm s,\,n-p\mp s)} = \mathcal{Q}^{(p,\,q)}(I(C\Gamma_r^{i+}\Gamma_r^{j+})),$$

with a matrix $\Lambda(C)$, where p+q=r < n.

Proof. Let $\{\alpha_1, \ldots, \alpha_l\}$ be a minimum base of harmonic forms of type (p, q) on \mathbf{V}_1 . We denote by the same notations $\alpha_1, \ldots, \alpha_l$ the harmonic forms on $\mathbf{V} \times \mathbf{V}$ induced by $\alpha_1, \ldots, \alpha_l$. Then we have

$$(< \alpha_i, \ \delta_1^{-1}(C \times \mathcal{A}_r^{j+} \cdot \delta(\mathbf{V})) >)$$

= $(< \alpha_i, \ C \times \mathcal{A}_r^{j+} \delta(\mathbf{V}) >)$
= $(< \alpha_i, \ \sum_k I(C \times \mathcal{A}_r^{j+} \cdot \delta(\Gamma_r^{k+})) \delta(\Gamma_r^k) >)$
= $(< \alpha_i, \ \sum_k I(C \times \mathcal{A}_r^{j+} \delta(\Gamma_r^{k+})) \Gamma_r^k >)$
= $(< \alpha_i, \ \Gamma_r^{j} >)^t (I(C \times \mathcal{A}_r^{j+} \delta(\Gamma_r^{k+})))$
= $\mathcal{Q}^{(p,q)}(I(C\Gamma_r^{j+}\Gamma_r^{j+})).$

On the other hand

$$(< \alpha_i, \ C \times \Delta_r^{j+} \delta(\mathbf{V}) >)$$

= $(< \alpha_i, \ \alpha_{C \times \Delta_r^{j+} \delta(\mathbf{V})} >_{V \times V})$
= $(< \alpha_i, \ \alpha_C^1 \wedge \alpha_{\Delta_r^{j+}}^{2j+} \wedge \alpha_{\delta(\mathbf{V})}^{1\times 2} >_{V \times V})$
= $(< \alpha_i \wedge \alpha_C^1 \wedge \alpha_{\delta(\mathbf{V})}^{1\times 2}, \ \alpha_{\Delta_r^{j+}}^{2j+} >_{V \times V})$
= $(< \int_C \alpha_i \wedge \alpha_{\delta(\mathbf{V})}^{1\times 2}, \ \Delta_r^{j+} >).$

The type of the form

$$\int_{C} \alpha_i \wedge \alpha_{\delta(\mathbf{V})}^{\mathbf{1} \times \mathbf{2}}$$

is $(p, q) + (n, n) - (r \mp s, r \pm s) = (n - q \pm s, n - p \mp s)$.

Hence

$$(\langle \alpha_i, C \times \mathcal{A}_r^{j+} \delta(\mathbf{V}) \rangle) = \mathcal{A}(C) \mathcal{Q}^{(n-q\pm s, np-\mp s)}$$

with a matrix $\Lambda(C)$. Therefore

$$\mathcal{Q}^{(p,q)}(I(C\Gamma_r^{i+}\Gamma_r^{j+})) = \Lambda(C) \mathcal{Q}^{(n-q\pm s, n-p\mp s)}.$$

LEMMA 4. Let $r \leq n$. Then $(I(\mathbf{W}_r \Gamma_r^{i+} \Gamma_r^{j+}))$ is non-singular.

Proof. Since $\{\Gamma_r^{1+}, \ldots, \Gamma_r^{B_r+}\}$ is a base of $H_{2n-r}(\mathbf{V}, Q)$, by virtue of theory of harmonic integral on a Hodge variety,²⁾ $\{\mathbf{W}_r \Gamma_r^{1+}, \ldots, \mathbf{W}_r \Gamma_r^{B_r+}\}$ is a base of $H_r(\mathbf{V}, Q)$. Hence $(I(\mathbf{W}_r \Gamma_r^{i+} \Gamma_r^{j+}))$ is non-singular.

THEOREM 1. Let $r \leq n$. Let C be a cycle of type (r, r). Then

where

$$\mathcal{Q}^{(r)} = \begin{cases}
\begin{pmatrix}
\mathcal{Q}^{(r,0)} \\
\mathcal{Q}^{(r-2,2)} \\
\vdots \\
\mathcal{Q}^{(1,r-1)}
\end{pmatrix} & for \ odd \ r, \\
\begin{pmatrix}
\mathcal{Q}^{(r,0)} \\
\mathcal{Q}^{(r-1,1)} \\
\vdots \\
\vdots \\
\mathcal{Q}_{(r/2,r/2)}
\end{pmatrix} & for \ even \ r.
\end{cases}$$

 $^{2)}$ See J. Igusa, On Picard varieties $II, \, 6, \,$ Proposition 3 American Journal, 74, 1-22 (1952).

This is an immediate consequence from Proposition 1.

THEOREM 2. Let r be an odd integer less than n. Let $\{s_1, \ldots, s_l\}$ be a base of the module of rational matrices $S = (s_{ij})$ such that

$$\sum_{i, j} s_{ij} \Gamma_r^{i+} \Gamma_r^{j+} \approx 0.$$

Let $K_{2r}(\mathbf{V}, Q)$ be the sub-module of $H_{2r}(\mathbf{V}, Q)$ consisting of Z such that $I(Z\Gamma_r^{i+}\Gamma_r^{j+}) = 0$ i, $j = 1, 2, ..., B_r$. Then there exists an isomorphism from

$$H_{r,r}(\mathbf{V}, Q)/H_{r,r}(\mathbf{V}, Q) \cap K_{2r}(\mathbf{V}, Q)$$

onto the module of rational matrices M satisfying

i)
$$\Omega^{(r)}M = \Lambda \Omega^{(r)}$$
 with a matrix Λ ,

where

$$\mathcal{Q}^{(r)} = \begin{cases} \begin{pmatrix} \mathcal{Q}^{(r,0)} \\ \mathcal{Q}^{(r-2,2)} \\ \vdots \\ \mathcal{Q}^{(1,r-1)} \end{pmatrix} & for \ odd \ r, \\ \begin{pmatrix} \mathcal{Q}^{(r,0)} \\ \mathcal{Q}^{(r-1,1)} \\ \vdots \\ \mathcal{Q}_{(r/2,r/2)} \end{pmatrix} & for \ even \ r. \end{cases}$$

ii) $S_{\nu}S_{\nu}M(I(\mathbf{W}_{r}\Gamma_{r}^{i+}\Gamma_{r}^{j+})) = 0 \quad \nu = 1, 2, \ldots, l.$

Proof. Let D_1, \ldots, D_m be independent generators of $H_{r,r}(\mathbf{V}, Q)/H_{r,r}(\mathbf{V}, Q)$ $\cap K_{2r}(\mathbf{V}, Q)$. Let φ be the linear mapping such that

$$\varphi(\sum_{k} a_k \mathbf{D}_k) = \sum_{k} a_k (I(\mathbf{D}_k \Gamma_r^{i+} \Gamma_r^{j+})) (I(\mathbf{W}_r \Gamma_r^{i+} \Gamma_r^{j+}))^{+}$$

Then, by virtue of Theorem 1,

$$\mathcal{Q}^{(r)}\varphi(\sum_{k}a_{k}\mathbf{D}_{k})=\mathcal{A}\mathcal{Q}^{(r)}$$

with a matrix Λ .

On the other hand we get

$$S_{\mathcal{D}}S_{\nu}\varphi(\sum_{k}a_{k}\mathbf{D}_{k})(I(\mathbf{W}_{r}\Gamma_{r}^{i+}\Gamma_{r}^{j+})) = S_{\mathcal{D}}S_{\nu}(I(\sum_{k}a_{k}\mathbf{D}_{k}\Gamma_{r}^{i+}\Gamma_{r}^{j+}))$$
$$= \sum_{k}a_{k}I(\mathbf{D}_{k}\sum_{i,j}s_{ij}^{(\nu)}\Gamma_{r}^{i+}\Gamma_{r}^{j+}) = 0 \qquad \nu = 1, 2, \dots, l.$$

Conversely we assume that a rational matrix M satisfies the condition i),

ii). From ii) it follows that there exists a cycle with rational coefficients C such that

$$(I(C\Gamma_r^{i+}\Gamma_r^{j+})) = M(I(\mathbf{W}_r\Gamma_r^{i+}\Gamma_r^{j+})).$$

We assume that C is not homologous to a cycle of type (r, r) modulo $K_{2r}(\mathbf{V}, Q)$. We put $\alpha_c = \alpha_{c_0} + (\alpha_{c_1} + \alpha_{c'_1}) + \ldots + (\alpha_{c_r} + \alpha_{c'_r})$, where

$$\begin{aligned} \alpha_{C_{\nu}} & \text{ is of type } (r-\nu, r+\nu) \quad \nu=0, 1, \ldots, r, \\ \alpha_{C'_{\mu}} & \text{ is of type } (r+\nu, r-\nu) \quad \mu=1, 2, \ldots, r \end{aligned}$$

and C_{ν} , C'_{μ} are cycles with complex coefficients corresponding to harmonic forms $\alpha_{c_{\nu}}$, $\alpha_{c'_{\mu}}$ by means of Hodge's theorem respectively. Then, since C is real, necessalily we get $\alpha_{c'_{\nu}} = \overline{\alpha_{c_{\nu}}}$. By virtue of the assumption on C, there exists ν_0 such that

$$(I((C_{\nu_0} + C'_{\nu_0})\Gamma_r^{i+}\Gamma_r^{j+})) \neq 0.$$

On the other hand from Proposition 1, putting

 $T(C_{\nu}+C_{\nu}') \mathcal{Q}^{(r)} = \mathcal{Q}^{(r)} (I((C_{\nu}+C_{\nu}') \Gamma_{r}^{i+} \Gamma_{r}^{j+})) (I(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}))^{-1},$

we have that for any *i*, *j* at most one *i*, *j*-element of $T(C_0)$, $T(C_1 + C'_1)$, ..., $T(C_r + C'_r)$ does not vanish. From $(I((C_{\nu_0} + C'_{\nu_0}(\Gamma_r^{i_+}\Gamma_r^{j_+})) \neq 0 \text{ we see that } T(C_{\nu_0} + C'_{\nu_0}) \neq 0$. By virtue of Proposition 1 $T(C_{\nu_0} + C'_{\nu_0})$ varies of the type of integrants. This is a contradiction to our assumption. Therefore our theorem is proved.

THEOREM 3. Let $\{S_1, \ldots, S_l\}$ be a base of the module of rational matrices $S = (s_{ij})$ such that

$$\sum_{i,j} s_{ij} \Gamma_1^{i+} \Gamma_1^{j+} \approx 0.$$

Let $K_{2n-2}^*(\mathbf{V}, Q)$ be the sub-module of $H_{2n-2}(\mathbf{V}, Q)$ consisting of Z such that $I(\mathbf{W}_2 Z \Gamma_1^{i+} \Gamma_1^{j+}) = 0$ i, $j = 1, 2, ..., B_1$.

Then there exists an isomorphism from

 $\mathfrak{H}_{n-1}(\mathbf{V}, Q)/\mathfrak{H}_{n-1}(\mathbf{V}, Q) \cap K^*_{2n-2}(\mathbf{V}, Q).$

onto the module of rational matrices M satisfying

i)
$$\Lambda \mathcal{Q}^{(1,0)} = \mathcal{Q}^{(1,0)} M$$
 with a matrix \wedge

ii) $S_{\rho}S_{\nu}M(I(\mathbf{W}_{1}\Gamma_{1}^{i^{+}}\Gamma_{1}^{j^{+}}))=0, \quad \nu=1, 2, \ldots, l.$

Proof. Let D_1, \ldots, D_m be independent generators of $\mathfrak{H}_{n-1}(\mathbf{V}, Q)$. Then $D_1 \mathbf{W}_2, \ldots, D_m \mathbf{W}_2$ are independent generators of $\mathfrak{H}_1(\mathbf{V}, Q)$.³⁾ On the other hand, by virtue of Lefschetz-Hodge's theorem,⁴⁾ $H_{1,1}(\mathbf{V}, Q) = \mathfrak{H}_1(\mathbf{V}, Q)$. Hence if we put

$$\varphi(\sum_{k} a_k \mathbf{D}_k) = \sum_{k} a_k (I(\mathbf{W}_2 \mathbf{D}_k \Gamma_1^{i+} \Gamma_1^{j+})) (I(\mathbf{W}_1 \Gamma_1^{i+} \Gamma_1^{j+}))^4.$$

Then, by the strictly same reason in the proof of Theorem 3, φ gives our isomorphism.

We call the degree of $\mathfrak{H}_{n-1}(\mathbf{V}, Q)/\mathfrak{H}_{n-1}(\mathbf{V}, Q) \cap K_{2n-2}^*(\mathbf{V}, Q)$ the restricted Picard number of V.

Then we get the following.

THEOREM 4. Restricted Picard number is a birational invariant.

Proof. Let V' be another non-singular algebraic variety, which is equivalent to V by a birational correspondence T. Then T induces isomorphisms from $H_1(\mathbf{V}, Q)$, $H^{(1,0)}(\mathbf{V}, C)$ onto $H_1(\mathbf{V}', Q)$, $H^{(1,0)}(\mathbf{V}', C)$ respectively.⁵⁾ We denote by f and f^* these isomorphisms.

We denote by $[H^1(\mathbf{V}, C)]$, $[H^1(\mathbf{V}', C)]$ the sub-rings generated by $H^1(\mathbf{V}, C)$, $H^1(\mathbf{V}', C)$ respectively. Then f^* induces an isomorphism from $[H^1(\mathbf{V}', C)]$ onto $[H^1(\mathbf{V}, C)]$, for f^* mapps $H^1(\mathbf{V}', C)$ onto $H^1(\mathbf{V}, C)$ and f^* induces a homomorphism from [H'(V, C)], onto [H'(V', C)].

On the other hand, since

$$\alpha_{\Gamma_1^{i+}} = f^*(\alpha'_{f(\Gamma_1^{i+})})$$

and

$$\alpha'_{f(\Gamma_1^{i+})} = \alpha'_{f(\Gamma_1^{i})+},$$

we have

$$\begin{aligned} \alpha_{\Gamma_{1}^{i+}\Gamma_{1}^{j+}} &= \alpha_{\Gamma_{1}^{i+}} \wedge \alpha_{\Gamma_{1}^{j+}} = f^{*}(\alpha'_{f(\Gamma_{1}^{i+})}) \wedge f^{*}(\alpha'_{f(\Gamma_{1}^{i+})}) \\ &= f^{*}(\alpha'_{f(\Gamma_{1}^{i})}) \wedge f^{*}(\alpha'_{f(\Gamma_{1}^{i})}) \\ &= f^{*}(\alpha'_{f(\Gamma_{1}^{i+})} \wedge \alpha'_{f(\Gamma_{1}^{i+})}) = f^{*}(\alpha'_{f(\Gamma_{1}^{i+})}) \\ \end{aligned}$$

 $^{^{3),\,4)}}$ W. V. D. Hodge, The theory and applications of harmonic integrals, $IV,\,51,\,2$ (London), 1940.

⁵⁾ See J. Igusa, On Picard varieties § II, 11, American Journal, 74, 1-22 (1952).

Therefore

$$\sum_{i,j} s_{ij} \alpha'_{f(\Gamma_1^i)} + f(\Gamma_1^j) + = 0$$

if and only if

$$\sum_{i,j} s_{ij} \alpha_{\Gamma_1^{i+}\Gamma_1^{j+}} = 0.$$

This shows that

$$\sum_{i,j} s_{ij} f(\Gamma_1^i)^+ f(\Gamma_1^j)^+ \approx 0$$

if and only if

 $\sum_{i, j} s_{ij} \Gamma_1^{i+} \Gamma_1^{j+} \approx 0.$

Let $\alpha'_1, \ldots, \alpha'_{B_1/2}$ be differentials of the first kind on \mathbf{V}' such that $\mathcal{Q}^{(1,0)}$ is the period matrix of $f^*(\alpha'_1), \ldots, f^*(\alpha'_{B_1/2})$ with period cycles $\Gamma_1^1, \ldots, \Gamma_1^{B_1}$. Then the period matrix of $\alpha'_1, \ldots, \alpha'_{B_1/2}$ with period cycles $f(\Gamma_1^1), \ldots, f(\Gamma_1^{B_1})$ is also $\mathcal{Q}^{(1,0)}$. Therefore, by virtue of Theorem 3, we get

$$\begin{split} & \mathfrak{H}_{n-1}(\mathbf{V}, Q)/K_{2n-2}^*(\mathbf{V}, Q) \wedge \mathfrak{H}_{n-1}(\mathbf{V}, Q) \\ & \cong \mathfrak{H}_{n-1}(\mathbf{V}', Q)/K_{2n-2}^*(\mathbf{V}', Q) \wedge \mathfrak{H}_{n-1}(\mathbf{V}', Q). \end{split}$$

This proves our assertion.

Mathematical Institute, Nagoya University