CYCLES ON ALGEBRAIC VARIETIES

HISASI MORIKAWA

In the present note, applying the theory of harmonic integrals, we shall show some results on cycles on algebraic varieties and give a new birational invariant.

Notations:

\mathbf{V} : a non-singular algebraic variety of (complex) dimension n in a projective space,
$\mathbf{V}_{\mathbf{1}}\left(\mathbf{V}_{2}\right)$: the first (second) component of $\mathbf{V} \times \mathbf{V}$,
$\delta(\mathbf{V})$: the diagonal sub-manifold of $\mathbf{V} \times \mathbf{V}$,
\mathbf{W}_{r} : a generic hyper-plane section of (complex) dimension r of \mathbf{V},
Q, R, C : the fields of rational, real, complex numbers respectively,
$H_{r}(\mathbf{V}, Q), H_{r}(\mathbf{V}, R), H_{r}(\mathbf{V}, C)$: the r-th homology groups of \mathbf{V} over Q, R and C respectively,
$H^{r}(\mathbf{V}, Q), H^{r}(\mathbf{V}, R), H^{r}(\mathbf{V}, C)$: the r-th cohomology groups of \mathbf{V} over Q, R, C respectively,
$H_{p, q}(\mathbf{V}, *)$: the subgroup of $H_{p+q}(\mathbf{V}, *)$ consisting of all the classes of type (p, q),
$H^{p, q}(\mathbf{V}, *)$: the subgroup of $H^{p+q}(\mathbf{V}, *)$ consisting all the classes of type (p, q),
$\mathfrak{S}_{r}(\mathbf{V}, Q)$: the subgroup of $H_{2 r}(\mathbf{V}, Q)$ consisting of all the classes containing algebraic cycles,
B_{r} : the degree of $H_{r}(\mathbf{V}, Q)$,
$\left\{\Gamma_{r}^{1}, \ldots, \Gamma_{r}^{B r}\right\}$: a base of $H_{r}\left(\mathbf{V}_{1}, Q\right)$,
$\left\{\Delta_{r}^{1}, \ldots, \Delta_{r}^{B_{r}}\right\}$: the base of $H_{r}\left(\mathbf{V}_{2}, Q\right)$ corresponding to $\left\{\Gamma_{r}^{1}, \ldots, \Gamma_{r}^{B r}\right\}$,
$\left\{\Gamma_{r}^{1+}, \ldots, \Gamma_{r}^{R_{r}+}\right\}$: the base of $H_{2 n-r}\left(\mathbf{V}_{1}, Q\right)$ such that $I\left(\Gamma_{r}^{i} \Gamma_{r}^{j+}\right)=\delta_{i j} i, j$ $=1,2, \ldots, B_{r}$,
$\left\{\Delta_{r}^{1+}, \ldots, \Delta_{r}^{B_{r}+}\right\}$: the base of $H_{2 n-r}\left(\mathbf{V}_{2}, Q\right)$ corresponding to $\left\{I_{r}^{1+}\right.$, $\left.\ldots, \Gamma_{r}^{B r+}\right\}$,
$\alpha_{X}, \alpha_{Y}^{1 \times 2}, \alpha_{Z}^{1}, \alpha_{U}^{2}$: the harmonic forms on $\mathbf{V}, \mathbf{V} \times \mathbf{V}, \mathbf{V}_{1}, \mathbf{V}_{2}$ corresponding
Received June 15, 1955.
to cycles X, Y, Z, U on $\mathbf{v}, \mathbf{v} \times \mathbf{V}, \mathbf{V}_{1}, \mathbf{V}_{2}$ by means of Hodge's theorem respectively,
$\Omega^{(p, q)}$: the period matrix of harmonic forms of type (p, q) on \mathbf{V}_{1} with period cycles $\Gamma_{r}^{1}, \ldots, \Gamma_{r}^{B r}$ such that $p+q=r \leqq n, p \leqq q$,
$\Omega^{(n-q, n-p)}$: the period matrix of harmonic forms of type $(n-q, n-p)$ with period cycles $\Gamma_{r}^{1+}, \ldots, \Gamma_{r}^{B_{r}+}$ such that $p+q=r, p \leqq q$.
$\langle\alpha, X\rangle=\int_{X} \alpha$,
$\langle\alpha, \beta\rangle_{M}=\int_{M} \alpha \wedge \beta$,
$Z \approx 0: Z$ is homologous zero over Q.
$\delta\left(I^{\circ}\right)$: the cycle on $\delta(\mathbf{V})$ corresponding by the natural correspondence to a cycle Γ on \mathbf{V},
$\delta_{1}^{-1}(X)$: a cycle on \mathbf{V}_{1} corresponding by the natural correspondence to a cycle X on $\delta(\mathbf{V})$,
$(A)_{\alpha \beta}=\left(a_{i j}\right)_{\alpha \beta}=a_{\alpha \beta}$,
$I(X \cdot Y ; \delta(\mathbf{V}))$: Kronecker index of the intersection of cycles X, Y of $\delta(\mathrm{V})$ along to $\delta(\mathbf{V})$.

Lemma 1. Let C be a cycle of dimension $2 r$. Then

$$
{ }^{t}\left(I\left(C \times \Delta_{r}^{i+} \delta\left(\Gamma_{r}^{j+}\right)\right)=\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)\right.
$$

Proof. By virtue of intersection theory, ${ }^{1)}$

$$
\delta\left(\Gamma_{r}^{j+}\right) \approx \sum_{q=0}^{r} \sum_{p, \nu} \lambda_{\mu \nu}^{q}\left(\Gamma_{r}^{j+}\right) \Gamma_{q-r}^{\mu} \times \Delta_{2 n-q}^{\nu},
$$

where

$$
\lambda^{\lambda^{q}}\left(\Gamma_{r}^{j+}\right)=(-1)^{(2 n-q i r}\left(I\left(\Gamma_{q}^{\mu} \Gamma_{q}^{\nu+}\right)\right)^{-1}\left(I\left(\Gamma_{r}^{j+} \Gamma_{q}^{\mu} \Gamma_{2 n+r-q}^{\nu}\right)\right)\left(I\left(\Gamma_{q-r}^{\mu} \Gamma_{q-r}^{\nu+}\right)\right)^{-1} .
$$

Since

$$
\lambda^{t} \lambda^{2 n-r}\left(\Gamma_{r}^{j+}\right)=(-1)^{r}\left(I\left(\Gamma_{r}^{u+} \Gamma_{r}^{\nu}\right)\right)^{-1}\left(I\left(\Gamma_{r}^{j+} \Gamma_{2 n-r}^{u} \Gamma_{2 r}^{\nu}\right)\left(I\left(\Gamma_{2 n-2 r}^{u} \Gamma_{2 n-2 r}^{\nu+}\right)\right)^{-1} .\right.
$$

we have

$$
\begin{aligned}
I\left(C \times \Delta_{r}^{i+} \cdot \delta\left(\Gamma_{r}^{j+}\right)\right) & =I\left(C \times \Delta_{r}^{i+} \cdot \sum_{q=0}^{r} \sum_{\mu, \nu} \lambda_{\mu \nu}^{a}\left(\Gamma_{r}^{j+}\right) \Gamma_{q-r}^{\mu} \times \Delta_{2 n-q}^{\nu}\right) \\
& =\sum_{\mu, \nu} \lambda_{\mu, \nu}^{2 n-r}\left(\Gamma_{r}^{j+}\right) I\left(C \Gamma_{2 n-2 r}^{\mu}\right) I\left(\Gamma_{r}^{i+} \Delta_{r}^{\psi}\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
= & (-1)^{r} \sum_{\alpha, \beta} I\left(C \Gamma_{2 n-2 r}^{\alpha}\right)\left\{^ { t } \left(I\left(\Gamma_{2 n-2 r}^{\mu} \Gamma_{2 n-2 r}^{\nu+}\right)^{-1}\right.\right. \\
& \left.\quad{ }^{t}\left(I\left(\Gamma_{r}^{j+} \Gamma_{2 n-r}^{\mu} \Gamma_{2 r}^{\nu}\right)\right)^{t}\left(I\left(\Gamma_{r}^{\mu+} \Gamma_{r}^{\nu}\right)\right)^{-1}\right\}_{\alpha, \beta} I\left(\Gamma_{r}^{i+} \Gamma_{r}^{\beta}\right) \\
= & \sum_{\alpha, \beta} I\left(C \Gamma_{2 n-2 r}^{\alpha}\right)\left\{\left(I\left(\Gamma_{2 n-2 r}^{\mu_{+}} \Gamma_{2 n-2 r}^{\nu}\right)\right)^{-1}\right. \\
& \quad\left(I\left(\Gamma_{r}^{j+} \Gamma_{2 r}^{\mu} \Gamma_{2 n-r}^{\nu}\right)\left(I\left(\Gamma_{r}^{\mu} \Gamma_{r}^{\nu+}\right)\right)^{-1}\right\}_{\alpha, \beta} I\left(\Gamma_{r}^{\beta} \Gamma_{r}^{i+}\right) \\
= & I\left(\Gamma_{r}^{j+} C \Gamma_{r}^{i+}\right) \\
= & I\left(C \Gamma_{r}^{j+} \Gamma_{r}^{i+}\right) .
\end{aligned}
$$
\]

This proves our lemma.
Lemma 2. If a cycle X of dimension r on $\delta(\mathbf{V})$ is not homologous to zero over Q on $\delta(\mathbf{V})$. Then it is not homologous to zero over Q on $\mathbf{V} \times \mathbf{V}$, too.

Proof. Let $\left\{\omega_{1}, \ldots, \omega_{B_{r}}\right\}$ be a base of harmonic forms of degree r on \mathbf{V}_{1}. Then they can be considered as harmonic forms on $\mathbf{V} \times \mathbf{V}$ and on $\delta(\mathbf{V})$ and they are linearly independent on $\mathbf{V} \times \mathbf{V}$ and on $\delta(\mathbf{V})$. Therefore, by d'Rham's theorem our assertion is ture.

Lemma 3. Let C be a cycle of dimension $2 r$. Then

$$
C \times \Delta_{r}^{j+} \cdot \delta(\mathbf{V}) \approx \sum_{k} I\left(C \times \Delta_{r}^{j+} \cdot \delta\left(\Gamma_{r}^{k+}\right)\right) \cdot \delta\left(\Gamma_{r}^{k}\right)
$$

Proof. By Lemma $2 H(\delta(\mathbf{V}), C)$ is inbedded in $H(\mathbf{V}, C)$. Hence $I\left(\left(C \times \Delta_{r}^{j+} \cdot \delta(\mathbf{V})\right) \delta\left(\Gamma_{r}^{k+}\right) ; \delta(\mathbf{V})=I\left(C \times \Delta_{r}^{j+} \cdot \delta\left(\Gamma_{r}^{k}\right)\right)\right.$. Therefore

$$
C \times \Delta_{r}^{j+} \delta(\mathbf{V}) \approx \sum_{k} I\left(C \times \Delta_{r}^{j+} \delta\left(\Gamma_{r}^{k+}\right)\right) \delta\left(\Gamma_{r}^{k}\right)
$$

Proposition 1. Let C be a cycle of type ($r \mp s, r \pm s$) with complex coefficients. Then

$$
\Lambda(C) \Omega^{(n-q \pm s, n-p \mp s)}=\Omega^{(p, q)}\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)
$$

with a matrix $\Lambda(C)$, where $p+q=r<n$.
Proof. Let $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be a minimum base of harmonic forms of type (p, q) on \mathbf{V}_{1}. We denote by the same notations $\alpha_{1}, \ldots \alpha_{l}$ the harmonic forms on $\mathbf{V} \times \mathbf{V}$ induced by $\alpha_{1}, \ldots, \alpha_{l}$. Then we have

$$
\begin{aligned}
& \left(<\alpha_{i}, \delta_{1}^{-1}\left(C \times \Delta_{r}^{j+} \cdot \delta(\mathbf{V})\right)>\right) \\
= & \left(<\alpha_{i}, C \times \Delta_{r}^{j+} \delta(\mathbf{V})>\right) \\
= & \left(<\alpha_{i}, \sum_{k} I\left(C \times \Delta_{r}^{j+} \cdot \delta\left(\Gamma_{r}^{k+}\right)\right) \delta\left(\Gamma_{r}^{k}\right)>\right) \\
= & \left(<\alpha_{i}, \sum_{k}^{k} I\left(C \times \Delta_{r}^{j+} \delta\left(\Gamma_{r}^{k+}\right)\right) \Gamma_{r}^{k}>\right) \\
= & \left(<\alpha_{i}, \Gamma_{r}^{j}>\right)^{t}\left(I\left(C \times \Delta_{r}^{j+} \delta\left(\Gamma_{r}^{k+}\right)\right)\right. \\
= & \Omega^{(p, q)}\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \left(<\alpha_{i}, C \times \Delta_{r}^{j+} \delta(\mathbf{V})>\right) \\
= & \left.\left(<\alpha_{i}, \alpha_{C \times \Delta_{r}^{1 \times 2}}^{1 \times 2}(\mathbf{V})\right\rangle_{V \times V}\right) \\
= & \left(<\alpha_{i}, \alpha_{C}^{1} \wedge \alpha_{\Delta}^{2 j+} \wedge \alpha_{\delta(V)}^{1 \times 2}>_{V \times V}\right) \\
= & \left(<\alpha_{i} \wedge \alpha_{C}^{1} \wedge \alpha_{\delta(V)}^{1 \times 2}, \alpha_{\Delta_{r}^{j+}}^{2+}>_{V \times V}\right) \\
= & \left(<\int_{C} \alpha_{i} \wedge \alpha_{\delta(\mathbb{V})}^{1 \times 2}, \Delta_{r}^{j+}>\right) .
\end{aligned}
$$

The type of the form

$$
\int_{c} \alpha_{i} \wedge \alpha_{\delta(\mathbf{V})}^{1 \times 2}
$$

is $(p, q)+(n, n)-(r \mp s, r \pm s)=(n-q \pm s, n-p \mp s)$.
Hence

$$
\left.\left(<\alpha_{i}, C \times{\Lambda_{r}^{j+}}_{j}(\mathbf{V})>\right)=\Lambda(\mathbf{C}) \Omega^{(n-q \pm s, n p-\mp s}\right)
$$

with a matrix $\Lambda(C)$. Therefore

$$
\Omega^{(p, q)}\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)=\Lambda(C) \Omega^{(n-q \pm s, n-p \neq s)}
$$

Lemma 4. Let $r \leqq n$. Then $\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)$ is non-singular.
Proof. Since $\left\{\Gamma_{r}^{1+}, \ldots, \Gamma_{r}^{B_{r}+}\right\}$ is a base of $H_{2 n-r}(\mathbf{V}, Q)$, by virtue of theory of harmonic integral on a Hodge variety, ${ }^{2)}\left\{\mathbf{W}_{r} \Gamma_{r}^{1+}, \ldots, \mathbf{W}_{r} \Gamma_{r}^{B_{r}+}\right\}$ is a base of $H_{r}(\mathbf{V}, Q)$. Hence $\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)$ is non-singular.

Theorem 1. Let $r \leqq n$. Let C be a cycle of type (r, r). Then

$$
\Omega^{(r)}\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)\left(I\left(\mathbf{w}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)^{-1}=\left(\begin{array}{llll}
\Lambda_{0}(C) & & & \\
& \Lambda_{1}(C) & & \\
& & \cdot & \\
& & & \\
& & & \Lambda_{[r / 2]}(C)
\end{array}\right) \Omega^{[r]}
$$

where

$$
\Omega^{(r)}=\left\{\begin{array}{l}
\left(\begin{array}{l}
\Omega^{(r, 0)} \\
\Omega^{(r-2,2)} \\
\vdots \\
\dot{\Omega^{(1, r-1)}}
\end{array}\right) \text { for odd } r \text {. } \\
\left(\begin{array}{l}
\Omega^{(r, 0)} \\
\Omega^{(r-1,1)} \\
\vdots \\
\vdots \\
\Omega_{(r / 2, r / 2)}
\end{array}\right) \text { for even } r .
\end{array}\right.
$$

[^1]This is an immediate consequence from Proposition 1.
Theorem 2. Let r be an odd integer less than n. Let $\left\{s_{1}, \ldots, s_{l}\right\}$ be a base of the module of rational matrices $S=\left(s_{i j}\right)$ such that

$$
\sum_{i, j} s_{i j} \Gamma_{r}^{i+} \Gamma_{r}^{j+} \approx 0
$$

Let $K_{2 r}(\mathbf{v}, Q)$ be the sub-module of $H_{2 r}(\mathbf{V}, Q)$ consisting of Z such that $I\left(Z \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)=0 \quad i, j=1,2, \ldots, B_{r}$. Then there exists an isomorphism from

$$
H_{r, r}(\mathbf{V}, Q) / H_{r, r}(\mathbf{V}, Q) \cap K_{2 r}(\mathbf{V}, Q)
$$

onto the module of rational matrices M satisfying
i) $\Omega^{(r)} M=\Lambda \Omega^{[r)}$ with a matrix Λ,
where

$$
\Omega^{(r)}=\left\{\begin{array}{l}
\left(\begin{array}{l}
\Omega^{(r, 0)} \\
\Omega^{(r-2,2)} \\
\vdots \\
\Omega^{(1, r-1)}
\end{array}\right) \text { for odd } r, \\
\left(\begin{array}{l}
\Omega^{(r, 0)} \\
\Omega^{(r-1,1)} \\
\vdots \\
\Omega_{(r / 2, r / 2)}
\end{array}\right) \text { for even } r .
\end{array}\right.
$$

ii) $\quad S_{p} S_{\nu} M\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)=0 \quad \nu=1,2, \ldots, l$.

Proof. Let D_{1}, \ldots, D_{m} be independent generators of $H_{r, r}(\mathbf{V}, Q) / H_{r, r}(\mathbf{V}, Q)$ $\cap K_{2 r}(\mathbf{V}, Q)$. Let φ be the linear mapping such that

$$
\varphi\left(\sum_{k} a_{k} \mathbf{D}_{k}\right)=\sum_{k} a_{k}\left(I\left(\mathbf{D}_{k} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)^{-1}
$$

Then, by virtue of Theorem 1,

$$
\Omega^{(r)} \varphi\left(\sum_{k} a_{k} \mathbf{D}_{k}\right)=\Lambda \Omega^{(r)}
$$

with a matrix Λ.
On the other hand we get

$$
\begin{aligned}
& S_{p} \mathrm{~S}_{\nu} \varphi\left(\sum_{k} a_{k} \mathbf{D}_{k}\right)\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)=S_{p} S_{\nu}\left(I\left(\sum_{l} a_{k} \mathbf{D}_{k} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right) \\
= & \sum_{k} a_{k} \mathrm{I}\left(\mathbf{D}_{k} \sum_{i, j} s_{i j}^{(i)} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)=0 \quad \nu=1,2, \ldots, l .
\end{aligned}
$$

Conversely we assume that a rational matrix M satisfies the condition i),
ii). From ii) it follows that there exists a cycle with rational coefficients C such that

$$
\left(I\left(C \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)=M\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)
$$

We assume that C is not homologous to a cycle of type (r, r) modulo $K_{2 r}(\mathbf{V}, Q)$. We put $\alpha_{c}=\alpha_{c_{0}}+\left(\alpha_{C_{1}}+\alpha_{c_{1}^{\prime}}\right)+\ldots+\left(\alpha_{c_{r}}+\alpha_{C_{r}^{\prime}}\right)$, where

$$
\begin{aligned}
& \alpha_{c_{\nu}} \text { is of type }(r-\nu, r+\nu) \quad \nu=0,1, \ldots, r, \\
& \alpha_{c_{\mu}^{\prime}}^{\prime} \text { is of type }(r+\nu, r-\nu) \quad \mu=1,2, \ldots, r
\end{aligned}
$$

and C_{ν}, C_{L}^{\prime} are cycles with complex coefficients corresponding to harmonic forms $\alpha_{c_{\nu}}, \alpha_{C_{\mu}^{\prime}}$ by means of Hodge's theorem respectively. Then, since C is real, necessalily we get $\alpha_{c_{\nu}^{\prime}}=\overline{\alpha c_{\nu}}$. By virtue of the assumption on C, there exists ν_{0} such that

$$
\left(I\left(\left(C_{\nu_{0}}+C_{\nu_{0}}^{\prime}\right) \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right) \neq 0
$$

On the other hand from Proposition 1, putting

$$
T\left(C_{\nu}+C_{\nu}^{\prime}\right) \Omega^{(r)}=\Omega^{(r)}\left(I\left(\left(C_{\nu}+C_{\nu}^{\prime}\right) \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)\left(I\left(\mathbf{W}_{r} \Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right)^{-1}
$$

we have that for any i, j at most one i, j-element of $T\left(C_{0}\right), T\left(C_{1}+C_{1}^{\prime}\right), \ldots$, $T\left(C_{r}+C_{r}^{\prime}\right)$ does not vanish. From $\left(I\left(\left(C_{\nu_{0}}+C_{\nu_{0}}^{\prime}\left(\Gamma_{r}^{i+} \Gamma_{r}^{j+}\right)\right) \neq 0\right.\right.$ we see that $T\left(C_{\nu_{0}}+C_{\nu_{0}}^{\prime}\right) \neq 0$. By virtue of Proposition $1 T\left(C_{\nu_{0}}+C_{\nu_{0}}^{\prime}\right)$ varies of the type of integrants. This is a contradiction to our assumption. Therefore our theorem is proved.

Theorem 3. Let $\left\{S_{1}, \ldots, S_{l}\right\}$ be a base of the module of rational matrices $S=\left(s_{i j}\right)$ such that

$$
\sum_{i, j} s_{i j} \Gamma_{1}^{i+} \Gamma_{1}^{j+} \approx 0
$$

Let $K_{2 n-2}^{*}(\mathbf{V}, Q)$ be the sub-module of $H_{2 n-2}(\mathbf{V}, Q)$ consisting of Z such that $I\left(\mathbf{W}_{2} Z \Gamma_{1}^{i+} \Gamma_{1}^{j+}\right)=0 \quad i, j=1,2, \ldots, B_{1}$.

Then there exists an isomorphism from

$$
\mathscr{S}_{n-1}(\mathbf{V}, Q) / \mathscr{S}_{n-1}(\mathbf{V}, Q) \cap K_{2 n-2}^{*}(\mathbf{V}, Q)
$$

onto the module of rational matrices M satisfying
i) $\Lambda \Omega^{(1,0)}=\Omega^{(1,0)} M$ with a matrix Λ,
ii) $\quad S_{p} S_{\nu} M\left(I\left(\mathbf{W}_{1} \Gamma_{1}^{i+} \Gamma_{1}^{j+}\right)\right)=0, \quad \nu=1,2, \ldots, l$.

Proof. Let $\mathbf{D}_{1}, \ldots, \mathbf{D}_{m}$ be independent generators of $\mathscr{S}_{n-1}(\mathbf{V}, Q)$. Then $\mathbf{D}_{1} \mathbf{W}_{2}, \ldots, \mathbf{D}_{m} \mathbf{W}_{2}$ are independent generators of $\left.\mathscr{F}_{1}(\mathbf{V}, Q)\right)^{3)} \quad$ On the other hand, by virtue of Lefschetz-Hodge's theorem, ${ }^{1)} H_{1,1}(\mathbf{V}, Q)=\mathscr{F}_{1}(\mathbf{V}, Q)$. Hence if we put

$$
\varphi\left(\sum_{k} a_{k} \mathbf{D}_{k}\right)=\sum_{k} a_{k}\left(I\left(\mathbf{W}_{2} \mathbf{D}_{k} \Gamma_{1}^{i+} \Gamma_{1}^{j+}\right)\right)\left(I\left(\mathbf{W}_{1} \Gamma_{1}^{i+} \Gamma_{1}^{j+}\right)\right)^{+} .
$$

Then, by the strictly same reason in the proof of Theorem $3, \varphi$ gives our isomorphism.

We call the degree of $\mathscr{S}_{n-1}(\mathbf{V}, Q) / \mathscr{S}_{n-1}(\mathbf{V}, Q) \cap K_{2 n-2}^{*}(\mathbf{V}, Q)$ the restricted Picard number of \mathbf{V}.

Then we get the following.
Theorem 4. Restricted Picard number is a birational invariant.
Proof. Let \mathbf{V}^{\prime} be another non-singular algebraic variety, which is equivalent to \mathbf{V} by a birational correspondence T. Then T induces isomorphisms from $H_{1}(\mathbf{V}, Q), H^{(1,0)}(\mathbf{V}, C)$ onto $H_{1}\left(\mathbf{V}^{\prime}, Q\right), H^{(1,0)}\left(\mathbf{V}^{\prime}, C\right)$ respectively. ${ }^{5)}$ We denote by f and f^{*} these isomorphisms.

We denote by $\left[H^{1}(\mathbf{V}, C)\right],\left[H^{1}\left(\mathbf{V}^{\prime}, C\right)\right]$ the sub-rings generated by $H^{1}(\mathbf{V}, C)$, $H^{1}\left(\mathbf{V}^{\prime}, C\right)$ respectively. Then f^{*} induces an isomorphism from $\left[H^{1}\left(\mathbf{V}^{\prime}, C\right)\right]$ onto $\left[H^{1}(\mathbf{V}, C)\right]$, for f^{*} mapps $H^{1}\left(\mathbf{V}^{\prime}, C\right)$ onto $H^{1}(\mathbf{V}, C)$ and f^{*} induces a homomorphism from $\left[H^{\prime}(V, C)\right]$, onto $\left[H^{\prime}\left(V^{\prime}, C\right)\right]$.

On the other hand, since

$$
\alpha_{\Gamma_{1}^{i+}}=f^{*}\left(\alpha_{f\left(\Gamma_{1}^{i+}\right)}^{\prime}\right)
$$

and

$$
\alpha_{f\left(\Gamma_{1}^{i+}\right)}^{\prime}=\alpha_{f\left(\Gamma_{i}^{i}\right)+}^{\prime},
$$

we have

$$
\begin{aligned}
\alpha_{\Gamma_{1}^{i+} \Gamma_{1}^{j+}}^{j+} & =\alpha_{\Gamma_{1}^{i+}}^{i^{+}} \wedge \alpha_{\Gamma_{1}^{j+}}=f^{*}\left(\alpha_{f\left(\Gamma_{1}^{i+}\right)}^{\prime}\right) \wedge f^{*}\left(\alpha_{f\left(\Gamma_{1}^{j+}\right)}^{\prime j}\right) \\
& =f^{*}\left(\alpha_{f\left(l_{1}^{i}\right)+}^{\prime}\right) \wedge f^{*}\left(\alpha_{f\left(\Gamma_{1}^{j}\right)+}^{\prime}\right) \\
& =f^{*}\left(\alpha_{f\left(\Gamma_{1}^{i}\right)+}^{\prime} \wedge \alpha_{f\left(\Gamma_{1}^{j}\right)+}^{\prime}\right)=f^{*}\left(\alpha_{f\left(\Gamma_{1}^{j}\right)+f\left(\Gamma_{1}^{i}\right)+}^{\prime}\right) .
\end{aligned}
$$

[^2]Therefore

$$
\sum_{i, j} s_{i j} \alpha_{f\left(\Gamma_{1}^{i}\right)+f\left(\Gamma_{1}^{j}\right)+}^{j}=0
$$

if and only if

$$
\sum_{i, j} s_{i j} \alpha_{\Gamma_{1}^{i+}{ }_{\Gamma_{1}^{\prime}}^{j+}}=0
$$

This shows that

$$
\sum_{i, j} s_{i j} f\left(\Gamma_{1}^{i}\right)^{+} f\left(\Gamma_{1}^{j}\right)^{+} \approx 0
$$

if and only if

$$
\sum_{i, j} s_{i j} \Gamma_{1}^{i+} \Gamma_{1}^{j+} \approx 0
$$

Let $\alpha_{1}^{\prime}, \ldots, \alpha_{B_{1} / 2}^{\prime}$ be differentials of the first kind on \mathbf{V}^{\prime} such that $\Omega^{(1,0)}$ is the period matrix of $f^{*}\left(\alpha_{1}^{\prime}\right), \ldots, f^{*}\left(\alpha_{B_{1} / 2}^{\prime}\right)$ with period cycles $\Gamma_{1}^{1}, \ldots, \Gamma_{1}^{\beta_{1}}$. Then the period matrix of $\alpha_{1}^{\prime}, \ldots, \alpha_{B_{1} / 2}^{\prime}$ with period cycles $f\left(\Gamma_{1}^{1}\right), \ldots, f\left(\Gamma_{1}^{B_{1}}\right)$ is also $\Omega^{(1,0)}$. Therefore, by virtue of Theorem 3, we get

$$
\begin{aligned}
& \mathscr{S}_{n-1}(\mathbf{V}, Q) / K_{2 n-2}^{*}(\mathbf{V}, Q) \wedge \mathscr{S}_{n-1}(\mathbf{V}, Q) \\
\cong & \mathscr{S}_{n-1}\left(\mathbf{V}^{\prime}, Q\right) / K_{2 n-2}^{*}\left(\mathbf{V}^{\prime}, Q\right) \wedge \mathscr{S}_{n-1}\left(\mathbf{V}^{\prime}, Q\right)
\end{aligned}
$$

This proves our assertion.

Mathematical Institute, Nagoya University

[^0]: ${ }^{1)}$ See S. Lefschetz, Topoloyg (New York), 1930.

[^1]: ${ }^{2}$) See J. Igusa, On Picard varieties § II, 6, Proposition 3 American Journal, 74, 1-22 (1952).

[^2]: ${ }^{3), 4)}$ W. V. D. Hodge, The theory and applications of harmonic integrals, IV, 51, 2 (London), 1940.
 ${ }^{5)}$ See J. Igusa, On Picard varieties § II, 11, American Journal, 74, 1-22 (1952).

